
ON r-GENERALIZED FIBONACCI NUMBERS 

rational numbers using their common denominator ur n, the numerators form the 
sequence {ur> n + i}^=_r-
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NOTE ON A FAMILY OF FIBONACCI-LIKE SEQUENCES 

J o h n C. T u r n e r 
University of Waikato, Hamilton, New Zealand 

(Submitted May 1987) 

In [2] P. Asveld gave a s o l u t i o n to the r e c u r r e n c e r e l a t i o n 

Gn = Gn-l + Gn-2 + E ^ w i t h GQ = Gl = 1 . ( 1 ) 
3=0 

In [2] we showed that the solution to the recurrence relation 

Gn = Gn_l + Gn_2 + Sn, Gl = Sl9 G2 = Sl + S2, (2) 

where Sn is the nth term of any sequence {Sn} = S, is given by the nth term of 
the convolution of the Fibonacci sequence F with the sequence S. That is, the 
solution of (2) can be expressed as 

Gn = (F * S)n , 

using * to mean convolution. 
This note shows how Asveld *s family can be dealt with by the convolution 

technique, using generating functions. Although we do not work through the de-
tails in the note, it is clear that a comparison of the two final solutions 
would yield interesting identities relating Asveld\s tabulated polynomials and 
coefficients, and the coefficients from our solution. 
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NOTE ON A FAMILY OF FIBONACCI-LIKE SEQUENCES 

Solution Method 

Comparing (1) and (2), we see that the sequence on the right-hand side is: 

k 

j=o ° 

but the initial conditions differ since G0, GJ both equal 1 rather than Si and 
(Si + S2)9 respectively. However, it may quickly be ascertained that with GQ = 
Gi = 1 Asveld*s equation is satisfied by 

Gn = Fn+l + (F * S'K-1> Where S' = {S2> S 3' S4> '"}' (3) 

Now the generating function of F is f (x) = 1/(1 - x - x2-) . To find the 
generating function of 5 f, we note that otQ is generated by OLQ/CI - x) , and aj-nJ 

by 

aj ^~(^j-i(^)) f o r i = !' •••> k, 

where g • (x) refers to the generating function of nl and gQ(x) = 1/(1 - x ) . It 
follows that the generating function of Sr is: 

q(x) = — 
a9(l + x) d 

.1 - x (1 - x)1 (1 - x)3 K dx 
d / \ k 

+ '" + a/c dx'\Xgk-l(x)) ~ •? aj' j=o 
(4) 

Finall}s from (3) and (4), we know that the solution of (1) is, for n > 2: 
Gn = Fn+l + Cn-2> (5) 

where Cn_^ is the coefficient of xn~2- in the product of generating functions 
f(%) > g(x) > with G0 = Gi = 1. 

Comparison of Solutions 

As stated above, we do not wish in this note to go into the algebraic de-
tail necessary to make a full comparison of the two types of solution. It will 
be instructive, however, to show the two solutions with a small value of k. We 
shall set k = 2, and then Sn = aQ + a.n + a2n2-. The solutions are: 

Asveldfs Solution: 
2 

£ « = ( ! + ^ 0 0 a 0 + a 0 1 a l + a02a2^n+l + X2Fn ~ £ a j ? j ( n ) > ( 6 ) 

where 
J 

P• (n) = £ aijni a n d A2 = ax + (1 + a12)a. 
= 0 

and the coefficients a^j 

aii 3 [ w i t h Bim = (ly-ir-Hi + 2™-*). 
a i j = - E Bimamj-, if j > i \ 

m = i+ 1 ' 

Asveld [1] tabulates the coefficients of the ajfs in (6), and with these 
coefficients equation (6) reduces to the following: 
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Gn = (1 + aQ + 3ax + 13a2)Fn+1 + (ax + 7a2)Fn 

- [a0 + (n + 3)a1 + (n2 + 6n + 13)a2], (7) 

where {Fn}±s the Fibonacci sequence {1, 1, 2, 3S 5, . ..}. 

Turner ' s Solution: 

For n > 2, from (5) we see that 

^n = Fn+l + ^n-25 

where Cn_2 is t n e coefficient of xn~2 in the expansion of 
u a2(1 + x) 

+ _ __ (â  + ai + a^) x(l - x - xz) (1 - x ) 2 (1 - x); 

= (1 - x - x2)~l(l - x)~3[(a0 + 2ax + 4a2) 

- (2aQ + 3a1 + 3 a 2 ) x + (aQ + a-̂  + a 2 ) x 2 ] . 
This g ive s 

Gn = Fn+1 + aQ(a - lb + a) + ax(2a - 32? + c) + a2(4a - 32? + e), (8) 

where a = (F * B)n_i, b = (F * B)n_2, and c = (F * 5 ) n _ 3 , with F the Fibonacci 
sequence and B the sequence of binomial coefficients 

(S)-(n-(j) C - ! ) 
[N.B. the expressions {F * B)^ are to be set to zero if i < 0.] 

Corresponding coefficients in (7) and (8) may now be compared, and, as 
promised above, interesting identities result. Thus: 

Coefficients of aQ:
 F

n + l " * = a - 22? + e; 

Coefficients of al: 3Fn + 1 + Fn - (n + 3) = 2a - 32? + c; 
*"» + ! 

3^n + l 

^Fn + l 

- 1 

+ ^n 
+ IF, Coefficients of a2:; 13Fn+1 + lFn - (n2 + 6n + 13) = 4a - 32? + c. 

These in themselves are identities relating the Fibonacci terms and the 
convolutions with binomial coefficients. 

Solving the three equations for a, 2?, and o, and taking the sum a + b + cy 
leads to the identity 

3 
Z 07 * BK-i E 2i?n+5 " i < 3 n 2 + 9n + 20). (9) 

i = l 

Using (9) we can obtain 

(F * B)n - (F * B)n_3 = 2Fn + i+ - 3(n + 2). (10) 

Then, setting n = 3i - 2 in (10) and summing over i = 1, 2, 3, ..., # , we 
obtain 

( F * B ) 3 W _ 2 E F3ff+, -|(3ff2 + 3ff + 2). (ID 

Similar identities may be obtained for {F * B)3N_l and (F * B)^ . 

Clearly, repeating these procedures for fc = 3, 4, ... would lead to more 
and more complex identities of this type. 
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Generalities 

The idea of writing this note was triggered by the necessity that occurred 
in the course of our research job, of expressing the quantity xn + yn (x and y 
arbitrary quantities, n a nonnegative integer) in terms of powers of xy and x + 
y. Such expressions, commonly referred to as Waring formulae, are given in 
high school books and others (e.g., see [1]) only for the first few values of 
n> namely 

xu + y 0 = 

+ yl X1 

x1 + y2 

x6 + yz 

xh + yk 

2 

x + y 

(x + y)2 

(x + y)3 

(x + y)h 

(1.1) 2xy 
3xy(x + y) 

kxy{x + y)2 + 2(xz/)2. 

Without claiming the novelty of the result, we found (see [2]) the following 
general expression 

+ yn = E (-l)kCTlik(xy)k(x + y) 
k = 0 

n-2k 

where 

C0, o 2 

Jn, k -rr(n ;* ) -»*» .* < » - » 

(1.2) 

(1.3) 

and [a] deno tes the g r e a t e s t i n t e g e r not exceeding a . 

Seve ra l i n t e r e s t i n g c o m b i n a t o r i a l and t r i g o n o m e t r i c a l i d e n t i t i e s emerge 
(see [2] ) from c e r t a i n cho i ce s of x and y i n ( 1 . 2 ) . In p a r t i c u l a r , s ens ing 
Lucas numbers Ln on the l e f t - h a n d s i d e of (1 .2 ) i s q u i t e n a t u r a l for a F i b o -
n a c c i f an . In f a c t , r e p l a c i n g x and y by a = (1 + / 5 ) / 2 and 3 = (1 ~ / 5 ) / 2 , 
r e s p e c t i v e l y , we ge t 

Work carried out in the framework of the Agreement between the Fondazione "Ugo Bordoni" and 
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