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1 a Introduction 

A divisor d of a natural number n is said to be unitary if and only if 

(d, n/d) = 1. 

The sum of the unitary divisors of n is denoted o*(n). It is straightforward 
to show that if 

n = pl
lp2

z ... pk
k , 

then 

a*(n) = (p*i + l)(p*2 + 1) ••• (p£k + D -
A natural number n is said to be unitary perfect if a*(n) = 2n. 

Subbarao and Warren [2] discovered the first four unitary perfect numbers: 

6 = 2-3, 60 = 22 • 3 • 5, 90 = 2 • 32 • 5, 87360 = 26 • 3 • 5 • 7 • 13. 

Wall [3] discovered another such number, 

46361946186458562560000 = 218 • 3 • 54 • 7 • 11 - 13 • 19 • 37 • 79 • 109 - 157 • 313, 

and he later showed [4] that this is the fifth unitary perfect number. No 
other unitary perfect numbers are known, and Wall [5] has shown that any other 
such number must have an odd prime divisor exceeding 215. 

In this paper, we consider the existence of unitary perfect numbers of the 
form 2ms, where s is a squarefree odd integer. We shall prove that there are 
only three such numbers. 

Theorem: If 2ms is a unitary perfect number and s is squarefree, then either 
m - \ and s = 3, m = 2 and s = 3 • 5, or m = 6 and s = 3 • 5 • 7s 13. 

2. Preliminaries 

Throughout this paper, the letter s shall be used to denote an odd square-
free number. The letter p, with or without a subscript, shall denote an odd 
prime. The letter q, with or without a subscript, shall denote a Mersenne 
prime. 

Our starting point is the observation that, for any fixed m, it is easy to 
determine all unitary perfect numbers of the form 2ms. From the previously 
stated formula for o\n), we see that if s = pYp2 - - - Pr > then 2ms is unitary 
perfect if and only if 

_ a*(2ms)_2m + 1 PX + 1 P2 + 2 pr + 1 
2ms 2m ° pl * p 2 pr ' ( } 

Any odd prime dividing 2m+l must appear as a denominator on the right-hand side. 
If p is such a prime, then all odd prime divisors of p + 1 must also appear as 
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denominators on the right-hand side. If we can force a prime to appear more 
than once, then we can conclude that there is no unitary perfect number of the 
form 2ms. 

For example, suppose m = 1. Since 27 + l = 3° 43, 3 and 43 must appear as 
denominators on the right-hand side of (1). Since ll|(43 + 1), 11 must also 
appear. But 3 | (11 + 1), so 3 must appear twice. Therefore, there is no 
unitary perfect number of the form 27s. 

On the other hand, suppose m = 6. Since 26 + 1 = 5 • 13, both 5 and 13 must 
be prime divisors of s. Since 3|(5 + 1) and 7|(13 + 1), 7 and 13 must be prime 
divisors of s. If any other p divides s, then 

o*(2ms) > 26 + 1 n 3 + 1 ̂  5 + 1 ̂  7 + 1 B 13 + 1 ̂  p + 1 
2ms ~ 26 * 3 " 5 " 7 " 13 * P 

Therefore, the only unitary perfect number of the form 25s is 26 • 3 • 5 • 7 • 13. 
Proceeding in this fashion, it is easy to show that the only unitary per-

fect numbers of the form 2ms with m < 10 are those listed in the theorem. 
Thus, we may assume henceforth that 77? > 10. (Alternatively, we could reduce to 
the case 77? > 10 by quoting a result of Subbarao [1].) 

The method of the preceding paragraphs is "top-down": we start with divi-
sors of 2m + 1 and work down. While this procedure works well for specific m, 
it does not lend itself well to a proof in the general case. We therefore 
introduce an alternative "bottom-up" procedure. This procedure starts with the 
Mersenne primes dividing s and works up to the divisors of 2m + 1. (A Mer-
senne prime is a prime of the form 2^ - 1; the first few such primes are 

3 = 22 - 1, 7 = 23 - 1, 31 = 25 - 1, 127 = 27 - 1, 8191 = 213 - 1.) 

First we note that s does have Mersenne prime divisors. For in equation 
(1), all odd prime divisors of a*(s) = V\Vo ••• Pr

 m u s t appear in the denomina-
tor of the right-hand side. But some of the pi' s divide 2m + 1, so at least 
one of the terms p^ + 1 must be free of any odd prime factors. It follows that 
p. is a Mersenne prime. 

Suppose q is a Mersenne prime dividing s. Renumber the primes in (1) so 
that q = p,. There is some (necessarily unique) prime p2 dividing s such that 
pl | (p2 + 1). Note that p2 > 2p1 - 1. Either p2\(2w + 1) or there is some p3 

such that p2|(p3 + ! ) • Continuing in this way, we obtain a sequence of primes 

Pl < Vz < '" < Pk> (2) 
where p is a Mersenne prime, p, | (2m + 1), and p^ + 1 ^ 2p̂ . - 1. 

To formalize the ideas of the preceding paragraph, we introduce the follow-
ing function /. Let p be an odd prime in the denominator of the right-hand 
side of (1). We define f(p) to be 1 if p\(2m + 1). Otherwise, we define f(p) 
to be the unique prime pr such that pr\s and p | (p ' + 1) . We define 

f0(p) = p. / i ( p ) = / ( p ) . a n d / * + I < P > = / ( / * ( p ) ) -
We also define 

/(l) = 1 and /w(p) = ft f. (p). 
i- = 0 % 

For example, if TT? = 6 and s = 3 • .5 • 7 '13, then 
/x(3) - 5, f2(3) = 1, and j^ (3) = 3 - 5 . 

Similarly, 

/co^7) = 7 - 1 3 . 
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Let qY, q2, . .., qz be the Mersenne primes dividing s. Then all odd primes 
dividing s occur in the product 

At this point, we cannot rule out the possibility that this product contains 
repeated prime factors. For example, if 41 \s, then 41"]/^ (3) and 4l|jf (7). Ac-
cordingly, for each Mersenne prime q , we define F(q^) to be the product of all 
primes that divide f^iq^ but do not divide any of fm(q{)> f00(q2^' • • • > fm (?£ -1) • 
With this definition, we have 

2m + l r q * ^ ^ ) ) q*(^(^)) 

If we write 

« < > • ^ 

then the above may be rewritten as 

2m + x 

2. 

G(<7i) ••• £(<?*) = 2. (4) 

The idea behind the proof is to obtain upper bounds for G(q) that make (4) 
antenable. The crucial point here is that, if p15 p2, . .., p are the primes 
described in (2), then p2 > 2p15 p3 > 4p1 - 3, etc. It follows that 

oo 2ip. - 2 ^ + 2 

G(q) < II -r 1 1 • 
i = o 2^p. - 2* + 1 

.̂s we shall show in Lemmas 1 and 2, this product converges. This bound for G 
is sufficient for the larger Mersenne primes. A more elaborate analysis is 
needed for the smaller primes. 

3. Lemmas 

Lemma 1: If p and 6 are real numbers with p > 1, then 

» 6p^ - (p + p2 + ... + pi) (p - 1)6 
i=0 6p^ - (1 + p + p2 + ... + pi) (p - 1)6 - p 

Proof: The Kth partial product is 

6 p6 - p p^6 - pK - •«- - p 

6 - 1 p6 - p - 1 pK& - pK - • •• -,p - 1 

Note that the numerator of each term after the first is p times the denominator 
of the previous term. Therefore, the Kth partial product is 

6p* (p - 1)6 
p^6 _ p# _ ... - p _ i (p - 1)6 - p + .p K' 

The result follows by letting K tend to infinity. 

o m - 1 
Lemma 2: If q = 2m - 1 is a Mersenne prime, then G(q) < 

) m - 1 
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Proof: Let p^9 p2, . . . , p be t he pr imes d i v i d i n g G (q) . Since p-, = q = 2m and 
and p i + 1 ^ 2p. , we see t h a t 

p. > 2m+i~l - 2* + 1. 
T h e r e f o r e , 

9 tf? 9777 + I _ o 

c(9) < — ^ — — - . . . . 
2m - 1 2m + l - 3 

The result now follows by applying Lemma 1 with 6 = 2m and p = 2. 
Lemma 3: Let q.9 . .., q be the Mersenne primes that divide s and are at least 
8191. Then J 

G^ ••• < W ^ f§yf-
Proof: It is well known that, if 2m - 1 is prime, then m must be prime. Thus, 
m = 2 or m is odd. Consequently 

212+2t 

<?(„) ... c(^) * no 2l2+u _ i 
We bound this by observing that 

2\2+2i a, 2
lz+2i - 4 - 42 - ... - 4 ^ 

n 1 9 + 9 , — ^ n -0 2 1 2 + 2 i - 1 i=o 2l2+zi - 1 - 4 - 42 -... - 4* 

The result now follows from Lemma 1 with 6 = 21 2 and p = 4. 

Lemma 4: Let (7., ..., q£ be the Mersenne primes that divide s and are at least 
127. Then ° 

G(qd) ... G(qz) * g . 

Proof: We first get a bound on (7(127) . Let p15 ..., p^ be the primes that di-
vide F(127). If v < 1, then £(127) < 128/127. Assume that p > 2. Then px = 
127 and p~ is a prime of the form 127/z - 1, where all the odd prime divisors of 
In are at least 8191. Now 127 • 2l - 1 is composite for 1 < i < 7, so p2 > 127 
• 28 - 1 = 32511. Therefore, 

r( , < 128 " 32511 - 2i - 2 - 22 - ... - 2^ = JJ28 16256 
U j " 127iV0 32511 . 2* - 1 - 2 - - - - - 2* 127 * 16255' 

From this and Lemma 3, we see that 

G(qj) ... Giqi) ^(127)^(8191) ... ,l|f.i|||f.fZf ,l|f. 

4. Proof of the Theorem 

As stated in Section 2, we may assume that m > 10. 

The proof breaks into three cases: (1) m odd, (2) m = 0 mod 4, and (3) m E 2 
mod 4. 

Case 1; Assume that m is odd. Then 3J2™ + 1, and G(3) = 4/3. It follows that 
the left-hand side of (4) is 

2m + 1 4 r f l , r , ^ , . 1025 4 4 16 122 ̂  . 
~ ^ ~ " 3 ̂ 7 ^ 3 1 > ••• * 1024 3 3 15 121 < 2°  
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Case 2: Assume that m = 0 mod 4. Then 2m + 1 = 2 mod 3 and 2m + 1 E 2 mod 5. 
It follows that there is some prime p such that p \ 2 m + I, p E 2 mod 3, and 
p > 5. Moreover, the congruence x1* E -1 mod p has the solution x E 2 m ^ , so we 
have p E 1 mod 8. By the Chinese Remainder Theorem, p E 17 mod 24. We cannot 
have p = 17 since 32|a*(17). Therefore, p > 41, and the left-hand side of (4) 
is 

2~ +-' " P + l 0(7)0(31) ... 5 i ° « * « *!i 122 < 2. 
2m 3 p 1024 3 41 3 15 121 

Case 3: Assume that m E 2 mod 4. Then 512 m + 1, and 

ff(3)=-ff. 
This case breaks into four subcases: (i) 7/fs; (ii) 71 s and 13^s; (iii) 7|s, 
13|s, and 103|s; (iv) 7|s, 13|s, and 10 3 \ s . 

Subcase 3 (i) : Assume that 7|s. Then the left-hand side of (4) is 

^ «3) 0 ( 3 1 ) 0 ( 1 2 7 ) ...<iSg$jliI|i<2. 

Subcase 3 (ii) : Assume that 71 s and 13|s. Other than 13, the least prime of the 
form lln - 1 with all odd prime divisors of h greater than or equal to 31 is 
7 • 32 - 1 = 223. Therefore, 

< 8 f, 224- 2l - (2 + 22• + ••• + 2^) = 8 112 
U) ~ n i l —' ~*' (1 + 2 + ... + 2*) 7 111' 

Therefore, the left-hand side of (4) is 

^ 1025 4 6 8 112 21 12^ < 2 
" 1024 3 5 7 111 15 121 

Subcase 3 (iii) : Assume that 7|s, 13 |s, and 103 \s. Then 31 |s since 

a*(3 • 5 • 7 • 13 • 31) 
7 • 13 • 31 

> 2. 

If F(7) contains any prime factors other than 7 or 13, then the least such 
factor is of the form 13/z - 1, where all odd prime factors of h are > 127. 
Other than 103, the least prime of this form is 13 • 2 7 - 1 = 1663. Therefore, 

G(7) < 8 14 832 
UK J ~ 1 13 831s 

and the left-hand side of (4) is 

„ 1025 4 6 8 14 832 122 
1024 3 5 7 13 831 121 < 2. 

Subcase 3 (iv) : Assume that 7 j s, 13 |s, and 103 |s. Then \2l\s since 

q*(3 « 5 « 7 * 13 • 103 • 127) 
3 • 5 • 7 • 13 • 103 • 127 

The least prime of the form 103ft - 1 is 103 • 8 - 1 = 823. Therefore, 

C(i\ < 8 14 104 412 
K J " 7 13 103 411' 
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and the right-hand side of (4) is 

< 1 Q 2 5 4 6 8 _H JJ04 ^12 3072 < 

~ 1024 3 5 7 13 103 411 3071 
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