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Repeating decimals show a surprisingly rich variety of number sequence 
patterns when their repetends are viewed in retrograde fashion, reading from 
the rightmost digit of the repeating cycle towards the left. They contain 
geometric sequences as well as Fibonacci numbers generated by an application of 
Pascal*s triangle. Further, fractions whose repetends end with successive 
terms of Fnm , m = 1, 2, ..., occurring in repeating blocks of k digits, are 
completely characterized, as well as fractions ending with Fnm+p or Lnm+p, 
where Fn is the nth Fibonacci number, 

F1 = 1, F2 = 1, Fn+i = Fn + Fn_19 

and Ln is the nth Lucas number, 

1. The Pascal Connection 

It is no surprise that 1/89 contains the sum of successive Fibonacci num-
bers in its decimal expansion [2], [3], [4], [5], as 

1/89 = .012358 
13 
21 
34 

However, 1/89 can also be expressed as the sum of successive powers of 11, as 

1/89 = .01 
.0011 
.000121 
.00001331 
.0000014641 

where 

1/89 = 1/102 + ll/lO4 + 1'12/106 + ..., 

which is easily shown by summing the geometric progression. If the array above 
had the leading zeros removed and was left-justified, we would have Pascal's 
triangle in a form where the Fibonacci numbers arise as the sum of the rising 
diagonals. Notice that llk generates rows of Pascal's triangle, and that the 
columns of the array expressing 1/89 are the diagonals of Pascal's triangle. 
We call this relationship "the Pascal connection." 

Now, 1/89 leads to the Fibonacci numbers by summing diagonals of Pascal's 
triangle. Since 89 = 102 - 11, consider 9899 = 10*+ - 101. By summing the geo-
metric series, 

1/9899 = 1/104 + 101/108 + 1012/1012 + ... . 
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However, 101* generates rows of Pascal's triangle where the columns are inter-
spersed with columns of zeros. By the Pascal connection we obtain Fibonacci 
numbers in every second place, as 

1/9899 = .0001010203050813..= . 

The Pascal connection also gives us 

1/998999 = .000001001002003005008013..., 

since 998999 = 106 - 1001. In general, 

l/(102k - 100...01)., 

where (k - 1) zeros appear between the two l!s, gives successive Fibonacci num-
bers at every kth place by the Pascal connection. 

Looking again at 89 = 102 - 11, observe that 889 = 103 - 111, and summing a 
geometric series gives 

1/889 = 1/103 + 111/106 + 1112/109 + ..., 
where 

1/889 = .001 = .001124859... 
.000111 
.000012321 
.000001367631 

and we generate the Tribonacci numbers 

0 , 1, 1, 2 , . . . , Tn + i = Tn + Tn _ i + Tn _ 2 , 

by the Pascal connection, since 111^ generates rows of the trinomial triangle, 
and the sums of the rising diagonals of the trinomial triangle yield the 
Tribonacci numbers [1]. 

The results of expressing 1/89, 1/9899, 1/998999 in terms of Fibonacci num-
bers have been developed by other methods by Long [2] and by Hudson & Winans 
[3]. Winans [4] also gives 1/109 and 1/10099 as a reverse diagonalization of 
sums of Fibonacci numbers, reading from the far right of the repeating cycle, 
where 1/109 ends in 

13853211 
21 

34 
55 

89 

We next apply,the Pascal connection to repeating decimals, looking out to 
the far end of the repetend and reading from right to left. 1/109 has a period 
length of 108, and 1/109 ends in powers of 11, as 

1/10108 + 11/10107 + 112/101 0 6 + ..., 

or, a reverse diagonalization of powers of 11, 

1 
11 

121 
1331 

14641 

1989] 449 



RETROGRADE RENEGADES AND THE PASCAL CONNECTION 

Summing the geometric progression, 

ly n i ~ l
 = n 1 0 8 - 1 Q 1 0 8 - l = l l 1 0 8 - 1 + I P 1 0 8 - l 

i = i 1 0 1 0 9 _ i 1 0 1 0 8 • (110 - 1) 109 1 0 1 0 8 » 1 0 9 

Now, 1 0 9 | ( 1 1 1 0 8 - 1) because 109 is prime, so that the left term is an integer. 
The rightmost term represents one cycle of the repetend of 1/109, since 109 has 
period length 108. Thus, 1/109 gives Fn , n = 1, 2, . . . , reading from the 
right, by the Pascal connection. 

Notice that 109 = 11(10) - 1, and 109 is prime with period 108. Now, 

1109 = 111(10) - 1, 

where 1109 is prime with period 1108. We can generate the last digits of the 
repeating cycle for 1/1109 in exactly the same way by writing 

1/101108 + 111/101107 + 1112/101106 + ... . 

By the Pascal connection, 1/1109 ends in the Tribonacci sequence, ...74211. 
Generalizing 109 in another way, 10099 is a prime with period length 3366, 

where 10099 = 101(102) - 1, so that 1/10099 can be expressed in terms of powers 
of 101 from the far right. As before, 101^ generates rows of Pascal's triangle 
where the columns are interspersed by zeros, so that the Pascal connection 
shows 1/10099 ending in ...0503020101. Similarly, 1000999 = 1001(103) - 1, and 
1000999 is prime with period length 500499 [6], so that, by the Pascal 
connection, 1/1000999 must end in Fn appearing as every third entry, as 
..005003002001001. 

We can immediately write fractions which generate the Lucas numbers Ln from 
the right. Since 1/109 ends In Fn , n = 1, 2, ..., reading from the right, and 
Ln = 2Fn„l + Fn, multiplying 1/109 by 21 in effect adds 2Fn_1 + Fn in the 
expansion except for the rightmost digit. But because the digit on the right 
of Fi is indeed 0, the last digit also fits the pattern, so that 21/109 ends in 
Ln_i from the right. Also, multiplying 1/109 by 101 in effect adds Fn_i + Fn+i 
to make Ln except for the rightmost digit. Thus, 101/109 ends in Ln except for 
the rightmost digit. That is, 101/109 ends in ...74311, and Ln reads from the 
right to left beginning at the 107th digit. Since 1/10099 gives Fn, n = 1, 2, 
..., reading from the right with every second digit, 201/10099 ends in Ln from 
the right as ...181107040301. Similarly, 2001/1000999 ends in Ln as every 
third digit. Finally, 10001/10099 ends in ...18110704030101 while 1000001/ 
1000999 ends in ...018011007004003001001. 

We will eventually prove these notions, but to enjoy these relationships 
one needs an easy way to write the far right-hand digits in these long 
repeating cycles. If. (A, 10) = 1, A > 1, then A • l/A = 1 = .99999... . To 
generate 1/109 from the right, simply fill in the digits to make a product of 
...9999999: 

109 
...53211 

109 
109 

218 
327 
545 
...999999 

The last digit of the next partial product must be 2 to make the next digit in 
the product be 9. So the digit preceding 5 in the multiplier must be an 8. 
One proceeds thusly, filling in the digits of the multiplier one at a time. 
The multiplier gives successive digits of 1/109 as read from the right. 
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2. Retrograde Renegades: Repeating Decimals that Contain 

Geometric Series 

Any repeating decimal can itself be considered as a geometric series, but 
here we want to study repeating decimals which contain geometric series within 
their repetends. First, we list some general known results in Lemma 1 [7], 
[8]. 

Lemma 1: Let n be an integer, (ft, 10) = 1, n > 1. Then L(n) , the length of 
the period of ft, is given by 

(i) 10L(n) E 1 (mod n), 

where L(n) is the smallest exponent possible to solve the congruence; if R(n) 
denotes the repetend of ft, then R(n) has L(ji) digits and 

(ii) R(n) = (10L(n) - l)/ft; 

the remainder B after A divisions by n in finding 1/ft is given by 

(iii) 104 = B (mod ft), 

and 
(iv) mL(n) E 1 (mod n) ̂  ^ n) = 1. 

While L{n) can be calculated as in Lemma l(i), Yates [6] has calculated 
period lengths for all primes through 1370471. 

We first look at repetends which contain powers of numbers reading left to 
right, or right to left, such as 1/97 = .01030927... and 1/29, which ends in 
...931, both of which seem to involve powers of 3. 

Lemma 2: The decimal expansion of 1/(100 - k) , (100, k) = 1, contains powers 
of k from left to right, k < 100. 

Proof: Summing the geometric series, 

1/102 + fc/104 + k2/106 + ... = 1/(100 - k). 

Lemma 3: The repetend of l/(10k - 1) contains powers of k as seen from the 
right. 

Proof: Let n = 10k - 1. Then the sum after L(n) terms of 

° " 1QL(n) ^ lQL(n)-l T
 lQL(n)-2 ^ 

is given by summing the geometric progression for L(n) terms as 
1 {i0L(n)kL(n) _ ^ 

10L(n) ' (10k - 1) 
_ 1 [l0L(n)kL(n) _ 1QL(n) + lQL(n) _ X] = kL(n) _ 1 lQL(n) _ x 

10 L ( n ) * (10k - 1) ft 10L(n)ft 

where the left-hand term is an integer and the right-hand term gives one cycle 
of 1/ft following the decimal point, both by Lemma 1. 

Notice that 1/89 has powers of 11 or Fibonacci numbers as seen from the 
left and powers of 9 from the right, while 1/109 has powers of (-0.09) from the 
left (where the initial term is 0.01), and powers of 11 or Fibonacci numbers as 
seen from the right. Also, 1/889 has Tribonacci numbers as seen from the left, 
and powers of 89 on the right, since 889 = 10 * 89 - 1. 
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Next, consider pairs of fractions whose repeating decimal representations 
end in each other. For example, 31 appears as the rightmost two digits of 1/29 
(period length 28), and 29 is the last pair of digits of 1/31 (period length 
15). Now, 29-31 = 9 • 102 - 1, and the digits in the two cycles, reading from 
the right, can be represented as 

1/29: 31/1028 + 9 -31/1026 + 92 • 31/102*4 + ...; 

1/31: 29/1015 + 9 '29/1013 + 92 • 29/1011 + ... . 

Further, 1/29 ends in ...137931, and 1/31 ends in ...29, 1/931 in ...029, 
1/7931 in ...0029, 1/37931 in ...00029, and, finally, 1/5 = 0.000...29 (26 
zeros in the repetend) , where B is the entire repetend of 1/29. Also, there 
are many representations of a fraction reading from the right, such as, for 
1/59 with its 58-digit period length, ending in ...779661, we have 

1/1058 + 6/1057 + 62/1056 + ..., 

61/1058 + 36 • 61/1056 + 362- 61/1054 + ..., 

661/1058 + 39 • 661/1055 + 392 • 661/1G52 + ..., 

9661/1058 + 57- 9661/1054 + 572 • 9661/1050 + ..., 

where 

1058 E 1 (mod 59), 1057 = 6 (mod 59), 1056 = 36 (mod 59), 

1055 E 39 (mod 59), and 1054 = 57 (mod 59). 

Notice that the multipliers are the remainders in reverse order in the division 
to obtain 1/59. 

Both of these examples of retrograde renegades are explained by Theorem 1. 

Let A and B be integers, (A, 10) = 1, (B, 10) = 1, A > 1. Let L(A) 
be the number of digits in the period of A. If l/A ends in B, then the end of 
l/A can be expressed as 

S/10^4 ) +KB/10LW-k + K2B/lOL^~2k + ..., 
where 

AB + 1 = K • 10fe, 

and the number of terms is L(A) /k if k divides L(A) , or [L(A)/k] + 1 otherwise, 
where [x] is the greatest integer in x. 

Proof: AB + 1 = K • 10^ because K • 10^ is a partial dividend where A is the divi-
sor, B is the quotient, and 1 is the remainder, in the long division process to 
find l/A. By Lemma 1, 

10L^> E 1 (mod A) and i0LU)-k E K (mod 4) . 

Case 1 . L e t k\L(A). Sum t h e g e o m e t r i c p r o g r e s s i o n w i t h L(A)/k t e r m s t o 
o b t a i n 

= B , WLW/k - i o L ( / 1 ) - i ) 
1 0 L ^ } ' ( Z - I0k~l) 

= B
 t WL{A)/k ' 1 0 L ( A ) - 1 0 L ( A ) + 1 0 L ( A ) - 1) 

1 0 L ( A ) AB 

KL(A)/k - 1 1 0 L ( A ) - . 1 

A A • 1 0 L ( A ) 
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Now, t he r i g h t - h a n d term r e p r e s e n t s one cyc le of the r epe t end of I/A fo l lowing 
the decimal p o i n t , by Lemma 1, Next , i f t he l e f t - h a n d term i s an i n t e g e r , we 
a r e done. By Lemma 1, 

1QL(A)-k = R ( m o d A ^ 

KL(A)/k = (l0L(A)-k)L(A)/k = (l0L(A))(L(A)-k)/k = X (mod A ) s 

which means that the left-hand term is an integer,, 

Case 2. If k does not divide L(A), then L(A) = km + r, 0 < v < m9 and 
there are (m + 1) terms. Then, summing as befores 

B Km + l» 1 0 f e ( m + x ) - 1 

1 0 L ( A ) K« 10* - 1 

Km + l • lQk(m + l) _ IQL(A) IQ^U) - 1 
= ioL^) • A + To^TTT 

Notice that the right-hand term is the same as in Case 1. If the left-hand 
term is an integers then Case 2 is done* The left-hand term is equivalent to 

(Zm + 1°  ioHm-i)-L(A) - I)/A 

so we have an integer if 
Km + l . lQk(m + l)~L(A) = l (mod ,4) a 

But K E ioL(A)-k (mod A), and substituting aboves 
/ IQ L(A) ~k \m +l . J_Q^(/77 + 1) - L(A) _ ^Q L(4) (/n + 1) - £:0?7 + 1) + k(m + 1) - L(A) 

= lOmL(A) = (lQL(A))m E x ( m o d A ) 

and we are done. 

Corollary (due to G. E. Bergum): Let A be a prime with k digits* If B is the 
integer formed by writing the last i digits of the repetend of 1/A9 L{A) > 1 > 
k, then 1/B ends in ...000..J, where A is preceded by {i - k) zeros. 

3. Fractions that Contain Fnm in Their Decimal Representations 

Hudson & Winans [3] completely characterized decimal fractions which can be 
represented in terms of Fym , reading from the left. In particular, they give 

1/71 = E F2i/I0i + K 
i = i 

Winans [4] gives 9/71 as ending in Fibonacci numbers with odd subscripts. 
Since 9/71 also begins with F2m-i reading from the left and 

L2m = F2m-l + F2m + l> 

we write 11 • 9 = 99 = 28 (mod 71) and 28/71 begins with Llm, m = 1, 2S ... . 
Since we find that 19/71 ends In F2m-3, and 

L2m-2 = F2m-l + F2m- 3» 

19/71 + 9/71 = 28/71 ends in L2m_29 m = 1, 2, ..., reading from the right. 

Further5 Hudson & Winans [3] give 

1/9701 = .000103082156..., 
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where F2m appears in groups of two d i g i t s . We note that 9701 = 89 • 109, with 
1188 d ig i t s in i t s repeating cycle . I t turns out that 

99/9701 = .0102051334... 

and that 99/9701 ends in . . . 893413050201, where F2m-i appears in groups of two 
d i g i t s , reading e i ther from the l e f t or from the r i g h t . Since 

L2m = F2m-l + F2m + l> 
and 

101- 99 = 9999 = 298 (mod 9701), 

we should have 298/9701 both beginning and ending in Lucas numbers with even 
subscripts. In fact, 

298/9701 = .03071848... 

and ends with ...4718070302, or begins with Ẑ m anc* ends with 2̂̂ 2-2? m = 1, 2, 
..., moving in blocks of two. 

Next, we give a description of fractions with a decimal representation 
using Frm , reading from right to left. 

Theorem 2: The decimal representation of 
F„ 

102/c + L * I0k - 1 , n odd, 

ends in successive terms of Frm , 777 = 1, 2, ..., reading from the right end of 
the repeating cycle, and appearing in groups of k digits. 

Proof: Change the sum written in (i) to geometric progressions by using the 
Binet form for Fn9 

Fn = (an - (3n)//5, where a = (1 + /E)/2 and 3 = (1 - /5)/2. 

Then sum the geometric progressions, making use of aB = -1 and Ln = an + 3n» 
After sufficient algebraic patience, one can write, for k > 0, 

(i) Y IQ^^'^F = - — — — - — — n(L + l) n 
i = i ni (-1)^ + 110^ + L„. 10fe - 1 

Notice that the sum is a positive integer at this point, and dividing by 10^, 
y > 0, will move the decimal point y places to the left. Let 

M = (-l)n+1102fe + Ln • 10k - 1, 

where M > 0 when n is odd, and let L(M) be the length of the period of M. The 
number of terms L in the sum must be chosen so that L > L(M)/k. We divide both 
sides of (i) by 1 0 L ^ , and add (Fn - Fn) to the numerator on the right-hand 
side, making 

Mi) f 1 0 ^ - D ^ W p - lOkL~L(M) a~l)n + llOkFnL +Fn{L + l)) ~Fn 
J i = i ~ni M 

F (10LW - 1) 
+ 

IQ^M) M 

Since kh > L(M) , iQkL-L(M) > Xj a n d t h e decimal point has been shifted L(M) 
places left. Now, the rightmost term is Fn times one cycle of the repetend of 
1/M. Thus, when n is odd, 

M = 102fc + Ln • 10k - 1, and Fn/M has the needed form. 
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Now, if n is even, 

M = (-l)n+1102* + Ln • 10* - 1 

is negative, and we have to modify Theorem 2. 

Theorem 3: The decimal representation of 
M - F.n 0 7 , 

^-^-, M = 102* - Ln » 10* + 1, n is even, 

ends in successive terms of Frm , /?? = 1, 2, . .., reading from the right end of 
the repeating cycle and appearing in groups of k digits, if 1 is added to the 
rightmost digit, 

Proof: Return to (ii) in the proof of Theorem 2. When n is even, both numera-
tor and denominator of the left-hand term are negative, so we still have a 
positive term there. Since M is negative when n is even, rewrite the right-
hand term as 

-Fn(10L(Ai) - 1)/10L(M)M 

for adjusted M, 

M = 102* - Ln • 10* + 1. 

Then write 

-Fn(10L(A/) - 1) _ -FW(10L^ - 1) + (A/(1Q£M - 1)) - (M(10L{M) - 1)) 
10L(M) M ~ 10LM M 

__ (M - Fn)(lOL{M) - 1) 1 _ 

10L(M)M 10L(M) 

The fractional part represents (M - Fn) times one cycle of the repetend of 1/M, 
with 1 added to the rightmost digit, which finishes Theorem 3. 

Further, notice that if Fn /M is represented in terms of Fym , then other 
fractions with the same denominator will have representations in terms of Fnm+r 
and Lrm+r9 r = 0, 1, ..., n - 1. For example, for n = 2, k = 1 and m = 1, 2, 

2/139 ends in F3m, 20/139 in F3m_3, 11/139 in F3m„l$ 13/139 in F3m+l; 

24/139 ends in L3m, 31/139 in L3m.l9 41/139 in L3m+1. 

In general, for n = 3, tf? = 1, 2, ..., and M = 102* + 4 * 10* - 1, we have 

2/M ends in F3m; 2 • 10*//^ ends in F3m_3. 

Since F3m + F3m_3 = 2F3m_1, and F3m + 1 = F3m + i^-i* we find that 

(10* + l)/M ends in F3m_l; . (10* + 3)/M ends in F3m+l. 

Then L3m = F3m + 1 + F3m^l and. L3m_2 = F3m_3 + F3m.1, give us that 

(2 • 10* + 4)/Af ends in L3m; (3 • 10* + 1)/M ends in L3m_2, 

Lastly, L3m+2
 = ^3w + ^F3m+l means that 

(3 • 10* + 11) /M ends in L 3m + 2, 
where all of the above occur In groups of k digits. 

The even examples are both more difficult and more entertaining. For n = 2, 
m = 1, 2, ..., M = 102* - 3® 10* + 1, the following occur in blocks of k digits 
from the right: 
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(10* - 3)/M ends in F2m+2, (10* - DIM ends in F2m+l; 

(2- 10* - 3)/M ends in L2m , (10* - 4)/Af ends in L2m + 1-

For n = 4, m = 1, 2, . .., M = 102* - 7 • 10* + 1, the following occur in blocks 
of k digits from the right: 

(10* - 5)/M ends in Fhm+l, (10* - 8)/M ends in F 

^+2, (4 • 10* ~ 29)/M ends in Z ^ + 3. (3 •' 10* - 18)/M ends in £^+2, (4 * 10^ ~ 29)/M ends in L 
These are by no means exhaustive. Fibonacci and Lucas numbers abound but en-
countering negative numerators causes addition of multiples of M to write a 
fraction with a positive numerator and the same repetend5 and there will be 
adjustments to the last digit in the representation 

When n is even, Theorem 3 gives the same denominators as found by Hudson & 
Winans [3] for the even case, in representations using Frm from left to right. 
We find examples such as 9/71 and 99/9701, which both begin and end in ̂ 2^-1* 
and 98/9301, which has F^m_^ from the left and Fbrm^i from the right. We can 
write a corollary to Theorem 3. 

10* - 1 
Corollary: ( i ) — ^ 1 beg ins and ends wi th FZm.l9 

y 102* - 3 • 10* + 1 
10* - 2 

(ii) begins with F^ 3 and ends with FL{m-i, 
102* - 7 • 10* + 1 

both appearing in blocks of k digits. 

Proof: Case (i) , where n = 2. From left to right, 1/A? begins with F 2m_2
 and 

10k/M begins with F2m, so subtracting gives (10* - 1)/M for i^m-l- From right 
to left, 

(M - l)/M = (102* - 3 • I0k)/M ends in F2w 

except for the last digit, so moving one block left, 

(10* - 3)/M ends in F2m+2. 

Using F2m_l = F2m+2 - 2F2m, compute 

(10* - 3 - 2(-l))/M == (10* - l)IM9 

where the numerator is positive, ending in F^m-l* 

Case (ii), where n = 4. From left to right, 3/Af begins with Fiim_bf, so 
3 - 10*/M be gins with Fi+m. Since 3i?7ifm_3 - Futm - 2F^rn-L^s we find that 

(10* - DIM begins with F^m_3. 

From right to left, except for the last digit, 

(M - 3)/M ends in Fhm, 

(M - 3)/lOkM = (3M - 3)/lOkM = (3 • 10* - 21)/M. 

5F^m allows us to compute 

(3 • 10* - 21 - 5(-3))/3M = (10* - DIM, 

where the numerator is positive, ending in Fi+m_i. 

Examining the proof of the corollary, we have seen several examples for 
n = 2 and n = 4 where 
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Fp • 10* - Fv+n 
ends in F^ 102* - L„ • 10fe + 1 ™ + P 

and some earlier examples for n = 3 and n - 1, where 
FD • 10k + fp + „ 

ends in F„. 102* +L„ -10k - 1 nm+p' 
We write our final generalization as Theorem 4. 

Theorem 4: The repeating cycle of 

Fp • 10* + (-lr+^p+n 
1Q2* + (-l)n+1(Ln • 10* - 1) 

and the repeating cycle of 

Lp- Wk + (-l)» + lLp+„ 
ends in Ly 

i02k + (-l)«-+l(Ln-. 10* - 1) ?OT+P 

for /?? = 1, 25 ...,'occurring in. blocks of k digits, for positive integers k and 
n such that 

102* + (~l)n+l{Ln • 10* - 1) > Fp • 10* + (~l)" + 1Fp+„ > 0. 

The proof of the Fibonacci case follows from summing 

L 
- ni+ v 5 E l 0 ^ - i)^w f „ .. 

using the techniques of Theorems 2 and 3. Since we force cases where the num-
erator and denominator are both positive, we can do the proof as one case, and 
the proof is fairly straightforward but very long and tedious. The Lucas case 
follows by adding the fractions which represent Frm + ^_l^ and F?w? + (p + 1 ) . 
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