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We recall the Zeckendorf Theorem and its dual, credited to E. Zeckendorf,
which deals with the representation of integers as sums of distinct Fibonacci
numbers. These theorems were restated and proved by J. L. Brown, Jr., 4n [1]
and [2]. Throughout this paper, we let I denote the set of positive integers.

Zeckendorf Theorem: 1f n € N, n may be uniquely expressed in the following
form:

r
n = kz eka+1, (l)
-1
where
0, € {0, 1}, 0, = 0 if k > r, and O + 041 < 2, k=1,2, «.. . (2)

Dual Zeckendorf Theorem: I1f n € I, n may be uniquely expressed in the form
shown in (1), but with the conditions:
6, € {0, 1}, 6, = 0 if kK > r, and 6y + 6x4; > 0, Kk =1, 2, ..., . (3)

[Note: The usual statement of the condition on the 6y's in (2) is, 6;6;41 = 0,
which is equivalent. The condition as stated in (2) is more amenable to the
proper generalization.]

Before stating and proving the appropriate generalizations of the above
theorems, we introduce some useful definitions.

Given integers b and ¢ with b 2 2, t = 2, we say that a given integer n € IV
is b, t-upper representable iff there exists an increasing sequence

H= Hb, t),_,

of positive integers such that n may be uniquely expressed in the following
form:

r
n= X 6y Db, 1), ()
where
0,(b, t) € {0, 1, ..., b -1}, 0,(b, t) = 0 if k > », (5)
and
6k+6k+1+---+8k+t_1<(b—l)t,k=l, 2y e . (6)

We say that n € N is b, t-lower representable iff the same conditions hold as
in (4) and (5), but (6) is replaced by:

O + Ogp1 + ovo + Op4r-1 >0, k=1, 2, ..., Pr. (7

Let S(H) and T(H) denote the sets of b, t-upper representable and b, t-lower
representable numbers, respectively. For brevity, we may write the sum in (4)
in the form:

n = (6,.9,,_1 ce e ezel)y, (8)
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omitting the arguments "D, t" where no confusion is likely to arise. We may
let the notation in (8) represent the b, t-representation of # [an element of
S(H) or T(H)] as well as the value of the sum indicated in (4) [an element of
S(H) or T(H)]. Here, S(H) and T(H) denote the sets of b, t-upper and -lower
representations, respectively, of the form given in (8). Note that condition
(6) for b, t-upper representations states that no representation in E(H) is to
contain ¢ consecutive digits equal to (b - 1); similarly, condition (7) re-
quires that no element of T7(HZ) is to contain % consecutive digits equal to
Zero.

Let Sy, (H) and T, (H) denote the subsets of S(#) and T(H), respectively,
which contain » digits in the representation (that is, with 6» > 0, 6x = 0, if
k > r 2 1). Let the corresponding integers represented by S,(#) and T7,(H) be
arranged in nondecreasing order (as yet, we do not know if any duplication
occurs), and call these ordered sets Sp(#) and Tn(H), respectively. Let Un(H)
and V,(H) denote the sizes of S,(#) and T,.(H), respectively, that is,

Up(H) = |So ()|, Vo) = |To(D)]. (9)

Let A,(H) and B, (H) denote the smallest and largest values, respectively, of
Sp(H); let Cp(H) and D,(H) denote the smallest and largest values, respectively
of 7,(H#). Finally, we observe that:

sy = Us, @y, 1@ = Urna. (10)
r=1 r=1
We may now express and prove the following theorems.

Theorem 1 (Generalized Zeckendorf): We define the sequence G = (Gx(b, t))i_,
as follows:

G, =bkl, k=1,2, ..., t; (1)

Grar = (b = 1)(Grap-1 + Crapop + +ono + Gry1 + G)y k=1, 2, ... . (12)
Then

o= 5(6). (13)

Moreover, if N = S(H) for some sequence H = (Hk(b, t)):=l, then A = G.

Theorem 2 (Generalized Dual Zeckendorf): 1f G is as defined in (11) and (12),
then ¥ = T(G). Moreover, if NV = T(H) for some sequence H = (Hk(b, t))k=l, then
H = G.

Proof of Theorem 1: We begin by deriving the values of U,(H). Since

6, € {1, 2, ..., b - 1} if » =1,
we have

Uy(H) =b -1= Gy - Gy.
If r = 2 (with ¢t > 2), then

6, € {0, 1, 2, ..., b -1} and 6, € {1, 2, ..., b - 1},
independently, so

Upy(H) = b(b - 1) = G3 - G-
Continuing in this fashion, we see that

U () = b*7 (b = 1) = Guyp = Gpy P =1, 2, vuuy t = 1.
Setting X = 1 in (12) yields:

Gepp = (b - D@L+ P72 + .00 +1) = bF - 1.
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Also, note that Eé(H) may be generated by (b - 1) choices for 6, and b choices
for each of 64-7, 6425 ..., 01; however, we must subtract from this composi-
tion the (one) choice where all digits are equal to (b - 1). Therefore,

U () =bt"1(h - 1) =1 =0 =1 -0t =Gy - Gy
So far, we have shown:
Up(HY = Gpyy = Gps 72 =1, 2, «o., . (14)

Next (for brevity, omitting the argument "A"), assuming m 2 ¢, we let 5, and S/
denote the subsets of S, with initial digit in {1, 2, ..., b - 2} and equal to
(b - 1), respectively. Let U} and U}l denote the sizes of S} and S}, respec-—
tively. Also, let

Wy = Uy + Uy + oee + Upy Wh=Ul +U)+-cu + U}

Now S, = Sy U S}; thus, U, = Ujf + U}l. 1In what follows, we let x represent any
of the digits in {1, 2, ..., b - 2}, y = (b - 1), and 0 the zero digit; also, z
represents either x or y. We note that S) may be formed in any of the follow-
ing (mutually exclusive and exhaustive) ways:

yS!_y y0S,_, 005, _, .e. y00...005,_, 4000...0

yygg_z yyOE&_S yyOOEW_L+ -eo yy00...05, _, yy00...0

YYe o YSy i yy...yogm_t yy....yoogmnt_1 yy...yOO...OOg1 yy...y00...0
t-1 t-1 t-1 t-1 t-1

Therefore,

uy = (Ur;_1 + Ué_z +oeee o+ Ué_t+1) T Wy ¥ U g+ eee U, 1)
F Uy g ¥ Uy toeee F Uy )+ e + Uy Uy + e +U)) + -1
= Wiy = W) + Uy = Wy )+ Wylg = Wy ) + eee + W + 2 - L.
Taking the first difference, we obtain:
UY:I’+1 - Ur;, = Un; - Ur;—t+l + Wm—l = W (15)

Next, we consider the possible ways to generate S5, namely, as follows:

xS, s x0S,_,, 2005, _5, ..., £00...005,, or 200...00.

Since x may be chosen in b - 2 ways, we have:

Up = b -0, +U, ,+ e + U +1)=0~2)0,_; +1).
Taking first differences in the last expression, we have:

Ul = Up = (b = 2)U,. (16)
Now, adding the expressions in (15) and (16), we obtain:

Um+1 - Um = Ur; - Urr:—t+l + Wm—l - Wm—t + (b - Z)Um

= (b - 2)(Wm_1 +1 =W, .- 1)+ Wy = Wp_y + B - 2)U,;

hence,

Upor = @ - DWW, W, W) = (b - DWW, - W),
Equivalently,

Upe1 = b - U, + R R O (17)

m=%t,t+1, £t + 2,
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Note that (17) is the same recursion satisfied by the G,'s in (12). Since G,
and G, satisfy this recursion, so does Gp41 - Gp. It follows from (14) and
(17) that we have:

U (H) = Gppy = Gp» v =1, 2, ..., for all H. (18)

Next, we derive expressions for A,(H) and B,(H) [recalling that these are
the smallest and largest values, respectively, of SP(H)]. For any admissible
H, we see that

A, (H) = (100...0)4,
r-1

or, equivalently,

A, (H) = Hyp. (19)
In particular,
Ap(G) = Gp. (20)

Also, using the notation introduced earlier, we see that
B.(H) = (yy.-.yy -1 yy.eoyy -1 oo yy...yy =1 yy...40y>
N~ S— S~ N~
t-1 t-1 t-1 v
where r» = ut + v, 0 < v < ¢,

and in the above representation there are u blocks of length ¢ of the type:

Yyy...y y - 1.
Therefore,
B,(#) = (b -1, +H,_| + -0 +H) - Hy g ypu-e ¥ oo HH
In particular,
v u-1 t u-1
Bo(G) = (b - 1) LG+ (b -1) 2 2 Gyijier - & Gosleje
k=1 J=0 k=1 J=0
v u-1 u-1
= Y B =-DP+ Y G hGene T 2 Goalest
k=1 Jj=0 ji=0
v v
=D’ =1+ Gyyrpy - Gyyy =D = 1L+ Goyq = b
or
B,(G) =G,y - 1. (21)

By definition of 4A,(G) and B,(G), we see from (21) that the S,(G) are disjoint.
Moreover, from (20), (21), and (18), we have:

B,(G) = 4,(G) = Gpy1 = G = 1 = Upn(G) - 1. (22)
Thus, the difference between the largest and smallest elements of 5,(G¢) is one
less than the number of elements in S5,(G). If we can prove that N C S(G)
(i.e., that all positive integers have a b, t-upper representation, with G the

underlying sequence), this in turn will imply that N = S (G). We will need a
lemma.

Lemma: (b - 1)G, < Gpyy < bGpy m = 1, 2,
Proof: The left inequality is clearly true, from (11) and (12), If 1 sm = ¢,
Gn,=h""1 so G,.1=DbG, in the range 1 < m < . Also Ggp1 = b® -1 < bGy.

Replacing kK + ¢ by m + 1 and m, respectively, in (12), and subtracting the re-
sults, we obtain:
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Govy = Gy = (b= 1)(Gy = Gp_,)
or

G - G

m i+l = b - 1)G
Therefore, if m > ¢, me > G%+l’ which yields the right inequality in the state-
ment of the lemma.

Let J, denote the set {1, 2, ..., G, -1}, » =2, 3, ... . Assuming 2 < »

<t, G, =b"1, so if n € J,, n may be uniquely represented as a b-adic number

e £ ifm>¢t.

with digits in {0, 1, ..., b - 1}; this representation is also a b, t-upper
representation, as well as a b, t-lower representation. Hence,
J, C S(@), J,CIT(G), if 2 < r < ¢. (23)

Note that J; = 0, J, = {1, 2, ..., b - 1}.

Suppose next that r
seen to be true for r

> t, and assume J, C S(G); this inductive hypothesis is
t. Given an integer n' with G, < n' < G,,;, then
1

]

pG, <n' < (p + 1)G,, where 1 < p < b - 1.

Then 0 < n' - pG, <G, so (n' - pG,) € J,,. Hence, by (23),
(n' - pGy) € S(G),

which implies that

n' = pGp = (Bpo16pp .. 6201)¢,

which is an element of T,_;(&¢) (note that 6, = 0, otherwise n' - pG, 2 G,, a
contradiction). Therefore,
n' = (p@,_lep_z .o OI)G.
A priori, we could have
p = 6P—l = eP—Z = ees = er—t+l = b - 1;
if so,
n' > (b - l)(Gr + Gr—l + ... 4+ Gr—t+l) = Gr+l’
which would be a contradiction. Hence, n' € S(G). Therefore, if » > ¢ and

Jyp C S(G), we must have the set
{G,, G, +1, G, +2, ..., bG, - 1} C 5(&).

However, by the Lemma, G,y < bG,. Therefore, J, C S(G) implies J,,.1 C S(G).
Due to (23), it follows by induction that

UdJ, C S@G).
r=2
But ¢ is an increasing sequence, so
UJ, = 7.
r=2

Thus, ¥ C S(G). By our previous comments, it follows that N = S(G); in other
words, there is a 1-to-1 correspondence between N and S(G).

The final part of Theorem 1 states that G is the only sequence generating
b, t-upper representations. To prove this, we will assume N = S(H) for some
sequence H = (Hk(b, t)):=1. Since H must be increasing, and since 1 must have
a (unique) representation, it is apparent that Hy = 1. Then, by (18) and (19),

U, (H) = Gpy1 — G and AI‘(H) = Hy.

Also, since the S5,(#) must be disjoint, and since all representations must be
unique, we must have
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B,(H) = Api1(H) - 1;

therefore, by (19), B,(#) = H,,; - 1. Also, however, we see that
B.(H) = Up(H) + Up_y(H) + «ov + U (H),

s0

r
B, (H) = kgl(Gk+1 = Gr) = Gpypp = Gy = Gpyy - 1.

Therefore, B,(H) = Hyp7 = 1 = Gpyp = 1, 80 Hpyq = Gpyq for all » 2 1. It fol-
lows that H = (¢, which completes the proof of Theorem 1.

Proof of Theorem 2: The proof follows that of Theorem 1. We begin by deriving
the values of V,.(#). The initial values of V,(#) are derived by reasoning
identical to that wused in the derivation of the initial values of U,(H), with
the exception of V,(#). Thus,

Vo) = (b - Db L, r=1,2, ..., t -1,

i.e., in this range, V,(#) = (b - 1)G,. For f;(H), we must avoid ¢ consecutive
zero digits; this will automatically be satisfied if 6, > 0. Hence,

V,(H) = (b - )bt = (b - 1DG,.
Thus,
V, ()

B - 16, r=1, 2, ..., t. (24)

Next, we observe that if m = ¢, T;+1(H) may be formed in the following mu-
tually exclusive and exhaustive ways (using the same notation as before):

2T zOT%_l, zOOTm_Z, ..., 200...0T

m m-t+1°
t-1
Since z may be chosen in (b - 1) ways, we have:
Vm+l = (b - 1)(Vm + Vm—l + .. + Vm"t+l)’ (25)

m=¢t, t+1, t + 2,

Note that (25) is the same recursion as satisfied by the G,'s (and the U,'s).
We conclude from (24) that

V., (#) = (b - 1)G,, v =1, 2, ..., for all H. (26)

Next, we derive expressions for (,(#) and D, (H), the smallest and largest
values, respectively, of T,(H). We see that, for any admissible H,

C,(H) = (lOi..io 10%..£O cen loii:io 103;:;0)H,

where r» = yt + v, 1 <v < ¢,
and the representation above contains u blocks of ¢ digits, of the type

100...0.
N~
t-1

Hence,
Uu

C,(H) = );O Hyygen (27)

Also, it is clear that D,(H) = (yy...y)ys or
N~
r

D, (H) = (b - 1)k§lek. (28)
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In particular, D,(G) = (b - 1)(Gy + G, + «++ +G,). If 1 <v <t -1, then

-1 ¢

1)%‘,1@ +B-1Z ZIGNHJ-t

Jj=0 k=

D,(G) = (D

v u-1
(b= DEDP+ Gy,
k=1 Jj=0

Uu Uu
b’ -1 +.2%7Gv+1+jt =p’ -1+ 2%)Gu+l+jt = Gy
J= J=

bU

v
1+0C,,(@) =D,
or
Dp(G) = Cpyy(G) - 1, where r = ut + v, v =1, 2, ..., t - 1. (29)
Also, if v = ¢, then r = (u + 1)t, so

(u+ 1t u+1l

D (&) = (b -1) & G = 2 Gryje;
k=1 Jg=1

note that in this case

(u + 1) blocks of t digits utl

(100...0 100...0 ... 100...0 1), = ;g%cl+jt

CP+1(G) \ A
t-1 t-1 t-1

D (G) + (G =1),
which shows that (29) holds also for v = £. We may therefore conclude:

D,(G) = Cpry1(G) = 1, =1, 2, ... . (30)
Note, from (28), that

D,(H) = Dp_y(H) = (b = )Hy,
SO

Dp(G) = Dpoy(G) = (B - 1)Gr = V(6.
Using (30):

D, (G) = C.(G) = V,(G) - 1. (31)

We see from (30) that the 7,(G)'s are disjoint, by definition of the (,(G) and
D,(G). Thus, as before, if we can establish that N C 7(G), (30) and (31) would
imply that N = T(G).

Recall that J, C T(G) for 2 < » < t. Suppose next that » = ¢, and assume
Jp C T'(G). Given an integer n” with G, < n" < Gn;1, it must satisfy

pG, < n" < (p + 1)G,, where 1 < p <b - 1;
then 0 < n"” - pG, < Gn, so (n" - pG,) € T(G), by the inductive hypothesis. Now
n' - pGr = (er—19r~2 e el)G,

which is an element of T,_;(G¢) [for, if 6, > 0, then (" - pG,) 2 G,, a contra-
diction). Thus,

n' = (pG,,_ler_z vooe 61)0,
so n" € T(G). Hence, if r» 2 ¢t and J, C T(G), we have that
{Gp, Gp+ 1, ..., bG, - 1} is a subset of T(G).

w
=
B~

[Aug.



THE GENERALIZED ZECKENDORF THEOREMS

Since Gp4+; < bG,, by the Lemma, J, C T(G) implies Jpy1 C T'(G). So, as before,
N C T(G). By our previous remarks, NV = T(G).

To prove that ¢ is the only sequence allowing b, t-lower representations,
we suppose that N = T(H) for some sequence H. Then

Ve(H) = (b - 1)Gy,, from (26).
Since N = 7(G) = T(H), it follows that

Dp(H) = Cpyq(H) - 1.
Also,

Dp(H) = Dp_1(H) = (b - 1)H,, from (28).
But

Dy (H)

Vi(H) + Vo(H) + oo + V. (H),
SO

Dp(H) = Dp_y(H) = Vu(H) = (b = 1)Gp.
From this, it follows that F, = G, for all » 21, so # = ¢G. Q.E.D.
We now illustrate these two theorems with two examples. For b =t = 2, we

have the "ordinary" Zeckendorf Theorem and its dual, and the appropriate se-
quence (G is the sequence of distinct Fibonacci numbers:

{1, 2, 3, 5, 8, ...} = (Fes1)y_, -
For b = 3, t = 2,
G =1{1, 3, 8, 22, 60, ...}

and we have the following representations:

no S(G(3, 2)) TG, 2)) n S5(G3, 2)) T3, 2)

1 1 1 25 1010 1010
2 2 2 26 1011 1011
3 10 10 27 1012 1012
4 11 11 28 1020 1020
5 12 12 29 1021 1021
6 20 20 30 1100 1022
7 21 21 31 1101 1101
8 100 22 32 1102 1102
9 101 101 33 1110 1110
10 102 102 34 1111 1111
11 110 110 35 1112 1112
12 111 111 36 1120 1120
13 112 112 37 1121 1121
14 120 120 38 1200 1122
15 121 121 39 1201 1201
16 200 122 40 1202 1202
17 201 201 41 1210 1210
18 202 202 42 1211 1211
19 210 210 43 1212 1212
20 211 211 44 2000 1220
21 212 212 45 2001 1221
22 1000 220 46 2002 1222
23 1001 221 47 2010 2010
24 1002 222 48 2011 2011 etc.
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G=A1{1, 2, 4, 7, 13, 24, 44, ...},

which is the sequence of distinct Tribonacci numbers, and we have the follow-
ing representations:

n o S(G(2, 3)) T2, 3)) n  SG2, 3)) TG, 3))

1 1 1 26 100010 11110
2 10 10 27 100011 11111
3 11 11 28 100100 100100
4 100 100 29 100101 100101
5 101 101 30 100110 100110
6 110 110 31 101000 100111
7 1000 111 32 101001 101001
8 1001 1001 33 101010 101010
9 1010 1010 34 101011 101011
10 1011 1011 35 101100 101100
11 1100 1100 36 101101 101101
12 1101 1101 37 110000 101110
13 10000 1110 38 110001 101111
14 10001 1111 39 110010 110010
15 10010 10010 40 110011 110011
16 10011 10011 41 110100 110100
17 10100 10100 42 110101 110101
18 10101 10101 43 110110 110110
19 10110 10110 44 1000000 110111
20 11000 10111 45 1000001 111001
21 11001 11001 46 1000010 111010
22 11010 11010 47 1000011 111011
23 11011 11011 48 1000100 111100
24 100000 11100 49 1000101 111101
25 100001 11101 50 1000110 111110 etc.

It is of interest to indicate a generating function for the G, (b, t)'s,
namely:

2 .. t o
F(z; b, t) = Ar AL T A =Y G, (b, t)an (32)
1 - =-1(z+ 22+ ... 4 32t) n=1

This may be verified by multiplying each side of the last equation by the de-
nominator of the fraction, then applying the relations in (11) and (12)

defining G, (b, t). By multinomial expansion, we may derive the following
explicit expression for G, (b, t) from (32):
n - £, + +-0 +x
Guthy ©) = X (b - DL T (7 £, (33)
me1 P Tys wees Ly
where S is the set of ¢-ples of nonnegative integers Zys Tps ..., X, satisfying
Tyt X, + e Fxy =m, xy + 2x2 + o0 + Ty = 0.
We may also show the following result, expressed as a divided difference:
- t-1 -
Gu(by ©) = (b = DTP N 72" 0Nz, 20, i, 2,), (34)
where 21> Bys ... 8, are the (distinct) roots of the equation:
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p(z) =p(z; b, t) =2t -~ (b - ("L +2t72+ ... +1) =0. (35)

This may be simplified to the following sum:
t
G, (b, t) = (b - 1)-1kg;lzz+t'1/p'(zk>- (36)

An alternative expression, in terms of a contour integral, is given by:
1 z?’t+t—1

= _ -1 = o
Gy by ) = (b = D7 g § B da, (37)

where (C is any simple closed contour in the complex plane, with posi-
tive direction and surrounding By Bos eees By within its dinterior.

Other expressions may be derived which can be shown to be equivalent, namely:

oy b - pmelogeen 24 ... t-1ym
G, (b, t) = mgl T gLt a st +zt7h o (38)
and
n [(n-m)/t]
_ _ -1 _Nk(m\(n - 1 = kt
Gulhs ) = X (b = D" B D)L L) (39)

Undoubtedly, further analysis of such relations should lead to additional
interesting results.
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