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A Generalization of Binet's Formula 

We derive a simple generalization of Binet's formula for Fibonacci and 
Lucas numbers. From the equations 

' l + /~5V ' 1 - ^ • ( i . i , £_ = /5 T - m and 

L„ - H^h (L /5 
(1.2) 

we have at once, 

and 
/5Fm 

Raising both sides to the nth power, and combining the results by means of 
(1.1) and (1.2), we find 

and 

L„ 

1 \(Lm + /5Fm 
= /sLV 2 

/5i^\^l 

r - ( ^ 2 
(1.3) 

(1.4) 

which are the desired generalizations. Equations (1.3) and (1.4) reduce to 
equations (1.1) and (1.2), respectively, when m = 1. Note that, in the right-
hand sides of equations (1.3) and (1.4), m and n can be interchanged. 

A number of interesting results can be obtained from (1.3) and (1.4). 
Note, for instance, that one has 

(Lm + /5FJn = Ll + QL^rSF + Q ) ^ " ^ 2 + ••• + C.^)*^, (1.5) 

and 

(Lm - /5Fmr = Ll - Q l ^ 1 ^ + ©£iT25** - ... + (-1)"(/5)V;. (1.6) 

If these results are substituted into (1.3), we see that L™ cancels out. The 
remaining terms all have a nonzero power of Fm , and we have found a simple 
proof of the known result that Fnm is divisible by Fm and Fn . For Lucas 
numbers, we observe that cancellation of the last term in (1.5) and (1.6) will 
take place only if n is odd. Hence, L is divisible by Lm only if n is odd. 
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With the aid of (1.3) and (1.4), it is possible to obtain some appealing 
generating functions for Fibonacci and Lucas numbers. We proceed as follows: 

E 
n = 0 

F ^ run 
n 

tn 

1 
1 

1 
= / 5 

lLm + JlF, L„ ~ /5P ( L -V 5 - )v . (L- -"'•)"t-

>{( 
L„ + /5Fm /5Fm 

exp^l T, jt - exp I h 

f5Fm 
j ; e x p ( ^ ) s i n h ^ *) 

An identical procedure gives 

\2 
^mvi t 

2 exp(-tj C osh^-*j = n Z ^ T 

Fmtexp^Ttj ~ - r 

Using the expans ion [ 1 ] , 

t esc 
//5Fr 

x z / n=0 

F fn 

z csch z = ^ -
k = 0 

2(2 2k-I Dl 2k ,2k 
(2k): 

\ Z \ < TT, 

( 1 .7 ) 

(1 .8 ) 

Some c u r i o u s formulas may be o b t a i n e d from (1 .7 ) and ( 1 . 8 ) . From ( 1 . 7 ) , 
for example, one has 

(1 .9 ) 

(1 .10) 

where the B~. are Bernoulli numbers, and forming the Cauchy product, we have 

w+ (LmA ^ ^ ^ 2 ( 2 ^ - 1 - l)B2fc5*****" + 2* 

\ 2 / n = 0 fc=0 w! (2fe) ! 2 ^ 

_ _ ^ f^l 2(2^-1 - l)5kF^F(n_zk)mBzkt» 

n=o fe=o (w - 2k)l(2k)l22k 

where [n/2] designates the greatest integer in n/2. 
Expanding the exponential and equating corresponding powers of t, we get 

L " ~ 1 = - ^ E(2
W
fe)2"-2fc(2^-l - l)5^F{n_zk)mBlk, (1.11) 

which gives powers of Lucas numbers in terms of Fibonacci and Bernoulli num-
bers . 

From (1.8), one has 

^rrm t 
2 c o s h ^ — t ) = e x p ( - T i ) n E — 

Expanding the exponential term, forming the Cauchy product, and separating the 
even part, since the left-hand side is even, one finds 

o2n-l In .n 
?2n __ Z v^ /2n 

n E f ^ ) ^ 1 ) 2 kLmLm(2n-k)> -> fc = 0x 

which gives even powers of Fibonacci numbers in terms of Lucas numbers. 
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I n ( 1 . 8 ) , c h a n g e t t o -t a n d add t h e r e s u l t t o ( 1 . 8 ) t o o b t a i n 

2 c o s h — t ) c o s h l t] = > , 
12 / \ 2 / „~o (2n)! 

which may be written 
ff5F„ \ /Lm \ J I L2rm t l n 

:osh(-2 cosh t) = sech >(T') t 
\ z /n = 0 

\ 2 / \2 /n^0 (2w)! 

Using the expansion [1], 

^ E2n ? w I I i 
sech s = /^ "7 ~ £ s s < %TT 

n=0 ( 2 ^ ) ! 

where the Ẑ n a r e Euler numbers, we find 

which gives even powers of Fibonacci numbers in terms of Lucas and Euler num-
bers. 

Byrd [4], [5] has obtained expressions for Fibonacci and Lucas numbers 
which bear some resemblance to the expressions obtained by the author. 

Now, observe that 

(L + yfbF \/L - /5F 
1 m w W m "" = (-1)*. (1.14) 

This relation can be used to advantage to obtain sums of reciprocals of Fibo-
nacci and Lucas numbers. For this purpose, it is convenient to introduce the 
abbreviations: 

Lm + ^m 1 + /5 ' . ... 
am = £ ' al = a = — ^ s (1-15) 

bm = ^ ~> b1 = b = . (1.16) 

We define the Lambert series as 

M3) = E 3 . |@| < 1, (1.17) 
n = l 1 - 3n 

and note that 
on 00 o2n 00 nln 

LM - L(^) = E — ^ - E —e—5- = £ , - (Lis) 
n = 1 1 - 3 n = 1 1 - 3 2 n « = 1 1 ~ 3 2 n 

We will make use of Jacobi's identity [2] 

eio?) = 1 + ^ E , ? * 2 > k l < 1. d-19) 
n = 1 1 + ^ z n 

w h e r e 
e3(?) = E <7"2> 

« = - 0 0 

is a special case of the third theta function of Jacobi. Jacobins second theta 
function'. 
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n = -co 

i s r e l a t e d . t o the t h i r d t h e t a f u n c t i o n through the i d e n t i t y 

e|(q2) + e2(^2) = e2(^). (1.20) 

Recalling (1.14), observe that we have 

y l
 = y h™ 

n = ±am - bm n = i (-1) - bm 

which, for even m, gives at once 

t J—- /5[L(&2m) - £(*>!„)], (1.21) 
n 1 2nm 

w h i l e , for odd 77?, remembering t h a t £>2m + l i s n e g a t i v e , we have 

1 °° (-hn i \2n +1 

n = ° F(2n+lX2m+l) « » 0 l + ( - & 2 7 n + 1) 4 n + 2 

= T [ 0 i ( - ^ + i ) - e l^L + i ) ] = T ei(6L+i>- (1-22) 

Equations (1.21) and (1.22) are generalizations of results obtained by 
Landau [8]. 

For Lucas numbers, one has 

y l = y h™ 
n=l u

m ^ um « = 1 \-i-) + #m 

which, for even m, gives 

« = 1 L2nm 

while, for odd 777, we get 

^2m + l i oo (—hn -. } 2n + l 

y = E 
n = ° Lj(2n + lK2m + l) " = 0 I - 1-^2^ + 1^ 

The last equality above is established in a manner wholly analogous to equation 
(1.18). 

Many more relations can be established by simply imitating the procedures 
used for ordinary Fibonacci and Lucas numbers. The only change is to replace a 
and b by am and bm. In particular, Borwein & Borwein [2], and Bruckman [3] 
give a host of such relations. 
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2, A Class of Series for the Arc Tangent 

In reference [6], we made use of Chebyshev polynomials of the first and 
second kinds 

Tn{x) = \[{x + A 2 - l)n + (x - A 2 - l)n], 

\x + A 2 ^ ! ) ^ 1 - (x - A ^ T ) n + 1 " 
A 2 - I 

UAx) = 

to e s t a b l i s h , w i th x = A / 2 , the r e l a t i o n s 

F2n=T5U2^-2lS n>~ U 

F = — T i^\ 
C 2n + l / 5 ^2n + l \ 2 / ' 

L2n = 2 T 2 n \ " 2 " / ? 

L 2n 

2n\ 2 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Equations (2,5) and (2.6) were! given in a different guise. 
In reference [6], we also established the two series for the arc tangent: 

with 

and 

2_ - (~lfT2n+1(x)t2n + l 

/5n = o 5n(2n + 1) 

A a 

x + A 2 4- a2 

tan" • I n , = a = 4 £ (-1)̂ 1̂ !̂ ) 
n = o (2n +!)(£ + A 2 + 1) 2n + l' 

with 
t = —(1 + A + [a2(2x2 - DAr4]). 

These series give, with x = A/2, the results 

- (-l)nF2n + 1t^l 
tan" • I r v = a = £ 

with 

and 

with 

„_0 5"(2M + 1) ' 

2a 

1 + A + (4a2/5)? 

,-1 a = 5 E (-Dn^2n+1 
n = 0 (2n + l)(t + A 2 + l ) 2 n + 1 ' 

£ = ̂ (1 + A + (24a2/25)). 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

To generalize these equations, we need an analogue of (1.3) for Chebyshev 
polynomials of the first kind. 

We know that 

Tm (cos 0) = cos rn.Q. (2.15) 
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Let rnQ - $, and we have 

Tn[Tm(cos 0)] = Tn(cos cj)) = cos ncj) = cos nmQ, 
or 

Tn[Tm(s)] = Tnm(z), (2 .16) 
which is the desired relation, 

For n and m odd and z = /5/2, (2.16) gives 

T l^F \ = ̂ Ijp { 
12n+l\2 2m+lJ 2 C 2 n + l ) ( 2 m + 1 ) ? ( 2 . 1 7 ) 

w h i l e , for even m9 we ge t 

Tni\L2m) -hLZnm. (2 .18) 
Similar relations may be obtained directly from (2.1) and (2.2): 

T2n+l{tTFZm) = ("1)2i/'g(2n + l ) 2 m> (2 .19) 

^ ^ L 2 m + 1 ) = ^ % ( 2 m + l ) ' (2-20) 

T2n^"2~"f'2m+1 j = ^-L2n(2m + 1) ' (2.21) 

^ - 1 ( ^ 1 ) - ^ ; 

» 2 B - l ( 4 ?
2 . ) = <-l)» + W 5 ^ , (2-23) 

£/„-l(%£2J = f ' (2-24) 
2 777 

TT / i • 7- \ » r 7 - i n(2m + \ ) 
Un-I^L2m+0 = ̂  l ~f ' ( 2 - 2 5 > 

r 2 ^ + l 

M T ^ + l j " ^ • (2.26) 

In equations (2.19), (2.20), (2.23), and (2.25), i is the imaginary unit. 
Changing x to T2m+i(x) in (2.7) through (2.10), letting x = /5/2, and using 

(2.16), (2.4), and (2.17), we find 

tan xa = X, ^T^—~"TT * (2.27) 
n = o 5 (2n + 1) 

U2n-l\-TF2m+l) -^—7 > (2.22) 
2m + l 

with 

and 

with 

2a 
(2.28) Fo ̂  + 1?\ ̂ i + (4/5)a2' 2m+l 2m+l v y 

- V (-1) ff(2n+l 

n = 0 (2n + l)(t + A 2 + l)2w + 1 

. -i . v (~I)nF(2n+l)(2^ + l) 
tan x a = 5 2./ p = , (2.29) 

5F2m+l 
t = ^ (1 + A + [(4a/5)2((5/2)F2m + 1 - D / ^ w + 1 ] ) . (2.30) 

Observe that the right-hand sides of (2.27) and (2.29) are independent of m. 
Equations (2.27) through (2.30) reduce to (2.11) through (2.14) when/?? = 0. 
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S e r i e s ( 2 . 2 7 ) and ( 2 . 2 9 ) c o n v e r g e m o s t r a p i d l y f o r m = 0 . The r e a d e r 
s h o u l d h a v e no t r o u b l e s h o w i n g t h a t , a s m i n c r e a s e s w i t h o u t b o u n d , ( 2 . 2 7 ) and 
( 2 . 2 9 ) d e g e n e r a t e i n t o G r e g o r y T s s e r i e s : 

™ (^]\n 2n+l , , 
tan"1 a = V K } , a < 1 . ( 2 . 1 3 ) 

n=0 In + 1 

Equations (2.27) through (2.30) provide a class of series for the arc tan-
gent whose convergence lies between those of series (2.11) and (2.13) and that 
of series (2.31) . 

3. Some Series for ir 

The series we obtained in the previous section can be used to obtain some 
curious expressions for TT. 

For instance, (2.27) through (2.30) give, with a = 1, 

TT = y (-l)nF(2 n + l)(2m+l) 2
2 n + l 

4 =
 n% 5n(2n + 1) (Fzm + i + / ^ + ( 4 / 5 ) ) 2 ^ ' 

and 

w i t h 

JT = 5 y (~1) ^(2w+l)(2w + l ) ^ ( 2) 

4 n = o (2n + l ) ( t + A 2 + l ) ^ + l J 

Dr2m + l 
4 (1 + A + [ ( 4 / 5 ) 2 ( ( 5 / 2 ) ^ + 1 - D / ^ w + 1 ] ) - ( 3 . 3 ) 

For 77? = 0 , ( 3 . 1 ) and ( 3 . 2 ) become 

oo f „ i \ n wn , o 2 n + 1 

J - / F E ( x) F 2 " i i i — — , <3-4> 
4 n = o (2n + 1 ) ( 3 + / 5 ) 2 n + 1 

and 
7 = 5 Z 2n±1 ( 3 . 5 ) 
4 n = o (2n + 1 ) ( 3 + / l 0 ) 2 n + 1 

Series (3.4) and (3.5) were published by the author in [6]. 
Note that, as m increases, series (3.1) and (3.20 will go from equations 

(3.4) and (3.5) to the limiting case of Leibniz's series 

* V ("1)n i 1 . 1 1 . (<x M 

An explicit evaluation of series (3.4) and (3.5) requires a rapid algorithm 
for the numerical determination of A and /l0. The interested reader may use 
the series 

r, - 1117229 f (%)^9539fe (3 7) 
499640 jf?0 203k12^9l2kkl* 

^ _ 790269 - (%), ( - 1 ) * 8 4 4 4 * 

2 4 9 9 0 5 ^ 0 103 f c 4 9 9 8 1 2 f c fc! ' 

and 

where 
(a)k = a(a + 1)(a + 2) ... (a + fc - 1), a * 0, 

(a)0 = 1 is Poehhammerfs symbol. 

Either series taken to k = 12 gives one hundred decimal places of the corre-
sponding root. 

430 [Nov. 
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S e r i e s ( 3 . 7 ) and ( 3 . 8 ) a r e s p e c i a l c a s e s of t h e f o l l o w i n g g e n e r a l e x p r e s 
s i o n 

n. » (l/N)kak 

smtr-l
]^0 s(N + l)kt [(r-DN-UkmNkki' 

N/—T- _ n y - yt/LM)k^ 
vs/t , p _ i L, „(N + i)k 4- r e r - n / v - i u ^ / v ^ 7 , i ' ( 3 . 9 ) 

where s, t, and N are positive integers, n is the positive integer nearest 

f t-m(f)1/ff, r > 1, (3.10) 

determined with a calculator, and v and m are arbitrary positive integers (m 
may even be a positive rational). a is an integer, positive or negative, that 
satisfies the equation 

^ l i trNmN _ a = nNa ( 3 # n ) 

Equation (3.9) is simply an identity found by expanding the expression 

a W/fl 
I _ (3.12) 

[(sN+l)/(tN+l)]trNmN/ 
in two different ways: (1) by putting the quantity inside parentheses under a 
common denominator and using (3.11) and (2) by expanding (3.12) by Newton's 
binomial theorem: 

(i -*ra = E — h — > 1*1 < x- (3-13) 

Generally, the larger the 777 and r are, the more rapidly converging the 
series is. 

For series (3.7), we searched for a value of m in the neighborhood of 
100,000 for which n would differ from an integer by not more than ±0.01. This 
makes a small and improves convergence. The parameter p, of course, plays.no 
part when t = 1. 

For /?? = 99928, we found 

5 • 99928 • /5 = 1117229.00427, 

so we take n = 1117229 and find, using (3.11), 

53 • 999282 - a = 11172292, 

which gives a= 9559. 
For the series (3.8), we found 777 = 99962, and 

10 • 99962 • /TO = 3161075.99464, 
which gives n = 3161076, and 

103 • 999622 - a = 31610762, 

which gives a = -33776. 
These sets of values, when substituted in (3.9), give series (3.7) and 

(3.8). 
It can be shown [7] that, if p lq is a convergent in the expansion of a 

real number x as a continued fraction, then there does not exist any rational 
number alb with b < qn that approximates x better than pn Iqn . Hence, a 
sensible way to make (3.10) nearly an integer is to choose m as the denominator 
of a high enough convergent in the expansion of the Nth root of s It as a con-
tinued fraction. 
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For the case of square roots, the identity 

Ja - b = (a - b2)/{2b + (/a - b)), 

due to Michel Rolle (1652-1719)., Memoives de mathematiques et de physiques, 
vol. 3, p. 24 (Paris, 1692), gives at once the continued fraction 

r -u i a ~ b2 a - b2 a - b2 ,_ 1/N 
Va = b + — — — — — (3.14) 

2b + lb + 2b + . . . 
from which we can obtain suitable continued fraction expansions by giving 
appropriate values to a and Z?. 

For instance, a = 5, b = 2 gives 

^ = 2 + i + i + i + l + i+... < 3 - 1 5 > 
and a = 10, b = 3 gives 

•/10 = 3 + | + | + | + i + i + _ . (3.16) 

Note that a = 5/4, & = 1/2, gives the well-known result 

/5 + 1 _ 1 I I I 1 
2 " 1 + l + l + l + l + I + * . . ' > 

Let p V<7n be the nth convergent in the expansion of a real number VD in a 
continued fraction. Consider the following identity 

Now, it is known that, for an appropriate value of n, the expression p2 - Dq2 

will be either +1 or -1, a fact intimately bound up with the properties of 
Pell's equation. These n's occur in cycles; hence, we can make the second term 
in parentheses in (3.17) as small as we please by choosing a sufficiently large 
value of n. 

For the continued fraction (3.16), we choose the convergent 

9238605483/2921503573, 

and from (3.17) find the series 

r- 9238605483 " . (%)k , io, 
/TO = T — : , (3.18) 

2921503573^0 10/c29215035732feA:! 
which picks up about twenty decimals per term, i.e., series (3.18) carried to 
k = 5 gives one hundred decimal places of the square root of ten. 

For the square root of five, we can use (3.15), but we can do better if we 
remember that Ln/Fn -> /5 as n increases. Using the same idea exemplified in 
(3.17)s we obtain 

r5-±(l+
L»\5FZ)-\ (3.19) 

Since Ln - 5Fn - 4(-l)n, we see that the numerator in the fraction inside par-
entheses is 4(-l)n and the corresponding series will give any number of deci-
mal places per term by choosing n large enough. It is desirable to choose n as 
a multiple of 3, because then Fn is even and the factor of 4 cancels out. In 
that case, (3.19) becomes identical to (3.17) with D = 5. 
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Choosing n = 48, we have F^Q = 4807526976 and 

r- 5374978561 ~ (%k (-1)* 

2403763488^0 5fc24037634882kfel' 

which also picks up about twenty decimal places per term. 
Needless to say, one may also use the computer to search for a good value 

of 77?s and then use this value to construct an appropriate series. Note, for 
instance, the values found in this manner: 

5 « /5 » 83204 = 930248,9999994625, (3.21) 

10 • /TO • 777526 = 24587531.00000079. (3.22) 

For (3.21), we searched for a value of m in the neighborhood of 100,000. The 
corresponding series gives about twelve decimal places per term. For (3.22), 
we searched for a value in the neighborhood of 750,000. The corresponding 
series picks up about seventeen decimal places per term. 

By way of comparison, the values we used in series (3.18) and (3.20) give 

10- /10- 2921503573 = 92386054830.00000000057353236, 

5 • /5 • 2403763488 = 26874892804.999999999624625216. 

4. Some Identities for Fibonacci Numbers 

Equations (2.17) through (2.26) provide many interesting relations for 
Fibonacci and Lucas numbers. 

The identity [1] 

2(x2 - l)Y,Ulm{x) = T2n+2(x) - 1 (4.1) 
m= 0 

gives, with x = hF
2k
 anc* u s e of (2.24) and (2.18), the result 

2^F(2m+l)2k ^ ^ ' l ) 

m = 0 ^h 2k 
The identity [1] 

n 
2(1 - x2) T,U2m.l(x) = x - T2n+l(x) (4.3) 

7 7 7 = 1 

gives, with x = \L2k and use of (2.24) and (2.18), the result 

±F(7 „ k = ^ 1 ) 2 * ~L^. (4.4) 
^ (2m)2k 5^ 

m= I -JL 2k 
Equations (4.2) and (4.4) can be combined to give 

V - L(n+1)2fe + Ln2k ~ L'2k " 2 (4 5) 
£-"/m2k " 5pot 

7 7 7 = 1 J i 2k 

Equation (4.3), with x = (/5/2)F2k+1 and use of (2.17) and (2.22) gives 

V^ r, F (2n+l)(2k + l) ~ F2k + l .. r . 
l^F2m(2k+l) = } • (4»6) 
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The i d e n t i t y [1] 

nt,T2m + l(x) = %*72w_1Gn) ( 4 . 7 ) 
m= 0 

gives, with x = (/5/2)F2k+l and the use of (2.17) and (2.22), the result 

n-1 JF 
T F = 2n(2fe+1) (4 8) 

Equations (4.6) and (4.8) combine to give the expression 

A „ ^(n+l)(2fc+l) + ^n(2fc + l) ~ ^2fc+l /, n. 

£/»<"+»- 7^1 • (4>9) 

Equations (4.5) and (4.9) are generalizations of well-known results. 
The reader should note that these formulas, once established, may be veri-

fied by induction. 

5. Other Numerical Sequences Associated with Classical Polynomials 

Much of the success we have had in obtaining properties of Fibonacci and 
Lucas numbers has depended largely on our being able to associate a recurrent 
sequence of numbers with the set of Chebyshev polynomials. The question natu-
rally arises as to whether other such sequences of positive integers exist 
associated with other classical polynomials. Surprisingly, such sequences do 
exist in a number of important cases. 

For example, if Pn(x) designates Legendre polynomials, the expression 

bn = 2ni-nPn(i) (5.1) 

gives a recurrent sequence of positive integers associated with Legendre poly-
nomials. We have, explicitly, 

b = ( E ] i2U ~ m ' (5 2) 
°n

 kh0 k>(n - k)l(n - 2k)\- ^-l> 

The pure recurrence relation for Legendre polynomials 

nPn(x)= {In - l)xPn_l(x) - (n - l)Pn_2Gr), n > 2, (5.3) 

together with (5.1) gives 

nbn = 2(2?2 - l)bn-l + 4(n - l)Z?n_2, n > 2, b0 = 1, bY = 2, (5.4) 

which defines the.&„ recurrently. The first few are 

b0 = 1, bl = 2, b2 = 8, b3 = 32, bh = 136, b5 = 592, etc. 

Similarly, if Ln (x) designates the simple Laguerre polynomials, the expres-
sion 

cn = n!L„(-l) (5.5) 

gives a recurrent sequence of positive integers associated with simple Laguerre 
polynomials. We have, explicitly, 

^ m\ 1 

°n = nlMkh- (5-6) 
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The pure recurrence relation for simple Laguerre polynomials 

nLn(x) = (In - 1 - x)Ln_l(x) - (n - l)Ln_2(x), n > 2, 
together with (5.5) gives 

cn = 2ncn_l - (n - l)2cn_2, n > 2, cQ = 1, cx = 2, 

which defines the cn recurrently. The first few are 

o0 = 1, cl = 2, c2 = 7, c3 = 34, ̂  = 209, c5 = 1546, etc. 

Using the known generating function for simple Laguerre polynomials 

(1 - t)-1exp(-^-) = ZLn(x)t\ 
we obtain at once 

(i - t r W - ^ U £ 2nfL. 
\i - tl yfr'o nl 

Now, replacing t/(l - t) by x, we find the interesting expansion 

(5.7) 

(5.8) 

n = o n\ (l + X)n+l , X > -%. (5.9) 

Another curious series for the exponential is found from the expression 

't ext = (I)" r(v) £(v + n)Iv+n(t)C^(x), (5.10) 

due to Gegenbauer, where I-^(t) are modified Bessel functions of the first kind 
[9], given by 

_ (%^)fe 
Ik(t) " r(fc + l) 

^ — 0 ^ ( - ; l + k; % * * ) , 

and C^(x) are ultraspherical polynomials [9] defined by 

(2v) p(v-h, v-%) ( a : ) 

CM (v + %)„ 

where P^a' ̂ (#) are Jacobi polynomials. 
In terms of ultraspherical polynomials, Chebyshev polynomials are given by 

UAx) = cUx), 
Cn(x) 

(5.11) 

(5.12) 

With appropriate substitutions in (5.10) and making use of (2.3) and (2.6), we 
have 

1 - (-D" /5 -

v I.n 
x n = l 

1 + (-D 
>5F„ + -L, J„(2x//5). (5.13) 

If Hn(x) designates Hermite polynomials, then the expression 

d„ = 2-»'2iXH//2), (5.14) 
gives a recurrent sequence of positive integers. 
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The pure r e c u r r e n c e r e l a t i o n for Hermite polynomials 
Hn+i(x) = 2xHn(x) - 2nHn_i(x), 

together with (5.14) gives 

dn + i = dn + ndn-i, n > 1, d^ = 1, dl = 1. (5.15) 

Sequence (5.15) has been studied by P. Rubio, Dragados y Construcciones (Mad-
rid, Spain), although (5.14) was, to my knowledge, discovered by me (see [10]). 

The first few d'n s are 

d0 = 1, dl = 1, d2 = 2, d^ = 4, d^ = 10, d5 = 26, etc. 

Known relations for Hermite polynomials provide interesting expansions with 
the dn

]'s as coefficients. For instance, the generating relation [9] 

(1 - 4tz)"^exp 
"2 0/ - 2xt)2] _ ^ Hk(x)Hk(y)tk 

y 1 - 4*2 k = o kl 

gives, on changing both x and y to -i//2, and t to -t/2, the interesting rela-
tion 

(i - * * ) - M T ^ ) - £, ^r• (5-16) 

Changing to x, we find 
1 - t 

ex = (2a? + D3^ E 77 ^-TT7> x > "%• (5'17) 

k% kl (x + l)k+l 

Series (5.9), (5.13), and (5.17) are offered only as mathematical curiosi-
ties. None of them converges faster than Euler's exponential series 

00 ~n 

n = 0 n' 

Series (5.9) and (5.17), in particular, converge very slowly. 
These recurrent sequences of positive integers associated with classical 

polynomials seem not to have been studied in the existing literature, in spite 
of the fact that they may well be used to advantage in numerical work. 

6. Continued Fraction Expansions for Fibonacci and Lucas Numbers 

We will close this paper by showing how to expand Fibonacci and Lucas num-
bers in nontrivial finite continued fractions. This result is rather surpris-
ing inasmuch as Fibonacci and Lucas numbers are integers. 

The expression 

S = aQ + a-̂  + oua^ + c^o^ou + o^a^aga^ + ' ' • > (6.1) 

is easily seen to be equivalent to the infinite continued fraction 

S = an + — -77—7 T /-, , r • (6.2) 
u 1 - (1 + a2) - (1 + a3) - ... 

If we let 

a0 = 3(s), (6.3) 

where 3 (2) is an arbitrary function of zs 
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BOO blb2 ... bq 

(al + k - 1)(a2 + k - 1) (ap + /c 1) 

(bq + k - 1) k 
, fc > 1 , k (bl + k - l)(b2 + k - 1) 

where none of the b1s is zero or a negative integer, then (6.1) becomes 

BOO 1 + 
ap s (a1)2(«2^)2 ••• (ap)2 s 2 

&!&.,... fc, 1! (&1)2(&2), (bq)2 2! 

(6.4) 

(6.5) 

= $(.Z)pFq 
\JD -, s L^pJ • • • 3 ^<^ 9 _j 

(6.6) 

Use of (6.2) with the values (6.3) , (6.4), and (6.5) gives a continued frac-
tion expansion for the generalized hypergeometric function pFq (z) times an 
arbitrary function of z , 3(s). The continued fraction expansion converges, of 
course, whenever the infinite series defining the hypergeometric function 
converges. The continued fraction and the series converge and diverge 
together. 

One of the known expressions for Jacobi polynomials is 

,(«, (-!)"(! + 3), 
(s) = : 2*1 

-n9 1 + a + 3 + n; 

1 + 

1 + z 

In terms of Jacobi polynomials, Chebyshev polynomials are given by 

nl 

and 

T(x) = 

U„(x) = 
{n + 1)! 
(%)„ 

(6.7) 

(6.8) 

(6.9) 

Simple substitutions, and use of (2.3) through (2.6), gives continued frac-
tion expansions for Fibonacci and Lucas numbers. 

Let us illustrate this by finding a continued fraction expansion for L^. 
One has 

'-In, 2n; 

In 2 1 
2 + /5 

from which one gets, for n = 2, 

3(s) = 2, 

aQ = 2, 

ax - -16(2 + / 5 ) , 

x2 = -^(2 + / 5 ) , 

*3 = -|(2 + / 5 ) , 

iu =-i(2 + / 5 ) , 
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ak = 0, k > 4 . 
From t h e s e , i t fo l lows t h a t 

L = 2
 1 6 ( 2 + ^5) 5(2 + /5 ) 8(2 + ./E) 5(2 + J5) = 

14 1 + -6 - 5/5 + 1 - 2 / J + 6 - /5~ 
as the reader can verify easily. 

Putting the Jacobi polynomial into its several equivalent forms [9] gives 
different, but equivalent, continued fractions for Fibonacci and Lucas numbers. 
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