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Let Fy =0, Fy =1, and F,, = F,_y + F,_, (n 2 2) denote the sequence of Fi-
bonacci numbers. For an integer m > 1, recall that (F,) is wuniformly dis-
tributed modulo m if all residues modulo m occur with the same frequency in any
period (see [2], [4]). This happens precisely when m = 5% with k > 0, in which
case (F,) has (shortest) period of length 4 . 5k, and each residue occurs four
times (see [1], [3]). In this paper we study moduli with more complex
distributions.

For any r, 0 < » < m, denote by v(r) the number of times r occurs as a res-
idue in one (shortest) period of F, (mod m). If m is a power of 5, then v(r) =
4 for all r. However, if m = 11, then the period of F, (mod 11) is O, 1, 1, 2,
3, 5, 8, 2, 10, 1, so that v(r) takes on four different values.

Definition: For an integer m > 1, (F,) is almost uniformly distributed modulo m
[notation: (F,) AUD (mod m)] if v(r) assumes exactly two values for 0 < r < m.

In this paper we describe four infinite sequences of AUD moduli, along with
describing the function v precisely for these moduli. Our proof makes use of a
recent result of Velez [2], which we state here for the reader's convenience.
Lemma: For any integer s = 0, the sequence

Forugs> 9 =0, 1, ..o, 5k -1,
consists of a complete residue system modulo 5X.

Main Theorem: (F,) is AUD (mod m) for m € {2+ 5%, 4+ 5%, 3.+5% 9.5k &k > 0}.
For these moduli, the following data appertain:

Modulus Period Distribution
2 3 v(0) =1, V(1) =2
4 6 v(0) = v(2) = v(3) =1, v(l) =3
. ck Y _J4 r is even
2¢5% k>0 345 v(r) {8 r is odd
2 r#1 (mod 4)
. sk w4 .5k -
4e5% k>0 345 v(r) {6 =1 (mod 4)
2 r =0 (mod 3)
. ok . 5k =
3«55, k=0 8+5 v(r) {3 » %0 (mod 3)
ek e ok _f2 r#1,8 (mod9)
9.5%, k=20 385 v (r) {5 »=1,8 (mod?9)

Proof: The cases m = 2, 3, 4, 9 can be checked directly. Assume that k > 1.

Because of the similarity of the proofs of the four cases, we only prove the

cases m = 2+ 5K and m = 9 - 5%, leaving the proofs of the remaining cases to the
reader.
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Case 1. m = 2+ 5%, As the period of F, (mod m) is the least common multi-
ple of its periods modulo 2 and 5%, it is clear that the period is 3+ 4 « 5%,

To compute v(r), it suffices, by the Chinese Remainder Theorem, to compute
the number of simultaneous solutions to the system

F, = ry (mod 2)
Fn =7, (mod Sk)

with 0 < n < 3+ 4 +5%, for ordered pairs of residues (Tl, T2> with 0 < ry o< 2
and 0 < r, < 5k,  Fix ry.

For n in the indicated range, n can be expressed uniquely in the form n = s
+ 4q, with 0 < g < 4 and 0 < ¢ < 3~ 5k - 1. By the lemma, for fixed s, there
is a unique ¢y with 0 < g, < 5k — 1 such that

Fg+4q15 r, (mod 5%).
Then, also,
Foyuq,+5%) = 7, (mod 5%)
and
Fysu(q+2-5% = 7, (mod 5%y,
because F, has period 4- 5k modulo 5%. Now observe that
§ +4q; = 8 +q; (mod 3),
s + 4(q1+-5k) =s+q + (-D)*  (mod 3),
s+ 4(qgp + 255 =8+ g, + (-D¥*! (mod 3),

and these are incongruent modulo 3. Thus, for fixed s, there are exactly two
solutions g to the system

Fosng =1 (mod 2)
{/ﬁ;+4q = r, (mod 5k)
and exactly one solution ¢ of the system
Fyyuqg 0 (mod 2)
{Eg+qq = r, (mod 5%)
with 0 < g < 3+ 5k - 1.

Now s has four possible values, so that there are exactly eight solutions
of

H

F, =1 (mod 2)
{E} = r, (mod 5%)
and exactly four solutions of
{E% =0 (mod 2)
F_ = 1r, (mod 5%)

n

with 0 < n € 3+ 4 5%k - 1. This translates via the Chinese Remainder Theorem
to the stated distribution.

The method of proof is now clear, and we provide few details in Case 2.

Case 2. m = 9+« 5%, The period is lcm(24, 4 «5K%) = 8 + 3«5k, Express n =
s + 4g, where 0 <5 <3, 0 < g <6- 5k - 1. For fixed s and residue r; (mod
5k), there is a unique g, such that Fs+uq = rp (mod 5k) with 0 < q, < 5k - 1.
Now the Fibonacci numbers have period O, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8,
8, 7, 6, 4, 1, 5, 6, 2, 8, I (mod 9) of length 24, so we consider the sub-
scripts s + 4(g; + ¢+ 5%) (mod 24) for ¢ = 0, 1, 2, 3, 4, 5. A straightforward
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calculation yields that these are congruent (in some order) to s, s + 4, s + 8,
s + 12, s + 16, s + 20 (mod 24). Thus, for fixed s, r, there are 6 values of
g, 0<q<6+5k~1, with Fyyyy =7, (mod 5%), (namely, g = g, +t 5%, 0 <t
< 5). Now, for this sequence of ¢'s, we have that:

§=0=7F_,,, =0,3,3,0,6, 6 (nod?9)
s=1=F ., =1,5 7,8 4 2 (mod9)
§=2=F,,=1,8, 1,8, 1,8 (mod 9)
8=3=F ., =2 4 8 7,5 1 (md?9)

Again, the stated distribution follows from the Chinese Remainder Theorem. []

Remarks: It is clear from the proof that the given method will decide the dis-
tribution of any family of the form m+5%, where SXm, once it is known expli-
citly modulo m. However, there does not appear to be a general theorem valid
for all m that will let one forgo this tedium.

It is natural to ask if the list in the Theorem is complete. A computer
search of moduli m < 1000 indicates this is so. However, the converse proof
quickly reduces to showing that a modulus m where v takes on only the values 0
and f for that m does not exist. The question of whether there exists a prime
p > 7 such that only the frequencies 0 and f occur mod p is a well-known open
problem.
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