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I n t r o d u c t i o n 

Let 
zm,n := {(£> J ) - I < i < m, 1 < j < n}> 

^mtH := {A C ZOTjn: there are no (i15 j^), (i2, j2) e A 

with |i1 - i?| + |ji - Jo| =1} 
and 

So K w equals the number of independent (vertex) sets in the Hasse graph of a 
product of two chains with m resp. n elements, i.e., in the m x n lattice. 
Following Prodinger & Tichy [11], we call Km n the Fibonacci number of the m*n 
lattice. 

In this paper we study the numbers Km}n using linear algebraic techniques. 
We prove several inequalities for these numbers and show that 

1.503 < lim Kl
n
/n* < 1.514. 

We conjecture that this limit equals 1.50304808... . 
The problem of the determination of the number of independent sets in 

graphs goes back to Kaplansky [6] who determined in his well-known lemma the 
number of fc-element independent sets in the 1 xn lattice, i.e., in a path on n 
vertices. Burosch suggested to consider other graphs, and some results were 
obtained in [3]. 

Answering a question of Weber, the number of independent sets in the Hasse 
graph of the Boolean lattice was determined asymptotically by Korshunov & 
Saposhenko [9]» Prodinger & Tichy [11] and later together with Kirschenhofer 
[7], [8] considered that problem in particular for trees. They introduced the 
notion of the Fibonacci number of a graph for the number of independent sets in 
it because the case of paths yields the Fibonacci numbers. We will see that 
the numbers Kmsn preserve many properties of the classical Fibonacci numbers, 
i.e., the results do not hold only for m = 1 but for all positive integers m. 
The first results on the numbers KWJ n have been obtained by Weber [12]. Among 
other things he proved the inequality 

1.45 < Km n < 1.74 if mn > 1, 
the existence of 

l im ici/" and l im K-J/"2 

n->oo m>n n + oo n , n 

as w e l l as the i n e q u a l i t y 
1.45 < l im K1/n2 < 1.554. n, n 
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2. Inequa l i t i e s and E igenva lues 

Let 
<Pm := {S C { 1 , . . . , m}: t h e r e a r e no i , j e 5 wi th | i - j | = 1 } , 

rfm>„)S := {A e i f f l > n : (£ , n) € A i f f i e S } , 
xm,n,S := | ^ , n , 5 l -

So xm,n,S counts those sets of s^m>n for which the elements in the top line 
(with second coordinate n) are fixed by S. Obviously, \^m\ = K

m 1° Briefly, we 
set zm °.= Km) i * 

Throughout this section we consider m to be fixed. To avoid too many 
indices, we omit the index m everywhere. Obviously, 

(1) Kn = xn + l, <f> ' 

Moreover, 

(2) x
n + l,S = £ xn,T f o r a 1 1 ^ G ^5 n = ls 2? ' " ' * 

TnS = $ 
Let xn be the vector whose coordinates are the numbers xUjS (S €. <p) and 

A = (as T)s Tecp that sx s-matrix for which 

'1 if S n T = 

^0 otherwise. 

Because of (2), we have 

(3) xn+1 = 4xn, n = 1, 2, ... . 

Let the vector e with coordinates es, S E <P 9 be defined by 

'1 if 5 = <f>, 

[0 otherwise, 

and let, for an integer k9 the vector k be composed only of k1s. Then we have 

(4) xl = Ae = 1, 

and because of (3), 

(5) xn = Ane. 
Finally, if ( , ) denotes the inner product, then 

(6) Kn = xn + l ^ = (An + le, e). 

In our proofs, we often use the fact that A is symmetric. In particular, 
we have, for all vectors x, y, 

(7) (Ax, y) = (x, Ay). 

Theorem 1: For all positive integers k and I, 

(8) <l+l * *2k-IK2l+l' 

Proof: By (6), (7), and the Cauchy-Schwarz inequality, we have 

Kk + l 

= 04^e, e)(42* + 2 e , e ) = K2k-iK2i + l' D 

2 = (Ak + l+ie, e ) 2 = (Ake, Al+le)2 < (Ake, Ake)(A" + 1e9 A i + 1e) 
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Corollary 2: - 1 < ̂ < — < • - . D 
Kl K3 K5 

Since A is symmetric, all eigenvalues of A are real numbers. Let A be the 
largest eigenvalue of A, 

Proposition 3: X has multiplicity 1, to X belongs an eigenvector u with coordi-
nates us > 0 for all S € <p, and |A| > \\i\ for all eigenvalues \i of A. 

Proof: The column and row of A which correspond to the empty set <|> contain only 
ones; hence, the matrix A is irreducible and A2- is positive (see [4], p. 395). 
Now the statements in the proposition are direct consequences of two theorems 
of Frobenius (see [4], pp. 398, 422). D 

Theorem 4: Let u be that eigenvector of A to the largest eigenvalue X for 
which Ua > 0 for all S € <p and EC^„M§ = 1 holds. Then 

Xn S ~ u4>uS^n a s n "** ° ° " 

Proof: We use standard techniques. Let U be the orthogonal matrix whose 
columns are normed, pairwise orthogonal eigenvectors of A and let D be the 
diagonal matrix of the corresponding eigenvalues. Then 

UTAU = D and An = UDnUT. 

Consequently, 

xn = Ane = UDnUTe [note (5)]. 

Because of Proposition 3, the asymptotic behavior of the components of xn is 
determined by the terms containing Xn which yields the formula in the theorem.Q 

Noting (1) and Corollarjr 2, we derive immediately 

Corollary 5: 
(a) lim Kl'n = A, (b) lim ̂ ^ = A, 

(c) 

irks 

n* oo 

l im 
n •> oo 

Kn + 2 _ ^2 
Kn 

(d) 2k+l < A2 for all k = 1, 2, 
K2fe-1 

(a) If p(y) = det(y£7 - .4) = \xz + as_iys * + ... + ao is the characteristic 
polynomial of A, we have az-\ = -trace A = -1 and (by induction) 

[ao| = |det A| = 1 . 
From the Cayley-Hamilton relation, it follows that 

xn + z = -S-ixn+2-i - ••• - aQxn 

and, in particular, the recursion 

Kn + z = ~az-IKn+z-l - ••• - ̂ oKn-

(b) Corollary 5(b) contains in effect the crucial point of the well-known 
power method of v. Mises for the determination of the absolute maximal 
eigenvalue of a matrix. 

Theorem 6: For all positive integers h, k, £, 

^h + 2l-lIK2l-l} ~ A s Kk ' 
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Proof: I t i s w e l l known t h a t t he Ray le igh-Quot i en t does no t exceed the l a r g e s t 
e i g e n v a l u e . Hence, by (6) and ( 7 ) , 

K/z+2£-i/K2£-i - W*+2*e, e) /W**e, e) 
= (Ah(Aze)s Aze)/(Aze, Ale) 
< largest eigenvalue of Ah = \h

 a 

This proves the left inequality. 

To show the right inequality, we use a standard technique for the estima-
tion of the largest eigenvalue of nonnegative matrices (see, e,g., [10], 11.14). 
Let u be the eigenvector of A to A with us > 0 for all S e <p and with UA = 1. 
Then Au = An implies 

Te<p Te<p 
TnS = § 

Hence, 1 > us for all S € <p and, consequently, 
u < 1. 

It follows [note (4)] that 

\ku = 4feu < 4*1 = 4k+1e, 

which gives [note (6)] 

Xk = (\ku, e) < (# + 1e, e) = Kfe, 

i.e., the right inequality. Q 

Corollary 7: For all positive integers £, k with k > 21 - 1, 

KA: S K2£-l 

Proof: We choose h i= k - (21 - 1) i n Theorem 6. Then 

(Kk/K2l-0l'h £ K}/k 

and, equivalently, 

Kk / K 2 £-1 S Kk5 k - K 2£-l' u 

3. Limits 

Now we consider the dependence of 777 and introduce again everywhere the 
index m. We will study the sequence {\)Jm}, where 

Xm = largest eigenvalue of Am = lim <lJn
n [see Corollary 5(a)]. 

In the following, we often use the obvious fact that 

(9) <mt n = <n9 m f o r a 1 1 n> m° 

Proposition 8: For all integers £, k with k > 2% - 1, 
}l/fc < -y 1/(21- 1) 

Proof: By C o r o l l a r y 7 and (9) s we have 
rl/k < r l / ( 2 £ - l ) 
K £ , m - ^ 2 £ - 1,OT 

and f u r t h e r 

l ^ m
j - ( K 2 £ - 1 , /a ' 
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Now, i f m t ends to i n f i n i t y , we o b t a i n 
yl/k < > 1 / ( 2 A - 1) n 
xk < x2l_l . u 

Proposition 9: The l i m i t g := l im X1^171 e x i s t s , and 

*2£^2£-l ^9 * *»1A 
m -> c 

k 
holds for all positive integers I and k. 

Proof: First we note that the existence of the limit is trivial if Conjectures 
2 and 3 are true, because then the sequence {XlJm } is monotoniously decreasing. 
Let 

y := lim inf XlJm (note Proposition 8). 
n -> oo 

Now choose e > 0 and let M be a number that satisfies 

d o ) ~M 
l/M 

Because M is fixed, by Corollary 5(a) there is a number mQ such that, for all 

( I D (*l
M[m

m)l/M < \]iM + in. 
F i n a l l y , by Theorem 6, 

(12) Xm < Kl
m[M

M for a l l m - 1 , 2 , . . . . 

From ( 1 0 ) , ( 1 1 ) , and ( 1 2 ) , we d e r i v e , for a l l m > mQS 

4 / W * K%)UM < K/M + e/2 < Y + e. 
Consequent ly , 

g = l i m XlJm = Y . 
m + oo 

L a s t , but no t l e a s t , aga in by Theorem 6 (with h = 1 ) , 

( K l / m ) l / f c 

and with 77? -> °°, we obtain 

*2*/A2*-l * 0 S ^ • 0 

Theorem 10: The limit lim KJ/^ exists, and it is equal to g. In particular, 

n-> o 

for all positive integers k and %. 

Proof: By Theorem 6 (with h = k = m = n and £ = 1) and using the obvious fact 
t h a t Kn,n * Kn,n + l > 

Hence, 
A 1/n < ,.1/n2 < ^l/n \l/n yl/n 

If n -> °°, then the lower and upper bounds tend to g, by Corollary 5(a) and 
Proposition 9; hence, K ^ also tends to #. The inequality in this theorem is 
a reformulation of the Inequality in Proposition 9. D 
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We no te he re t h a t the e x i s t e n c e of the l i m i t i n Theorem 10 was p r e v i o u s l y 
proved by Weber (see [ 1 2 ] ) . 

To f ind bounds for l im K ^ " , we used a computer ( see Table 1 ) . 
n -> oo 

TABLE 1 

m 

2 
3 
4 
5 
6 
7 
8 
9 
10 

W i 
1.49206604 
1.50416737 
1.50292823 
1.50306010 
1.50304676 
1.50304821 
1.50304807 
1.50304808 
1.50304808 

^ 

1.55377397 
1.53705928 
1.52845453 
1.52334155 
1.51994015 
1.51751544 
1.51569943 
1.51428849 
1.51316067 

Because of Theorem 10 and the numerical results, we have the following 
estimation. 

Corollary 11: 1.50304808 < lim K^/nn2 < 1.51316067. • 
n> oo 

Conjecture 1: For all positive integers m and £, 

Km, 21 + l'Km, 21 ~ ^m' 

If this conjecture is trues then it would follow, as above, that 

A2iL+l/A2*.' lim KlJf < 

hence (with £ = 4), 

lim KlJn' = 1.50304808. 

Let us note that, for numerical purposes, the bound A^m is weak, because 
\l/m decreases slowly whereas the size of the matrix Am increases exponentially 
with m (like the Fibonacci numbers). The following conjecture is stronger. 

Conjecture 2: For all positive integers 777 and k9 
n 

Km,2k ~ Km, 2k-2Km,2k + 2' 

If this Conjecture is true, then, together with Theorem 1 and Corollary 5, it 
would follow (we omit again the index rri) 

Kl K3 

and, further, 

< Az < 

< X < 
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Conjecture 3: For all positive integers m and k, 

^rritlk+l^m,!^ ~ Km, 2k/Km,2k-2' 

If Conjectures 2 and 3 are true, then one can derive (again without index 
m) 

(K I* ")2k < (K IK ^ < Klk Klk~2 . .. ̂ - = r 
\K2k+l/K2k> ~ ^K2k/K2k-2> ~ Kzk_2 Kzk_^ KQ

 X2k'-

2k K 2k+l l/(2fc+l) < 1/2* 
K2k+1 ~ K2k > K2k+l ~ K2k 5 

and, together with Corollary 7, this means that the sequence {<^/t
n
n} decreases 

monotoniously in n. Finally, as in the proof of Proposition 8, one can 
conclude that {\]^m } decreases monotoniously in m. 

Because of the recursions 
Kl,n + 2 = Kl,n + 1 + K l , n a n d K2,n + 2 = 2lC2,n+l + K2,n9 

one can easily verify these conjectures for m = 1, 2 (see also [2]). Using a 
computer, we verified them also for the numbers <m n for which 3 < m < 10 and 
1 < n < 20. 
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