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1. Introduction

Let
Zp,ni= {2, )t 1 <4 <m 1 24 <n},
Ay = {4 C 7, ., there are no (i, J,)> (Z,, J,) €4
with |2, - 7,] + |4, - 4, = 1}
and
Kmyn 5 Iﬂm,ni'

So «,, , equals the number of independent (vertex) sets in the Hasse graph of a
product of two chains with m resp. n elements, i.e., in the mxn lattice.
Following Prodinger & Tichy [11], we call Kp,n the Fibonacci number of the mxn
lattice. .
In this paper we study the numbers «, , using linear algebraic techniques.
We prove several inequalities for these numbers and show that
1.503 < lim «1/%* < 1.514.

n->o
We conjecture that this limit equals 1.50304808...

The problem of the determination of the number of independent sets in
graphs goes back to Kaplansky [6] who determined in his well-known lemma the
number of k-element independent sets in the 1 x# lattice, i.e., in a path on n
vertices. Burosch suggested to consider other graphs, and some results were
obtained in [3].

Answering a question of Weber, the number of independent sets in the Hasse
graph of the Boolean lattice was determined asymptotically by Korshunov &
Saposhenko [9]. Prodinger & Tichy [11] and later together with Kirschenhofer
[7], [8] considered that problem in particular for trees. They introduced the
notion of the Fibonacci number of a graph for the number of independent sets in
it because the case of paths yields the Fibonacci numbers. We will see that
the numbers k, , preserve many properties of the classical Fibonacci numbers,
i.e., the results do not hold only for m = 1 but for all positive integers m.
The first results on the numbers «, , have been obtained by Weber [12]. Among
other things he proved the inequality

1.45™ <« < 1.74™ 4if mm > 1,

the existence of
: 1/n : 1/n?
1im K and lim Ky

n+w ’ N> oo

as well as the inequality

1.45 < lim K;fj < 1.554.

N> o
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2. Inequalities and Eigenvalues

Let
¢,:= 15 c {1, ..., m}: there are no ¢, § € S with |7 - j| = 1},

Ay o= A€, 2 (i, n) € 4 iff © € 5},

Tmon,s 2= |y, sl

SO Xy, n,s counts those sets of &7, , for which the elements in the top line
(with second coordinate n) are fixed by S. Obviously, ]wml = K Briefly, we
set 2, 1= Kp,1-

Throughout this section we consider m to be fixed. To avoid too many
indices, we omit the index m everywhere. Obviously,

m, 1°

(1) Kn=mn+1,¢‘
Moreover,
(2) Ty41,5= 2, %, p forall S€ ¢, n=1, 2,
TEg
TnS=¢

Let X, be the vector whose coordinates are the numbers x, g (S € ¢) and
A = (ag, 1)s, rey that zx z-matrix for which

1if Sn T =¢,
a o=

S, T .
0 otherwise.

Because of (2), we have
(3) Xﬂ+l = AXn, n =1, 2;

Let the vector € with coordinates eg s S € ¢, be defined by

1 if S = ¢,
eS =

0 otherwise,
and let, for an integer k, the vector k be composed only of k's. Then we have
(4) x, =4e =1,
and because of (3),
(5) %, = A"e.
Finally, if ( , ) denotes the inner product, then
(6) Ky = Lpiy,e = Utle, e).

In our proofs, we often use the fact that A is symmetric. 1In particular,
we have, for all vectors X, ¥y,

(7 (A%, y) = (%, Ay).

Theorem 1: For all positive integers k and £,
2

(8) Ke+1 = Kop-1%20+1°

Proof: By (6), (7), and the Cauchy-Schwarz inequality, we have
(Uk+*le, 0)2 = (dke, A*Fle)2 < (4%e, AFe)(4*tle, A*Tle)
(A%ke, e) (A% *2%e, e) =«

2
K+l

2k-1%2441- U
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Ky K Ko
Corollary 2: —— < —=2><—+< ... . []
K1 K3 K5

Since A is symmetric, all eigenvalues of A are real numbers. Let A be the
largest eigenvalue of 4.

Proposition 3: A has multiplicity 1, to A belongs an eigenvector u with coordi-
nates ug > 0 for all S € ¢, and [A‘ > |u| for all eigenvalues u of 4.

Proof: The column and row of A which correspond to the empty set ¢ contain only
ones; hence, the matrix A is irreducible and 42 is positive (see [4], p. 395).
Now the statements in the proposition are direct consequences of two theorems
of Frobenius (see [4], pp. 398, 422). 0

Theorem 4: Let u be that eigenvector of A to the largest eigenvalue A for

which ug > 0 for all S € ¢ and L, _,u3 = 1 holds. Then

~ n
T, 5 u¢uSA as n > «,

Proof: We use standard techniques. Let U be the orthogonal matrix whose
columns are normed, pairwise orthogonal eigenvectors of A and let D be the
diagonal matrix of the corresponding eigenvalues. Then

UTAU =D and A" = UD™UT.
Consequently,
x, = A”e = UD"U"e [note (5)].

Because of Proposition 3, the asymptotic behavior of the components of X, is
determined by the terms containing A" which yields the formula in the theorem.[]

Noting (1) and Corollary 2, we derive immediately

Corollary 5:

K
(a) lim /7 =3, (b) lim —2*L =,
N+ oo N> o KYL
K K
(c) 1lim 2*2 = )2, (d) —2(*L <32 for all k=1, 2, ... . [0
n+ro Ky Kok -1
Remarks:
(a) If p(w) = det(pf - 4) = u?® + az_luz’l + ... + g is the characteristic
polynomial of 4, we have aq,.; = -trace 4 = -1 and (by induction)
|ag| = |det 4] = 1.

From the Cayley-Hamilton relation, it follows that

Xpvz = "1 Xp4z-1 T 00 T X,

and, in particular, the recursion

Kn+z = "z 1Kp4z-1 ~ °°° ~ oKy

(b) Corollary 5(b) contains in effect the crucial point of the well-known
power method of v. Mises for the determination of the absolute maximal
eigenvalue of a matrix.

Theorem 6: For all positive integers h, k, %,

(Kpyag-1/K9p - /P < 1 < }/E
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Proof: It is well known that the Rayleigh-Quotient does not exceed the largest
eigenvalue. Hence, by (6) and (7),

Kh+22_1/K22..1 = (Ah+2£e’ e)/(AZ,lle’ e)
(4" (4*e), Ate)/(4te, 4A%e)

< largest eigenvalue of A% = )\,

This proves the left inequality.

To show the right inequality, we use a standard technique for the estima-
tion of the largest eigenvalue of nonnegative matrices (see, e.g., [10], 11.14).
Let u be the eigenvector of A to A with ug > 0 for all S € ¢ and with ug = 1.
Then 4Au = Au implies

D Up = Ay = A, 2. Uy = Mg, SE .
Teo TEQ
I'nS=¢
Hence, 1 2 uy for all S € ¢ and, consequently,
uc<l.
It follows [note (4)] that
2Wu = aku < 4¥1 = gk+le,
which gives [note (6)]
A= OFu, e) < (Aftle, o) =k,
i.e., the right inequality. [J
Corollary 7: For all positive integers %, k with k > 22 - 1,
1/% 1/(20-1)
K © < kgpad .

Proof: We choose h := k - (22 - 1) in Theorem 6. Then
1/n 1/k
(Kk/Kzz_l) < Ky
and, equivalently,

ky k h 28 -1 k
Kk/Kzl_l < K K% < Koy 1+ ]

Now we consider the dependence of m and introduce again everywhere the
index m. We will study the sequence {X#/m}, where

Apn = largest eigenvalue of 4, = %iﬂ K#{E [see Corollary 5(a)].

In the following, we often use the obvious fact that

9) Ky n = Ky, for all n, m.

Proposition 8: For all integers &, k with k > 22 - 1,
)\i/k < )\%(_Zi.-l)‘

Proof: By Corollary 7 and (9), we have
<m S <R

and further

1/my 1/k 1/m 1/(28-1)
(Kk,m) = (KZR,-l,m) °
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Now, if m tends to infinity, we obtain

1/k 1/(28-1)
Xk <A . O

Proposition 9: The limit g := lim A}/™ exists, and

m- o

1/k
S TRA TR B A
holds for all positive integers & and k.

Proof: First we note that the existence of the limit is trivial if Conjectures
2 and 3 are true, because then the sequence {X%/m} is monotoniously decreasing.
Let

1/m
m

Yy := lim inf A

N> o

(note Proposition 8).

Now choose € > 0 and let M be a number that satisfies
(10) A <y 4 e/2.

Because M is fixed, by Corollary 5(a) there is a number mg such that, for all
m>m
O)

1/m~1/M 1/M
(1) Mm)M <A M 4 g2,
Finally, by Theorem 6,
(12) Ay < k1% for allm = 1, 2,
From (10), (11), and (12), we derive, for all m > Mg s
M (MmO UMk ef2 <y + .
Consequently,

g = lim A%m = v.

m- o

Last, but not least, again by Theorem 6 (with &

1),
1/ 1/k y1/
Amm < (Km,k) "

IA

1/m 2 1/m
(Kapm /K201, m) (K, 90 /K, 20 1)
- 1/my1/k
(Kk,m) 5
and with m » «», we obtain

1/k
KZl/le—l <g=s Ak .0

. . 2 . L .
Theorem 10: The limit %1m K;f; exists, and it is equal to g. In particular,

: 1/n2 1/k
Aoy lhgy 1 < %iﬂ Kim = M

for all positive integers k and %.

Proof: By Theorem 6 (with # = k =m =#n and & = 1) and using the obvious fact

that Knn = Kn,n+1>

1/n 1/n 1/n
(Kn,n/Kn,l) < (Kn,n+l/Kn,l) / < Xn < Kn,n'

Hence,

2
AR < (i (L yUnyUn
If n > », then the lowerzand upper bounds tend to g, by Corollary 5(a) and
Proposition 9; hence, Kﬁ?@ also tends to g. The inequality in this theorem is

a reformulation of the inequality in Proposition 9. [J
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We note here that the existence of the limit in Theorem 10 was previously

proved by Weber (see [12]).

To find bounds for lim K#?# , we used a computer (see Table 1).

Nn>o
TABLE 1
1
m Am/Am_l A%W
2 1.49206604 1.55377397
3 1.50416737 1.53705928
4 1.50292823 1.52845453
5 1.50306010 1.52334155
6 1.50304676 1.51994015
7 1.50304821 1.51751544
8 1.50304807 1.51569943
9 1.50304808 1.51428849
10 1.50304808 1.51316067

Because of Theorem 10 and the numerical results,

estimation.

Corollary 11:

n> o

Conjecture 1: For all positive integers m and &,

>
Km,22+l/Km,21 = Am'

1.50304808 < lim 4% < 1.51316067. [

we have the following

If this conjecture is true, then it would follow, as above, that

. 1/ 2 .
lim Kn’;’,f < )\21+1/)\29,
> o
hence (with & = 4),

lim 1% = 1.50304808. ..

n-> o

Let us note that, for numerical purposes, the bound A#M7 is weak, because
A#M7 decreases slowly whereas the size of the matrix 4, increases exponentially

with m (like the Fibonacci numbers).

Conjecture 2: For all positive integers m and k,

2
Ko, 2k = Sm, 2k -2Km, 2k+2°
If this Conjecture is true, then,
would follow (we omit again the index m)

K K K K

BB Tl )2<.. <8

K1 K3 Kg K
and, further,

K K K K

A <A< <2

Kl Ka K5 KL',

1990]
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The following conjecture is stronger.

together with Theorem 1 and Corollary 5, it
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Conjecture 3: For all positive integers m and X,
2
Ko, 2k41/$m, 209 % = Km0k /€, 20 -2

If Conjectures 2 and 3 are true, then one can derive (again without index

m)
K K K
k 2k 2k -2 2
(k [k, 0% < (k,, /K o 2k _2km2 2 g,
2k+1172 k- 2k
k 2k’ 2k -2 Kok -2 Kok -y o
i.e.,
2k 2k+1 1/ (2k+1) 1/2k
Kokl = Kok > Kogsl s Koroos
and, together with Corollary 7, this means that the sequence {Ké{ﬁ} decreases

monotoniously in #. Finally, as in the proof of Proposition 8, omne can
conclude that {X%ﬁ"} decreases monotoniously in m.
Because of the recursions

|<1,‘rz+2 = Kl,n+1 + Kl,n and K2,n+2 = 2KZ,rM—l + K2,7'1’
one can easily verify these conjectures for m = 1, 2 (see also [2]). Using a

computer, we verified them also for the numbers Km, n for which 3 <m <10 and
1 <n < 20.
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