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In t h i s n o t e , the sum 

J ] ( - j a , where p i s an odd prime and ( — J i s the Legendre symbol, 

w i l l be w r i t t e n i n an expanded form. S p e c i a l ca ses of t h i s form y i e l d t he 
r e s u l t s t h a t , for p = 7 (mod 8 ) , 

( P - D / 2 . x 

.?, (§)» - -• 
and fo r p = 3 (mod 8 ) , 

( p - l ) / 2 
Y] - is an odd multiple of 3. 

This latter result implies that for such primes the difference in the number of 
quadratic residues and quadratic nonresidues in the first half of the interval 
1 < a < p - 1 must be an odd multiple of three. 

Let p be an odd prime, and let l—\ denote the Legendre symbol. 

Theorem 1: Let qs l < q < p ~ l , h e a divisor of p - 1 and k such that p - 1 = 
kq; then, 

S 
satisfies 

+... ^±'1*1+fi- " i t 

This sum can be expanded as follows: 

a> h\ t (fU- s i s ("•-"; + ">•-'>* +'4-
s = l ( a = ( s - l ) H l ^ ; ) s = l ( t = l V P ' j 

Next, ( ( s - l)fc + £)<? = (s - l)kq + tq 
= (s - l ) ( p - 1) + fcj 
= (s - D p + tq - (s - 1) 
= (s - D p + (t - l)q + (q - (s - D ) . 
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Substitution into the right-hand side of (1) and noting that (s - l)p = 0 
(mod p) yields 

(2) EJ £ (^"1)?+;"(S"1)){(5 - DP + (t - 1), + (, - (a - 1)}|. 

In (2), letting y = g - (s - 1 ) , splitting the sum, and summing on v yields 

Note that the first sum in (3) is S. In the second sum, replace t - 1 with 
t; then, the second sum can be written 

Putting the pieces together, we have 

®* •»•;?;)(, - »>;?: ( ^ ) j . 
from which the conclusion follows. 

Corollary 1: If q3 1 < q < p - 1, is a quadratic residue modulo p , then q - 1 
divides 

fc -1 ,+n + 9\ fc -1 

( , - 2 » t ( ^ ) + . . . + ?(a^^). 
And, l £ q 9 l < q < p - l 9 i s a q u a d r a t i c nonres idue modulo p , then q + 1 
d i v i d e s 

k~l'tq + 1\ k\-1 (tcl + ^ " X ) \ ( , - „ S ( ^ ) + . . . + Z( *-<r P ; t = o v P j 

Proof: i n the second case, (q/p) = - 1 , and so q + 1 divides the left side of 
(*) and, consequently, the right side of (*), The conclusion follows by noting 
that (<? + 1, p ) = 1. The first case follows in a similar fashion with q - 1 
replacing ^ + 1, and by noting that the first sum on the right side of (*) is 
multiplied by q - 1. 

Example: Let p = 17 and q = 4; then fc = 4. Since 4 is a quadratic residue, 
the conclusion from Corollary 1 is that 3 divides 

t =0 ' t'O ' 

Corollary 2: I f p E 7 (mod 8 ) , then S = -p £ ( ^ V 
(p-l)/2f 

Proof: In Theorem 1, let q = 2 and, hence, 2 is a quadratic residue. Thus, 

fc-1 5 = P*?0HH; 
that is, 

1990] 57 



p-1 
ON THE SUM V (£)« 

a=i p / 

5 • » % (f 
a odd 

The desired conclusion is obtained from the following: 

P-1 p-l (p-D/2 0 /o,(P"1)/2 (p-D/2 

.?, (I) • - A (?) - - .?, (") • -(f) .?, (?) • - £ (? 
a odd a even 

Note that the conclusion in Corollary 2 also holds with p E 1 (mod 8) , but 
trivially; both S and the sum are zero. 

(p- l)/2 
Theorem 2: I f p = 3 (mod 8 ) , p > 3 , then 3 d i v i d e s I ] (-). 

a = 1 \P/ 

Proof: Let q = 2; then ^ is a quadratic nonresidue, and so Corollary 1 implies 
that 3 divides 

ky (2t + * 
, V 0 V p 

that iss 
P~i & (D-
a odd 

Now5 by an argument similar to that used in the proof of Corollary 2; the con-
clusion follows. 

Example: Let p = 11; then the quadratic residues are 1, 3, 4, 5, and 9, while 
the quadratic nonresidues are 2, 6, 7, 8, and 10. Hence, the sum in Theorem 2 
is 

n) * (£)+ G)• (H) • (f) 1 - 1 + 1 + 1 + 1 = 3 . 

Note that the conclusion in Theorem 2 also holds for p E 5 (mod 8) , but 
trivially; the sum in question is zero. 

Also note that in Theorem 2 with p E 3 (mod 8), (p - l)/2 is odd. There-
fore, the sum in Theorem 2 has an odd number of terms, each one equal to ±1. 
It follows, then, that the number of quadratic residues and quadratic nonresi-
dues are opposite in parity. Hence, from Theorem 2, the difference in the 
numbers of quadratic residues and quadratic nonresidues in the interval from 1 
to (p - l)/2 must be an odd multiple of three. 

(v'l)l2 ia\ 
Theorem 3: If p = 7 (mod 8), then £ \ ) a = °-

p,oo,..=p
E'(2)a-,pr(2>.+ V d>. 

a = lXP7 a = l XP7 2> = (p + D/2Vp/ 

In the last sum, let b = p - a; then this sum can be rewritten as 

„?, ( — ) ( p ~ a ) = £ ( p ) a - p „?, (p)> 
/P - a \ / ^ \ sxnce (—-—J = - ( - ) • Hence, 

P 
(p-JJ/2 /ax (P ~J)/2 

S = 2 
a = 1 
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ĵ Note that this equation also holds for p E 3 (mod 8) since, in this case, it 
is also true that 

Now, from Corollary 2, 

(p~l)/2 /a^ 

s - -P £ (|). 
and so 

a = 1 
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