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One of the beauties of mathematics is i ts consistency. To find, serendi-
pitously, a verification of a result from an area other than the one being 
studied is an unexpected bonus. One such bonus is a proof of the Fibonacci 
identity 

(^ fn+2 = fi+lfn-i + fi + 2fn-i + l> X ~ i ~ U ' 2 

which arose during a count of maximal independent sets in trees. 

Firstj we need some definitions from graph theory [1]. 

A graph G is a nonempty finite set of points, or vertices, V, along with a 
prescribed set E of unordered pairs of distinct points of 7, called edges. We 
write G = (7, E). 

If two distinct points, x and y, of a graph are joined by an edge, they are 
said to be adjacent, and we write x adj y. 

A walk of a graph G is a finite sequence of points such that each point of 
the walk is adjacent to the point of the walk immediately preceding it and to 
the point immediately following it. If the last vertex of the walk is the same 
as the first, the walk is closed. If a closed walk contains at least three 
distinct points and all are distinct except the first and last, then we have a 
cycle. A graph is acyclic if it contains no cycles. A walk is a path if it 
contains no cycles. A walk is a path if all the points are distinct. 

A graph is connected if every pair of points is joined by a path. 

A tree is a connected, acyclic graph. 

The degree of a point V in G, denoted deg v, is the number of edges inci-
dent with v, 

An endpoint or end vertex or leaf of a tree is a vertex of degree one. 
(Every tree has at least two endpoints.) An interior point of a tree is any 
vertex with a degree greater than one. 

An independent set for graph G is a set of vertices with the property that 
no two vertices in the set are adjacent. 

A maximal independent set (MIS) of G is an independent set which is con-
tained in no other independent set of G. 

FIGURE 1 
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For the tree in Figure 15 {15 3, 6} is an independent set; {1, 3, 6, 7} and 
{2, 4, 5} are maximal independent sets. Note that not all maximal independent 
sets are the same size, Also note that any vertex v is either included in a 
given maximal independent set or adjacent to a vertex in that maximal inde-
pendent set* 

It was hoped that the number and sizes of maximal independent sets would be 
a key to the structure of a tree. Although that was not the case, it was while 
counting the maximal independent sets of a narrow class of trees that the 
counterexample was found, along with the Fibonacci identity (1). 

Let T be a tree with n vertices. Let p(T) be the tree obtained by adding 
one edge and one end vertex to each vertex of T. Then p(T) has In vertices, 
and is called the expanded tree of T, and T is the reduced or core tree of 
p(T) , The expanded tree has exactly n end vertices. If T is a tree with In 
vertices and exactly n end vertices, then each of the end vertices (with its 
adjoining edge) can be removed to obtain the core tree, which we call p-1(T). 
Figure 2 shows a core tree with its expanded tree. The added vertices are 
circled. 

p(T) 

FIGURE 2 

If e is an endpoint of tree T which is adjacent to a vertex x of degree 2, 
call e a remote end vertex. 

Now consider only the set of trees that are expanded trees of n-paths, n = 
1, 2, 3s ... . Let us count the number of maximal independent sets for each of 
these trees. 

Let MT = the number of maximal independent sets of T. 

Let T be the expanded tree of an n-path. For each vertex V in T9 define 
X(v) to be the number of maximal independent sets of T that contain v. If V is 
an interior point (i.e., not an endpoint) and if W is the endpoint adjacent to 
Vi then 

X(v) + X(w) = MT, 

since every maximal independent set must contain either V or w. In particular, 
if e is a remote end vertex and e adj x, then 

X(e) + X(x) = MT. 

If x adj y9 y * es then 

X{y) + X{x) = X(e), 
since e belongs to every MIS containing y9 and if a MIS S contains x, then (S -
{x})u{e}is also a MIS of the proper size, and these are the only MISTs that 
could possibly contain e. 
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FIGURE 3 

By combining these two equalities, we find that MT = X(y) + 2\(x). 

The following proposition states some more facts about relationships among 
A-numbers* 

Proposition 1: Let T be an expanded tree that looks like the tree in figure 4; 
that is, e is a remote end vertex, e adj x, x adj y, y * e, z^ is the end 
vertex adjacent to y, z2 adj y, z2 * Z\, z2 * x9 and z$ is the end vertex adja-
cent to z2» The structure of the rest of T (which is attached at z2) does not 
matter. 

T: 

FIGURE 4 

Then: 

(i) A0 3) = 3A(i/), so that A(s3) is divisible by 3; 

(ii) AOsi) = 2X{y) + X(z2); 

(iii) X{z2) is even; 

(iv) \{z\) is even; 

(v) X{y) and MT have the same parity; 

(vi) X(v) is independent of the number of remote end vertices attached to v 
for any v £ T that is an interior point. 

In addition, 

(vii) X{e) = MT„{eiX]. 

Proof: 
(i) For every MIS S containing y, s3 € S, S - {y} U {s^}, 

S - {y, e} u {zi9 x}, 
so A(s3) = 3A(z/), and 3 divides A(s3). 

(ii) This can be proved in two ways: 

(a) MT = X(z2) + X(z3) = X(z2) + 3X(y) by (i); 

MT = AQ/) + \{zi). 

The difference of these two equations is 

0 = 2AQ/) + X(z2) - X(Zl) 
or 

X(zx) = 2A(z/) + X(z2), 
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(b) For every MIS S c o n t a i n i n g y, 

%i e S - {y, e} u {x, z\} 
and 

si e s - iy} u {̂ i}» 
%i is also in every MIS containing z2. 

(iii) Let T± be the part of T containing es xs y5 Z\9 z2* S3, and 

T2 = (T - Tx) u {s 2}. 

A(^2) = (number of MISfs in T]_ containing z2) x (number of MIS?s in ̂F2 
containing s2) = 2 x (number of MIS?s in T2 containing s 2 ) 9 The two 
sets in T]_ are {2]_3 32s e} and {s]_3 s2, x}. Thus, 2 divides A(s2). 

(iv) follows immediately from (ii) and (iii); and (v) follows from (iv) and 

MT = X(y) + X(zi). 
(vi) Let el5 e2s .,», efe be the remote end vertices attached to some interior 

point v in T9 with e\ adj x ^ xi adj y, i = 1, 2, OB,s L Then every 
MIS containing v must also contain all the e^'s, and if a MIS contains 
even one xi , then 1? is not a member of that set, Thus, X(y) is not 
affected by the size of k» 

(vii) Let. XF(v) be the number of MIS?s containing v In T - {e, x}3 for any ye 
T - {g, x}. 

and 

so 

so 

He) 

X(x) 

t h a t 

2X(e] 

He) 

a l s o 
MT = 

+ X(x) •• 

+ A(z/) = 

) = MT + 

My + 
2 

2MT-{B, 

= MT 

= He) 

Hy) 

X(y) 
3 

x] - X 

(2) 

x'Q/) 
since for every MIS S in T - {e, x} we have, in T, the MIS 5 u {e} and 
the MIS S u {re}, except when S contains y. 

But (vi) implies that X{y) = X r(y) , so 

XQ/) = A'Q/) = ZMT-{e,x) " ̂ V <3> 
(2) and (3) lead to 

X(e) = MT-{e,x}° 

Now to determine MT: The expanded trees of n-paths have exactly two remote 
end vertices. 

ran: 
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We will call the central n - 2 points of the core tree the central path, and 
will find the A-numbers for all points of the central path, as well as for the 
nonremote end vertices. 

Starting at the right-hand end of the central path, we label each vertex of 
the central path and each corresponding end vertex with the number of maximal 
independent sets containing the point that include only points that have been 
previously labeled, or points only "to the right" of the given point. Points 
"to the right" of an end vertex shall include the point in the core tree to 
which it is connected. These labels will be elements of the Fibonacci sequence 
(1, 1, 2, 3, 5, 8, ... is the Fibonacci sequence, where the nth term, fn, 
equals the sum of the two previous terms: fn = fn_l + fn-7) ' 

Since a vertex in the central path is contained in exactly the same number 
of maximal independent sets to its right as the most recently labeled end ver-
tex, its A-number will be the same as the label of that end vertex. (Note that 
because of the order of labeling described above, these two points are not 
adjacent.) 

Since any end vertex can be added to a MIS containing the most recently 
labeled end vertex (to the right) or to a MIS containing the vertex in the 
central path adjacent to the most recently labeled end vertex, the label of the 
end vertex in question will be the sum of the labels of those two previously 
labeled vertices. 

Then since the farthest remote end vertex to the right and the point adja-
cent to it can each only be in one MIS to the right, we see (refer to Fig. 5) 
that the labels of the interior points are indeed a Fibonacci sequence. The 
labels of the end vertices form a Fibonacci sequence but start with the second 
term. 

A portion of the tree in Figure 5 with labels that will correspond to the 
following discussion is shown in Figure 6. 

... v' v" v"' ... 

m 
z' z" z'" 
FIGURE 6 

Define r(w) to be the number of MISfs containing vertex w and points "to the 
right" of w. 

For a vertex v' in the central path, v' is in the same number of maximal 
independent sets to its right as z" is in, where z'! is the endpoint adjacent to 
v", vl! adj v* and v" to the right of y'. r(z ') = r(v") + r(z") since, if 2' is 
in a MIS S (containing points only "to the right" of z ') , then either zl! € S or 
v" e S. 

Therefore, 

r(vr) = r(z") = r(zm) + r(v'" ) = r{v") + r(vm ). 

Thus, if we number the vertices of the central path from left to right by 
Vn-2> Vn-39 ''°> V2> Vl9 a n d t h e e n d v e r t i c e s by S^_2, £n_3s ...» S2' sl» w n e r e 

zi adj vi9 then i+ 

r(v,) = f. + l and r(^) = f. + z. 

Then, 
nvn_2) = fn_Y and X(zn_2) = 2fn 

(since for every MIS "to the right" we could add either the remote end vertex e 
or the adjacent point x) and hence, 
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MT = X(v„_2) + A(3„_2) -/„_!+ 2/„ 

~ Jn _ i Jn J~n ~ Jn+l J~n ~ J~n + 2* 
Now label each point vi and end point z^ in a similar manner from the left 

by £(i^) and £(<^). 

A(^) = r(Vt) * l(vt) and X^^) = v{zt) • U ^ ) . 

Note that £(z^) = fn_^ since i^ is the n ~ i - 1st point from the left, and 

Since 

A(^) + A(s^) = % , 1 < i < n - 2, 

we have the following well-known [2] number theoretic result* 

Theorem 3.24: fn+z = f ^ . f ^ , + fi + zfn.i + l for 1 < i < n - 2. 

For more general expanded trees, we follow a similar procedure. If v is a 
member of the core tree and deg v = k, then A (i?) is the product of k - 1 
labels—one from each of the k - I branches incident with v. If i> adj z, z an 
end vertex, then A(s) is also the product of k - 1 labels. In this general 
case, the labels will not always be elements of the Fibonacci sequence, but 
each individual label will be obtained as the sum of the two previous labels in 
the same branch. It is not necessary to find all labels for every point in 
order to find MT. Only the A-numbers for one end vertex and its adjacent point 
are needed. 

As an example, in Figure 7 is a tree with 20 vertices. The points e and y 
are the ones for which the A-numbers are being found. We are labeling from the 
endpoints of the separate branches toward the vertices e and z/, in the order of 
the indices on the yfs. 

(20+ 45) (4+ 5) • 5 4 + 1 
= 130 = 4 5 = 5 

MT = 130 + 45 = 175 

FIGURE 7 

V-, is in only one MIS to the r ight . 

V2 is in 4 MIS's to the right—there are two choices on each of the paths 
leading to the remote end vertices for 2° 2 MIS's. 

V3 is in the same MIS's to the right as t>2 • 

V^ is in the same MIS's as v^ o r the same MIS's as i?2, for a to ta l of 
1 + 4, or 5. 
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Vc and Vr are like v, and V~> respectively, when labeling from the end of 
their branch, i.e., "from above." 

v7 gets a label of 4 from above (the same as Vr) and a label of 5 from the 
right (the same as y.) for a total of 5 • 4 MIS's. 

VQ is in 4 + 5 sets to the right (the sum of labels from v3 and V^) and in 
1 + 4 sets from above (the sum of labels from v^ and v^) for a total of 
9-5, or 45. 

X(y) = 1 • 45, the product of the number of MIS's to the left and the number 
of MIS's to the right (from the VQ label). 

\{e) = 2 • (20 + 45), with 2 being the number of MISfs to the left and 
20 + 45 being the sum of the labels from v7 and VQ. 

MT = X(y) + X{e) = 45 + 130 = 175. 

If we look at the triangular array of A-numbers for the central n - 2 ver-
tices of the core tree of the expanded tree of an n-path, we see a triangle 
whose entries grow along diagonals in a Fibonacci-like manner. Figure 8 shows 
the first 3 trees and gives the A-numbers of the circled vertices. In the fol-
lowing chart, In is the number of vertices of the expanded n-path. 

Notice that the triangle is symmetric about a vertical line through its 
center. The two outer diagonals are the Fibonacci sequence without the first 
term. All other diagonals are Fibonacci-like in that each term, starting with 
the third is the sum of the two terms immediately preceding it in the diagonal. 
Also, each diagonal is a set of multiples of the first element, and the members 
correspond to multiples of the shortened Fibonacci sequence seen in the outer 
diagonals. 

Also notice that if there are In vertices in the tree, there are n vertices 
in its core tree and n - 2 vertices of that core tree will not be adjacent to a 
remote end vertex in the original tree. Therefore, there will be n - 2 ver-
tices to label and n - 2 numbers in the row of the triangle associated with 2n 
(see Fig. 8). 
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Now, the remarkable coincidences of the triangle can be understood if we 
recall the way in which the vertices of the central path are labeled. Each 
label is the product of the number of MISfs to the right and the number of 
MISfs to the left. However, the numbers of MIS's to the right for the central 
path are just the Fibonacci numbers, starting with the second term. Likewise, 
because of symmetry, the numbers of MIS's to the left are also the Fibonacci 
numbers, starting with, the second term. So for the n - 2 elements of the 
triangle row associated with 2n, we have fn_l_^m f-, 2 < i < n - 1. 

For example, if we let the factor on the left represent the number of MIS's 
to the left and the factor on the right represent the number of MIS's to the 
right, we see that the row associated with 2n = 14 and n - 2 = 5 is: 

1-8 2*5 3«3 5*2 8-1 

Certainly, the growth of the numbers related to maximal independent sets in 
this special class of trees is related to Fibonacci numbers and patterns, and 
the study of one enhances the other. 
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