$$
\sum_{n=1}^{p-1}\binom{p}{n} \rho^{n}=0, \quad \sum_{n=1}^{p-1}\binom{p}{n} \rho^{-n}=0
$$

Multiplying the first equation with $p k$, the second with ρ^{-k}, and using the easily verified formula

$$
u_{n}=\frac{(-1)^{n-1}}{\sqrt{-3}}\left(\rho^{n}-\rho^{-n}\right),
$$

we get

$$
\sum_{n=1}^{p-1}(-1)^{n-1} u_{n+k}\binom{p}{n}=0
$$

Dividing by p and using

$$
\frac{1}{p}\binom{p}{n} \equiv \frac{(-1)^{n-1}}{n} \quad(\bmod p), \quad 1 \leq n \leq p-1
$$

we get the assertion.
Also solved by Paul S. Bruckman.

(continued from page 288)
$Z_{i}(t)$ represents the number of zeros of f_{t} which are ε-close to η_{i}. By invariance of the complex integral, the functions $Z_{i}(t)$ are constant since the functions f_{t} vary continuously and do not vanish on the path of integration. Hence, $Z_{i}(0)=Z_{i}(1)$ for each i. This says that in a small neighborhood of each zero of f_{1}, there is a one-to-one correspondence of zeros of f_{1} with zeros of f_{0}, in the required manner.

In the case of our given functions, we find that the zeros of the polynomial $f_{n}(z)$ are close to the zeros of $g_{n}(z)$, which lie on the circle $|z|=\alpha$, as required, and the zeros of f_{n} get closer to the circle as $n \rightarrow \infty$.

Also solved by P. Bruckman, O. Brugia \& P. Filipponi, L. Kuipers, and the proposer.
