$$\sum_{n=1}^{p-1} {p \choose n} \rho^n = 0, \quad \sum_{n=1}^{p-1} {p \choose n} \rho^{-n} = 0.$$

Multiplying the first equation with $\rho^k,$ the second with $\rho^{-k},$ and using the easily verified formula

$$u_n = \frac{(-1)^{n-1}}{\sqrt{-3}} (\rho^n - \rho^{-n}),$$

we get

$$\sum_{n=1}^{p-1} (-1)^{n-1} u_{n+k} \binom{p}{n} = 0.$$

Dividing by p and using

$$\frac{1}{p}\binom{p}{n} \equiv \frac{(-1)^{n-1}}{n} \pmod{p}, \quad 1 \le n \le p - 1,$$

we get the assertion.

Also solved by Paul S. Bruckman.

(continued from page 288)

 $Z_i(t)$ represents the number of zeros of f_t which are ε -close to n_i . By invariance of the complex integral, the functions $Z_i(t)$ are constant since the functions f_t vary continuously and do not vanish on the path of integration. Hence, $Z_i(0) = Z_i(1)$ for each i. This says that in a small neighborhood of each zero of f_1 , there is a one-to-one correspondence of zeros of f_1 with zeros of f_0 , in the required manner. \Box

In the case of our given functions, we find that the zeros of the polynomial $f_n(z)$ are close to the zeros of $g_n(z)$, which lie on the circle $|z| = \alpha$, as required, and the zeros of f_n get closer to the circle as $n \to \infty$.

Also solved by P. Bruckman, O. Brugia & P. Filipponi, L. Kuipers, and the proposer.

[Aug.

÷