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1. I n t r o d u c t i o n 

Consider the sequence of real numbers defined by the recurrence relation 

(1.1) Wn = pWn.x + Wn-2, 
where p is a strictly positive real number. Special cases of (Wn) which inter-
est us here are: 

an - 3 n 

(1.2) Un = _ (Fibonacci-type sequence), 
and 

(1.3) Vn = an + 3n (Lucas-type sequence), 

where 
a = 

(1.4) 

*="— 2 
It is clear that 

(1.5) a3 = -1, a > 1, -~1 < 3 < 0. 

On the other hand, the Lambert series is defined by 

(1.6) L(x) = ± — ^ - , |x| < 1. 

It has been known for a long time (see Horadam [1] for complete references) 
that 

E 7T- = (a - B M M B 2 ) - L(^)], 
n= 1 U2n 

*= 1 l2n-l 

The purpose of this paper is to establish the following result. 

Theorem 1: 

(1.7) E jr-^j = 2(a - 3)[M32) - 2L(B4) + 2L(38)] + 3; 

2. P re l iminary Lemma 

Lemma 1: 

(2 .D E , ^ " 2 w + 1
 = L ^ ) - L ( ^ 2 ) ; 

2̂= 0 1 - X Z n + i 
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(2.2) £ X
 n = L{x) -- 2L(x2); 

n= l 1 + Xn 

(2.3) £ ~ ^ — T T T = L ^ ~ 3L(^2) + 2L(x^). 
n=0 1 + X2n + 1 

(2.1) is obviously true, whereas (2.2) follows from the identity 

2x In 

1 + xn 1 - xn I - x2n' 

and (2.3) follows from 

n=0 1 + X2n+l «= i 1 + x n «- l 1 + OJ2?2 " 

3. Proof of Theorem 1 

Lemma 2: 

(3-D 2 i ; 4 r = 1 + E 7 r 4 - ; 
n=ia Un a n= 1 vn.Un + 1 

(3-2) 2 E - ^ - i + E - ^ -
«= l a Fn up n= l ^z7n + l 

Proof: F i r s t , we have 

aUn + 1 + y„ = _ L - [ a ( a » + l - (-1)» + 1 - L - ) + a" - (-1)" ^ 
1 p.W+1 , 1 \ 

= — — (an+2 + an) = - (a + - = an + l . 

Thus, 
1 

+ a»*/w " a^Un + 1 UnUn + } 

ig this term by term, we 
the same pattern if we c 

uVn + i + Vn = (a - G)aw + 1. 

By adding this term by term, we find (3.1) since U\ - 1. The proof of (3.2) 
follows the same pattern if we observe that 

Thus, 
1 1 _ a - g 

unVn
 + an + 1Vn+l " VnVn + l' 

Now, adding t h i s term by term, we find (3.2) s ince ^i = p . 

Lemma 3: 

(3.3) £ - J — = (a - £)[L(32) - 2L(34) + 2Z,(38)]; 
n = 1 a 6/n 

Proof; 
1 ^ _ ^ _ = ^ 1 = ^ 3 2 n 

a - B ^ i a n [ / n „ ~ i a 2 * - " ( - 1 ) * „~i 1 - ( - l ) n 3 2 w 

„~1 1 ~ 3 ^ +n^0 1 + 3 ^ + 2 

Using (1.6) with x = 3 4 and (2.3) with x = 6 2 , we find ( 3 . 3 ) . On the other 
hand, we have: 
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y = y - = v - = v - + v — 
„t-i anVn n^Y a2n + {-l)n „ ^ i 1 + ( - l ) n 3 2 n n=i 1 + 3 ^ n=o 1 

i*+n+2 

ihn+Z' 

Using (2.2) with x = 34 and (2.1) with x = 32, we find (3.4). This concludes 
the proof of Lemma 3. Now the proof of the theorem follows immediately from 
Lemmas 2 and 3. 

4. Special Cases 

4.1 Fibonacci-Lucas Sequences 

Let p = 1 in (1.1) to obtain 
l + i/5 

Wn = K-l + Wn-2> a = » 
1 - /5 

£/n = Fn is the Fibonacci sequence and Vn = Ln is the Lucas sequence. Equations 
(1.7) and (1.8) take the following form: 

£ 1 
n= 1 ^n^ n + \ 

1 

2/5 

rc= 1 -^n^n + 1 v5 

.3 - /5\ 0 11 - 3 / 5 \ /47 - 21/5 
L - 2L + 2L 

2L 

2 
3 - / 5 47 - 21/5 

2 
1 - / 5 

2/5 

1 - / 5 

4 .2 Pell and Pe l l -Lucas S e q u e n c e s 

Let p = 2 i n (1 .1 ) to o b t a i n 

Wn = 2Wn_l + Wn_2, a = 1 + / 2 , 3 = 1 - / 2 . . 
£/n = Pn is the Pell sequence, Vn = §n is the I. Pell-Lucas sequence. Equations 
(1.7) and (1.8) take the form: 

£ = 4/2[L(3 - 2/2) - 2L(17 - 12/2) + 2L(577 - 408/2)] + 1 - / 2 ; 
n = 1 Pyi^n + l 

~ 1 1 r- r~ 1 - / 2 
53 7 ^ = -7=[i(3 - 2/2) - 2L(577 - 408/2) ] + 3n + l il 4 /2 

5. Generalization 

The following theorem generalizes the above result. It is given without 
proof, since the methods required exactly parallel those of Section 3. We 
assume that K is an odd integer. 

Theorem 2: 
1 2(a - 3) , 

^ [L($2k) - 2L(3 4 k ) + 2 L ( 3 8 k ) ] + ~z\ 
n=iUknUk{n + l) Uk , Uk 

E 1 -[£(B2k) - 2L(f38k)] + 
»^i^„^( n +i) (a - B ) V ^ ' " N- " Co - B)J/fĉ  

For the proof, the reader will need the following lemmas. 

Lemma 2': 

2£ 
1 

+ ^ E n = i a k n [ / f e n a k t / k rz= 1 ^ n ^ ( n + l ) ' 

1 1 , N " 1 
T/fen '« Vk n=l Vkn Vk(n + l) 

2 y 
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Lemma 3': 

n^i~aknUkn 
Z knn = (^ ~ 3)[£(32/c) - 2L(^) + 2L(B8^)]; 

t -J^T— = L{^k) - 2L(38fe). 
n= i aKnV-, kn 
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