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Let UQ, UI , A, B be i n t e g e r s and d e f i n e , for n > 2 , 

Un = AJJn_Y + BUn-2. 

For an integer m > 1, the sequence (Un) considered modulo 777 is eventually peri-
odic. We say (Un) is uniformly distributed modulo m [notation: u.d.(mod m)] if 
every residue modulo m occurs with the same frequency in any period. In this 
case, it is clear that the length of any period will be a multiple of m. 
Conditions that (JJn) be u.d.(mod m) can be found in [2, Theorem A]. Suppose 
(Un) is u.d.(mod pk) where p is a prime and k > 0. Let M > 2 be any integer. 
We study the relationship between the distribution of Un (mod M) and Un (mod 
M° pk) . For integers N > 2 and 0 < c < N, denote by x>(N, c) the number of times 
that c occurs as a residue in one shortest period of Un (mod N) . Our main 
result can now be stated. 

Theorem: Let p be a prime and k > 0 be an integer such that Un is u.d.(mod 
pk) . Say Un has shortest period of length pkf modulo pk. Let M > 2, and 
assume that Z7W is purely periodic modulo Ms with shortest period of length Q. 
Assume p\Q. Then, for any 0 < a < M, and 0 < b < M* pk with b = a (mod M) , 

v(M- pk, b) = / - v(M, a). 

We remark that ( , ) denotes the GCD. Also, observe that the hypothesis 
p\Q yields p\M. To prove the Theorem, we make use of a recent result of Velez 
[2], which we state here for the readerTs convenience. 

Lemma: Suppose that Un is u.d.(mod pk) with shortest period of length pkf. 
Then, for any integer s > 0, the sequence Us+qf, q = 0, 1, ..., pk - 1, consists 
of a complete residue system modulo pk. 

Proof of Theorem: Let 0 < a < M and let v(M, a) = d. As the Theorem is vacu-
ous if d = 0, assume d > 1. Let z^, u2> ..., W^ be all of the integers 0 < 
Wi < Q such that UW.E a (mod M) . Let 0 < £> < M • pfe, say & E P (mod pfe) with 
0 < r < pk. Assume b = a (mod M). Note that Un has period length 

f 
LCM(S5 fpk) = e «°  pk modulo M • pfc. 

(Q» j) 
For ease of notation, we set 2 = f/(Q, f). As (M, pfc) = 1, it suffices, by the 
Chinese Remainder Theorem, to show that the system 

(a (mod M) 
(1) Un =< 

{r (mod pk) 

has exactly z • <i solutions, 0 < n < z* Q* pk. 
We begin by producing, for each w^9 solutions Vn> V^z, ..., f ŝ of the sys-

tem. Fix i . Then 

UWi+eQ = a (mod M) for all 0 < e < 2 - p ^ - l . 

Let 0 < Sn < s^2 < ••• < siz < f be all of the distinct integers such that 

wi = sil E si2 E ... E siz (mod (S, /)). 
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By Velez's lemma, there exis t integers 0 < q-^, q • ? , . . . , q- < pk - 1 such that 

Us- • + q.-if - v (mod pk), for a l l j . 

Then, a lso , for any 0 < t < Q/(Q, f) - 1, we have 

US;j+(q?:j + tp^)f E r (mod pk) . 

The bounds on e, t guarantee that these subscripts are less than z • Q ' pk. For 
each i-, j, we seek e = e^j , t = t^-j in these bounds such that 

Write s^j - wi = (Q, f)mi-. Note that since lz * pk, -jT]—~£\ ) = 1 » t n e linear 
congruence ^ J ' ' 

t - z . p k = -{m,- + q i j 3 ) ( n . o d ^ — ) 
(Q, f). 

H has a unique solution t = t^- with 0 < £•• < — - 1. But then 

Q\(Q, Dimij + qidZ + ttj • Z - pk) ; 

thus, since (Q, z • Q • p k ) = Q, the linear congruence 

eQ = (Q, f) (mi;j + q^ z + t^ • z • pk) (mod. z • § • pk) 

has § solutions 0 < e < z • q • p k . Hence, this congruence has a unique solution 
e = e^j satisfying 0 < e^j < z • pk - 1. With these values of e^j, t^ , we have 

wi + ei3-Q = s i d + (qi. +" *if7-pfe)jT (mod g • « • pk), 
so equality holds, since both sides are less than z • Qm p k . Set i?-- = u^ + &ijQ 
for all i, j . Then 0 < v^j < z " Q • p k , and each y^- is a subscript that satis-
fies the system (1), that is, Uv,. = b (mod M» p k ) for all i , j . We claim that 
the Vij are distinct. 

Suppose that v ̂  = V gh. Then w± + ê - Q = wg + e.ghQ implies Q\(w^ - Wg) . As 
0 < w^9 Wg < Q, this gives w^ = Wg, so that i = g. Then 

so that jT| (s^j - s^h). As 0 < s^- , s ^ < /, we have that s^j = Sijj ; therefore, 
j = h. Thus, the v^j are distinct. This shows that, for any 0 < a < M and any 
0 < b < M • p k , v (M • pfc, b) > z • v(M, a) . The proof is concluded by observing 
that 

M-pk-\ M-ip*--i (a (mod M) 
z . Q. pk = ^ v(M'p^5 W = J ] X>0tf' pfc, &)-, where b = < 

b = 0 . a=.0 ̂ =Q ( P (mod pfc) 
/>/ - 1 p k - 1 A/ - 1 

- X X! s • V ( M ' a ) = s • p k 2 ] v(A/, a) = z ' p k ' Q. 
a=0 r=0 a = 0 

Hence, equality holds throughout, and the Theorem follows. D 

Example: Let A = B = 1, UQ = 0, ̂  = 1 so that i/w is the Fibonacci sequence. 
Then Un is u.d.(mod 5). Take M = 33. Then Un has period of length Q = 40 mod-
ulo 33, and one computes that v(33, 1) = 5, whereas v(165, 1) = 3. This justi-
fies the hypothesis that p\Q. Moreover, in this case, v(33, a) assumes 5 
values for 0 < a < 33, but v(165, b) assumes only 4 values for 0 < b < 165. 

In fact, our Theorem asserts that Un has the same number of distinct dis-
tribution frequencies modulo M and M• pk, whenever M, p satisfy the hypotheses 
of the Theorem [that is, v(M, *) and v(M»pk, *) take on the same number of 
distinct values]. This provides an alternate method of obtaining the results 
in [1]. 
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Note that the "purely periodic" hypothesis of the Theorem can be omitted if 
one substitutes asymptotic density for frequency, as the finite number of terms 
before Un becomes periodic modulo M do not affect density. Our final result is 
well known but illustrates the Theorem's power. 

Corollary: Suppose that Un is u.d.(mod pk) and is u.d.(modAf), where p is a 
prime that does not divide the length of the period of Un (mod M) . Then Un is 
u.d. (mod M • pk) . 
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Masaryk University in Brno, Czechoslovakia, is the only university in the country 
which subscribes to the Fibonacci Quarterly. Unfortunately, their set is not com-
plete. They need volumes 1-9. If anyone would be interested in donating these 
volumes to Masaryk University please let the editor of this journal know and he 
will make arrangements. 
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