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The n-number game is defined as follows. Let S = (s15 85 «++5 8,) be an
n—tuple of nonnegative integers. A new n-tuple D(S) = (81, &5, ..., §,) is
obtained by taking numerical differences; that is, &; = isi - Si+1|- Sub-
scripts are reduced modulo n so that &, = |s, - s;|. The sequence 5, D(S),
D?(S), ... is called the n-number game generated by S. To see that a game
contains only a finite number of distinct tuples let jS| = max{s;} and observe
that |S| > ID(S)[. Since there are only a finite number of #n-tuples with
entries less than or equal to ]S|, eventually repetition must take place. When
n = 2Y, it is well known that every game terminates with (0, 0, ..., 0). That

this is not the case for other values of n is easily seen by considering the
following 3-tuple:

R = (1, 0, 0)

DE) = (1, 0, 1)
D?(R) = (1, 1, 0)
D3(R) = (0, 1, 1)

D¥(R) = (1, 0, 1) = D(R)

The tuples D(R), D2(R), and D3(R) form what is called a cycle.

For any n-tuple S, we say the game generated by S has length A, denoted by
L(S), if D*(S) is in a cycle, but D*~1(S) is not. Thus, in the example above,
L(R) = 1, while L(D(R)) = 0. For each »n, the length of games is unbounded.
That is, for any A, there exists an n-tuple S such that L(S) > A. On the other
hand, for tuples S with |S| < m, there is a game of maximum length, since there
are only a finite number of such tuples. We introduce the following notation:

S,(m) = {5]|S is an n-tuple with |S| = m},
Zo(m) = max{L(S)|S € ,(m)}.

On occasion, when the context is clear, we will drop the subscript. The values
of Y(m) and Z5(m), along with tuples giving games of maximum lengths, have
been determined in [10] and [6]. We consider this question when » is not a
power of 2. We first find an upper bound on %, (m). Then we show that this
bound is actually realized when n = 2¥ + 1.

Before proceeding, a few additional comments are in order. Observe that,
for any tuple S, if we multiply all the entries by a constant ¢ and denote the
resulting tuple by &S, then

(1) D(eS) = eD(S).
Additionally, if all the nonzero entries of S are equal with § € %(m), then
S = mE for some F € ¥(1). 1In particular, an entry e¢; in E equals 1 if and only

if the corresponding entry in S5, s;, equals m.

Since a game concludes when a cycle is reached, it is important to be able
to identify those tuples which occur in a cycle. This author did that in [5].
The following theorem gives the salient facts from that work. We say that an
n-tuple S has a predecessor if S = D(R) for some n-tuple R.

Theorem 1: Let n = kr where k = 2% and » is odd with » > 1. Suppose S is an
n—-tuple. Then
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(i) S has a predecessor if and only if there exist values g, € {-1, 1},
L =1, 2, n, such that

n
d.e,s, = 0.
£=1
(ii) S is in a cycle if and only if all its entries are 0 or |S| and
-1
2 eipsr =0 (mod 2), for £ =1, ..., k,
Ji=0

where S = |S|+ E with E = (e1, €3, ..., ¢,) € $(1).

Part (ii) guarantees that when »n is not a power of 2, there are nontrivial
cycles; indeed, for n odd, the tuple E = (0, ..., 0, 1, 1) is in a cycle. More-
over, (ii) along with (1) gives

(2) L(eS) = L(S).

2. A Bound on(Ea(m)

For S € %,(m), we say that S has u 0's and m's in a row, denoted by u(S),
if the following conditions are met: there exists an integer n such that s; €
{0, m} for 2 =n, n+1, ..., n+p -1, at least one of these s; equals m, and
u is as large as possible. As usual, we reduce subscripts modulo n. Thus, for
example,

u(S) = 6 when 5= (3, 2, 3, 0, 1, 3, 0, 3, 0, 0).

Loosely speaking, a tuple S will produce a long game if, at each step, u(DX(9))
is as large as possible. In determining an upper bound on %,(m), the follow-
ing lemmas will be useful.

Lemma 1: Let 5 € ¥ (m), u(S) = ¢, and t < n. If D(S) € % (m), then u(D(S)) <
t - 1.

Proof: By hypothesis, for some n, we have

s; € {0,m} for 2 =n,n+1, ..., n+¢t -1,
s; =m for some 7, n <7 <n+t -1,
1 <8421 84 sm - 1.

As before, let D(S) = (81, ..., §,). Then

g; € {0, m} for<i=m, n+1l, ..., n+t-2,
1 < 8,15 8441 <m = 1.

Hence, if |D(S)| = m, then n(D(S)) <t - 1. O

At first glance, it might seem in Lemma 1 that, if |D(S)] = m, then u(D(S5))
must equal ¢ - 1. It is possible, however, to have strict inequality. This
would occur if éi =0 forn<71<n+t -2, while §j = m for some other j.

Lemma 2: Suppose that S € ¥,(m) and not all the nonzero entries equal m. Then
]D”"I(S)I <m - 1. Further, if S has a predecessor, then ‘D”_Z(S)[ <m-1.

Proof: Let u(S) = t. By hypothesis, ¢ < n - 1, and if S has a predecessor,
then by Theorem 1(i), ¢ < n - 2. In either case, Lemma 1 applies. So, if
[D(S)| = m, for ¢ = 1, ..., ¢t - 1, then u(D¥(S)) < ¢t - ©. Of course, if
p(D7(8)) =1, then [D/*1(S)| <m - 1. Thus, [DYS)| sm~-1. 0

In a moment we will consider those tuples in which all nonzero entries
equal m. In that case, S = mE for some E € ¥(1). For tuples in .%,(l), the
following is useful. Let A = Z,[¢]/.f where Z,[t] is the polynomial ring over
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Z, and 4 is the principal ideal generated by ¢” + 1. We associate with & =
(ers -+ e,) € ¥/(1), the polynomial

P (t) =e, +e, 1t + ot +ext" 2 + e1t" ! in A,

Since &, = |e; - ¢;41| = e; + ¢;4; in Z, and ¢t = 1 in A,
(3) %(E)(t) = (e, +ep)+ (e +e)t +e-+ (€9 + e3)t" 2+ (e + eyt !

= (1 +t) P (2).

Lemma 3: Let n = kr, where k = 2% and » is odd with r» > 1. Suppose S € ¥, (m)
and all the nonzero entries equal m. Then L(S) < k. Further, if S has a pre-
decessor, then L(S) < k - 1.

Proof: As usual, we let S = mE, where £ = (ey, ..., ¢,) € ¥(1). For the first
part, by (2), we need only show that DX(E) is in a cycle. Using (3), we find

Prp(B) = (L + ©)F Fp(t)
(1 + th) 2. (1)
(1 + tk)(en + e, + --- + @27‘:”_2 + elt”_l)

I

1]

k=1 n-1
= 2 (eng +ep-)th + 3 (epy + ey )tt din AL
=0 L=k

The second equality holds since k is a power of 2 and so all the binomial coef-
ficients in (1 + %)k except for the first and last are even. From the above,
we see that

Dk(E) = (€1+ek+]_, 82+€k+2, ey en_k+en, eu-k+1FT €15 oo en+ek).
We now check condition (ii) of Theorem 1. In doing so, we use the fact that
n-Kk=(r - 1)k. For 7 = 1, we have

(81 + 8k+1) + (ek+l + 627(4'1) + ... + (en_kH + 91) = 0 (mod 2).

Similarly, (ii) holds for all other values of 7. Thus, Dk(E) is in a cycle and
L(E) < k.

For the second part, it is also sufficient to show that L(F) < k - 1. Con-
sider the tuple F = (f1, f2, ..., f,) € &(1) defined by

f1 =0, f; =e; +ey + oo +e;_1 (mod 2), © =2, ..., n.

Since S has a predecessor, F does as well; because the entries of # are either
0 or 1, Theorem 1(i) gives

e; tepy+ ... +e, =0 (mod 2).
This means that f, = e, and so D(F) = E. Thus, L(E) = L(D(F)) < k-1. 0O
Theorem 2: Let n = Kkr, where k = 2% and r is odd with » > 1. Then Lo (m) <
(m=-1)(n - 2) + k.
Proof: Let S5 € Y,(m). 1If all the nonzero entries of S are equal, then by Lemma
3, L(S) £ k and so the theorem holds. Otherwise, by Lemma 2, ID"‘l(S)] <m-=-1.
Continuing, suppose that, for some & = 1, ..., m — 2, all the nonzero entries of
p¥Mn=-2)*1(5) are equal. Then, again by Lemma 3, L(D*n-2)+1(5)) < k - 1, which
means L(S) < &(n - 2) + k. On the other hand, if the latter condition does not
hold, then, by Lemma 2, ‘DO"_D("'2)+1(S)[ < 1. Another application of Lemma 3
gives the desires result. [J

If there is a tuple S € %,(m) with L(S)=(m - 1)(n - 2) + k, then the proof
of Theorem 2 tells us what the tuples in the game must look like.
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Corollary 1: Let n = kr, where k = 2
Lym)y = (m~- 1 - 2) +k,

then there exists S € &, (m) such that

(1) D22 = m - & and w@¥PDFL(E)) =n - 2
for 4 =0, ..., m -1,

(i1) L@M-D&-2*+1gyy = - 1.

Proof: This follows immediately from the proof of Theorem 2. [J

and r is odd with » > 1. 1If

In a moment we will state a condition for the existence of a game of maxi-
mum length in terms of the n-tuple (0, ..., 0, 1, 1). Before proceeding, two
comments are in order. First, if the entries of an n—-tuple are rearranged so
that adjacent elements remain adjacent, then similar games result. Or, more
precisely, if § = (s;, 85, ..., §,) and 0, is a permutation contained in the
dihedral group ¥,, then

(4) D(01(8)) = 0,(D(S)) for some o, € Z,,.

Second, it is convenient to associate with S = (s;, 85, ..., §,) an n-tuple
M(S) € #(1) which is related to the parity of the entries of S. We define

M(S) = (my, mp, ..., my) in the obvious way with m; = s; (mod 2). Observe
that

(5) M (D(S)) = D(A(S)).

Theorem 3: Let n = kr, where k = 2 and » is odd with » > 1. Suppose for

mzb4, & (m) = (m-1)(n - 2) + k. Then, for some 0 € Z,,
D?(n=2)(E) = o(E), where E = (0, ..., 0, 1, 1).

Proof: By hypothesis, there exists an n-tuple S with ISI = m and
L(S) = (m- 1)(n - 2) + k.

Let T = pm=M(=-2)+1(5), Corollary 1 implies that
|7 = |[p=-WC=DHg) | = 4, w(I) =n - 2, and |[DV"D(D)| = 3.

Since p(T) = n - 2, T has exactly two adjacent entries with values in {1,2,3}.
One of these must equal either 1 or 3; for, if not, then ID(”'ZRZO' < 2. More-
over, since T has a predecessor, Theorem 1(i) guarantees that both are in
{1,3}. This shows that

M(T) = 01(E) for some 0, € Z,.
Similarly,
M(D22(T)) = ox(E) for 0, €2, .

Hence,

L]

M(D2=2)(TY)
D2 =24 (T))
D2("=2)(g1(E))
03 (D2(n=2XE))

o, (E)

]

The second equality follows from (5); the last, from (4). Thus, for o= 0;102 €
Z,, D2D(E) = o). 0

Theorem 3 is the heart of the matter. Whether or not there exists an n-
tuple which has the maximum possible length depends in large part on E. Since
E € .%(1l), Theorem 3 can be recast in terms of polynomials in A. Using (3), we
see that, in order to have an n-tuple of maximum length,
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(1 + 20D F(8) = Py ().

Since 9%(#) =1+ t, Q%GD(t) = ¢tJ + 97! for some J» where, if necessary, the
exponent 7 + 1 is reduced modulo »n.  Thus, we have

Corollary 2: Let n = kr, where k = 2 and r is odd with » > 1. Suppose that,
form 24, L(m) = (m - D(n - 2) + k. Then, for some j,

(6) (1 + £)2773 = £9(1 + %)
in A. [

Theorem 4: Let n be an integer such that n=2¥Y and n=2Y + 1 for any w. Then,
formz 4, ¥ (m) < (m-1xn - 2) + k.

Proof: First, suppose #» is even. By Theorem 1(ii), E = (0, ..., 0, 1, 1) is
not in a cyele. Thus, Di(E) = E for any 7. Now, if p2(n=2)(E) = G(E) for some
6 € 2, then D2("~2)P(E) = E where p is the order of ¢ in %,. Consequently, the
conclusion of Theorem 3 cannot hold.

For n odd, we will expand (1 + £)2773 denoting the 2" binomial coefficient
by cy.

2n -3 n-~3
(Lt 9207 = B oyt = B ey 4oyt + (epat 2+ o))
n-3
= (ey + Cnoz-)tY + (C,-t"72 + ¢ pt™™ )
£=0
n-5
7
= 3 (oy + opozog) FF+ £T3TH
2=0 n-3
+ 20, 3% 2 4 ey (272 + D),
2
The second equality follows by using t" = 1; the third, from ¢, = ¢y,_3-4. Now
when 2n - 3 = 2Y - 1 for some v, all the binomial coefficients are odd, so that

we have
(1 + £)2n73 = ¢"72(1 + ¢).

Thus, (6) holds for n = 2¥ + 1, where w = v - 1. On the other hand, when
2n - 3 = 2Y -~ 1 for any v, then ¢,_, is even. So, if t* is present in the
expansion of (1 + £)27-3 then so also is t" 37 *. Hence, (6) cannot hold. [J

3. The Case n = 2%+ 1

We now consider the case in which » = 2¥ + 1. Corollary 2 and Theorem 4
imply that a game of maximum length is possible. We show that this actually

occurs. Before examining the general case, we consider the special case n = 3.

Lemma 4: Let n = 3 and define T, = (m - 1, 1, m). Then, for m 2 2, D(Tp) =
0(Tp-1) for some o € Zj.

Proof: The result is immediate since D(T,) = (m - 2, m - 1, 1). [

Lemma 5: Suppose n = 2¥ + 1, w = 2. Let T, = (0, 0, ..., O, m - 1, 1, m).
Then, for m = 2,

D M(Ty) = (0, m = 1, t35 tuys eoes ETpols M)

D3Iy = (m= 1, 1y uuy 1, m)
D" 2(T,) = (m ~ 2, 0y wuvy Oy m = 1, 1)
where the entries in D"~ “%(7,) have the property that |ti ~ t;41] =1 for 7 = 2,
.>on - 1.
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Proof: The proof proceeds by induction on w. Suppose that w = 2 so that n = 5.
Then Tn = (0, 0, m -= 1, 1, m) and it is easily seen that D(T,) = (0, m - 1,
m-2,m=-1, m.
Suppose that the Lemma 5 holds for w - 1; more specifically, suppose that
Dl—q(?ﬁ) = (O: m=-1, Y3, Py Yy-1> m), and

Dz_q(f%_l) = (0, m - 2, 33, 84, c ey 82_1, m = 1),

where £ =271 + 1, |r, - ;41| =1, and |g; - s;41| =1 for 2 =2, ..., & - L.
Consider the (2” + 1)-tuple T,. We can view T, as a 2"l zero-tuple concatena-
ted with a 2¥71 + 1 "7 -type-tuple." Thus, when we compute DX(T,) for k less
than 2¢- 1 - 2, we have the same pattern we have for the 2v-l 4+ 1 case. Thus,
we have
k D (T)

u-l 3 (0, 0, , 0, 0, 0, m =1, r3, r4, , Py_1s M)

vl -2 (0, 0, , 0, 0, m=1,1, 1, 1, > 1, m)

2w-l - (0, 0, , 0,m-1,m=-2,0, 0, , 0, m=1, m

vt 0, 0y, voeym=1, 1, m=-2,0, , 0, m=-1, 1, m)

2¥ - 3 (0, m = 1, 841y eees 83, M= 2, m = 1, P3g, Py ..,

o1, m)

Note that for k = 29”1, DX(T,) may be viewed as the 2¥~1 + 1 "I, -1-type" tuple,
(©,..., 0,m =1, 1, m - 2), concatenated with the 2¥"1 tuple, (0,...,0, m-1,
1, m). The latter is like the 2¥~1 + 1 "7, -type" tuple, except that it is

missing the leading zero. By induction, the second through (n - 1)S°' entries
in DK(T,), k = 2¥ - 3 = n - 4, differ from the next one by 1. Thus, D* *(T,)
has the proper form. The conclusion for D”“3(Tm) and D" 2(T,) follows

immediately. []

Theorem 5: Suppose n = 2¥ + 1 for w > 1. Define B, = (0, 0, ..., 0, m ~ 1, m)
for m 2 1. Then L(F,) = (m - L)(n - 2) + 1.

Proof: Note that D(Ry,) = Ty = (0, ..., 0, m -1, 1, m). Now, by Lemmas 4 and 5,
D”'Z(TW) = o(T,-1) for some o€ %, and m > 2. Further, T, is contained in a
cycle, but no other T, is. Thus, we have L(K,) = (m - 1)(n - 2) + 1.

4. Remaining Questions

For n not a power of 2 and »n # 2” + 1, how large is %, (m)? What tuple pro-

duces the longest game? Only for n = 7 are the answers to these questions
known [6].

Because Theorem 3 cannot hold for even n, it is tempting to try to prove a
related version using E = (0, ..., 0, 1, O, ., 0, 1), where the 1's occur in

the (n - k)t and nth places. All efforts to date have failed. What relation,
if any, does ﬁgn(m) have to Z,(m)? The following is a limited answer to that
question.

Theorem 6: 2.%,(m) < ¥,,(m).
Proof: Let S € Y (m) with L(S) = %,(m). Then the tuple S A 0, where
5 A 0=(0, s1, 0, 85, 0, 83, ..., 0, 8,)

is in %,,(m). By Theorem 1(ii), D(S A 0) is in a cycle if and only if § is.
Further, D2(S A 0) = D(S) A~ 0. Thus, L(S A 0) = 2L(S). O

Unfortunately, from the few cases studied, it appears that the above in-
equality is a strict one.
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The n-number game has been studied extensively; indeed, many key results

keep

reappearing in the literature and being reproved. An extensive bibliog-

raphy appears in [7]. In the interest of completeness, additional references
which either do not appear in that article or were published after 1982 are

liste

N =

10.
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