LENGTH OF THE *n*-NUMBER GAME

Anne Ludington-Young

Loyola College, Baltimore, MD 21210 (August 1988)

The *n*-number game is defined as follows. Let $S = (s_1, s_2, \ldots, s_n)$ be an *n*-tuple of nonnegative integers. A new *n*-tuple $D(S) = (\hat{s}_1, \hat{s}_2, \ldots, \hat{s}_n)$ is obtained by taking numerical differences; that is, $\hat{s}_i = |s_i - s_{i+1}|$. Subscripts are reduced modulo *n* so that $\hat{s}_n = |s_n - s_1|$. The sequence *S*, D(S), $D^2(S)$, ... is called *the n-number game generated by S*. To see that a game contains only a finite number of distinct tuples let $|S| = \max\{s_i\}$ and observe that $|S| \ge |D(S)|$. Since there are only a finite number of *n*-tuples with entries less than or equal to |S|, eventually repetition must take place. When $n = 2^{\omega}$, it is well known that every game terminates with $(0, 0, \ldots, 0)$. That this is not the case for other values of *n* is easily seen by considering the following 3-tuple:

R = (1, 0, 0) D(R) = (1, 0, 1) $D^{2}(R) = (1, 1, 0)$ $D^{3}(R) = (0, 1, 1)$ $D^{4}(R) = (1, 0, 1) = D(R)$

The tuples D(R), $D^2(R)$, and $D^3(R)$ form what is called a *cycle*.

For any *n*-tuple *S*, we say the game generated by *S* has *length* λ , denoted by L(S), if $D^{\lambda}(S)$ is in a cycle, but $D^{\lambda-1}(S)$ is not. Thus, in the example above, L(R) = 1, while L(D(R)) = 0. For each *n*, the length of games is unbounded. That is, for any λ , there exists an *n*-tuple *S* such that $L(S) > \lambda$. On the other hand, for tuples *S* with $|S| \leq m$, there is a game of maximum length, since there are only a finite number of such tuples. We introduce the following notation:

 $\mathcal{G}_n(m) = \{ S \mid S \text{ is an } n\text{-tuple with } |S| = m \},$ $\mathcal{G}_n(m) = \max\{ L(S) \mid S \in \mathcal{G}_n(m) \}.$

On occasion, when the context is clear, we will drop the subscript. The values of $\mathscr{L}_4(m)$ and $\mathscr{L}_7(m)$, along with tuples giving games of maximum lengths, have been determined in [10] and [6]. We consider this question when n is not a power of 2. We first find an upper bound on $\mathscr{L}_n(m)$. Then we show that this bound is actually realized when $n = 2^{\omega} + 1$.

Before proceeding, a few additional comments are in order. Observe that, for any tuple S, if we multiply all the entries by a constant c and denote the resulting tuple by cS, then

(1) D(cS) = cD(S).

Additionally, if all the nonzero entries of S are equal with $S \in \mathscr{S}(m)$, then S = mE for some $E \in \mathscr{S}(1)$. In particular, an entry e_i in E equals 1 if and only if the corresponding entry in S, s_i , equals m.

Since a game concludes when a cycle is reached, it is important to be able to identify those tuples which occur in a cycle. This author did that in [5]. The following theorem gives the salient facts from that work. We say that an n-tuple S has a predecessor if S = D(R) for some n-tuple R.

Theorem 1: Let n = kr where $k = 2^k$ and r is odd with r > 1. Suppose S is an *n*-tuple. Then

1990]

LENGTH OF THE *n*-NUMBER GAME

(i) S has a predecessor if and only if there exist values $\varepsilon_{\ell} \in \{-1, 1\}$, $\ell = 1, 2, n$, such that

$$\sum_{\ell=1}^{n} \varepsilon_{\ell} S_{\ell} = 0.$$

(ii) S is in a cycle if and only if all its entries are 0 or |S| and

$$\sum_{j=0}^{r-1} e_{i+jk} \equiv 0 \pmod{2}, \text{ for } i = 1, \dots, k,$$

where $S = |S| \cdot E$ with $E = (e_1, e_2, \ldots, e_n) \in \mathcal{G}(1)$.

Part (ii) guarantees that when n is not a power of 2, there are nontrivial cycles; indeed, for n odd, the tuple $\mathbb{E} = (0, \ldots, 0, 1, 1)$ is in a cycle. Moreover, (ii) along with (1) gives

(2) L(cS) = L(S).

2. A Bound on $\mathscr{L}_n(m)$

For $S \in \mathcal{G}_n(m)$, we say that S has μ 0's and m's in a row, denoted by $\mu(S)$, if the following conditions are met: there exists an integer η such that $s_i \in \{0, m\}$ for $i = \eta, \eta + 1, \ldots, \eta + \mu - 1$, at least one of these s_i equals m, and μ is as large as possible. As usual, we reduce subscripts modulo n. Thus, for example,

 $\mu(S) = 6$ when S = (3, 2, 3, 0, 1, 3, 0, 3, 0, 0).

Loosely speaking, a tuple *S* will produce a long game if, at each step, $\mu(D^k(S))$ is as large as possible. In determining an upper bound on $\mathscr{L}_n(m)$, the following lemmas will be useful.

Lemma 1: Let $S \in \mathcal{G}_n(m)$, $\mu(S) = t$, and t < n. If $D(S) \in \mathcal{G}_n(m)$, then $\mu(D(S)) \le t - 1$.

Proof: By hypothesis, for some n, we have

 $\begin{array}{l} s_i \in \{0, \, m\} & \text{for } i = \eta, \, \eta + 1, \, \dots, \, \eta + t - 1, \\ s_i = m & \text{for some } i, \, \eta \leq i \leq \eta + t - 1, \\ 1 \leq s_{\eta-1}, \, s_{\eta+t} \leq m - 1. \end{array}$

As before, let $D(S) = (\hat{s}_1, \ldots, \hat{s}_n)$. Then

 $\hat{s}_i \in \{0, m\}$ for i = n, n + 1, ..., n + t - 2, $1 \le \hat{s}_{n-1}, \hat{s}_{n+t-1} \le m - 1.$

Hence, if |D(S)| = m, then $\mu(D(S)) \leq t - 1$.

At first glance, it might seem in Lemma 1 that, if |D(S)| = m, then $\mu(D(S))$ must equal t - 1. It is possible, however, to have strict inequality. This would occur if $\hat{s}_i = 0$ for $\eta \le i \le \eta + t - 2$, while $\hat{s}_j = m$ for some other j.

Lemma 2: Suppose that $S \in \mathcal{G}_n(m)$ and not all the nonzero entries equal m. Then $|D^{n-1}(S)| \leq m - 1$. Further, if S has a predecessor, then $|D^{n-2}(S)| \leq m - 1$.

Proof: Let $\mu(S) = t$. By hypothesis, $t \le n - 1$, and if S has a predecessor, then by Theorem 1(i), $t \le n - 2$. In either case, Lemma 1 applies. So, if $|D^i(S)| = m$, for $i = 1, \ldots, t - 1$, then $\mu(D^i(S)) \le t - i$. Of course, if $\mu(D^j(S)) = 1$, then $|D^{j+1}(S)| \le m - 1$. Thus, $|D^t(S)| \le m - 1$. \Box

In a moment we will consider those tuples in which all nonzero entries equal *m*. In that case, S = mE for some $E \in \mathcal{S}(1)$. For tuples in $\mathcal{S}_n(1)$, the following is useful. Let $\mathbb{A} = \mathbb{Z}_2[t]/\mathcal{S}$ where $\mathbb{Z}_2[t]$ is the polynomial ring over

[Aug.

 \mathbb{Z}_2 and \mathscr{I} is the principal ideal generated by $t^n + 1$. We associate with $\mathbb{E} = (e_1, \ldots, e_n) \in \mathscr{G}_n(1)$, the polynomial

$$\mathcal{P}_{E}(t) = e_{n} + e_{n-1}t + \cdots + e_{2}t^{n-2} + e_{1}t^{n-1}$$
 in A.

Since $\hat{e}_i = |e_i - e_{i+1}| = e_i + e_{i+1}$ in \mathbb{Z}_2 and $t^n = 1$ in A,

(3)
$$\mathscr{P}_{D(E)}(t) = (e_n + e_1) + (e_{n-1} + e_n)t + \dots + (e_2 + e_3)t^{n-2} + (e_1 + e_2)t^{n-1} = (1 + t)\mathscr{P}_E(t).$$

Lemma 3: Let n = kr, where $k = 2^k$ and r is odd with r > 1. Suppose $S \in \mathcal{S}_n(m)$ and all the nonzero entries equal m. Then $L(S) \leq k$. Further, if S has a predecessor, then $L(S) \leq k - 1$.

Proof: As usual, we let S = mE, where $E = (e_1, \ldots, e_n) \in \mathcal{G}(1)$. For the first part, by (2), we need only show that $D^k(E)$ is in a cycle. Using (3), we find

$$\begin{aligned} \mathcal{P}_{D^{k}(E)}(t) &= (1+t)^{k} \ \mathcal{P}_{E}(t) \\ &= (1+t^{k}) \ \mathcal{P}_{E}(t) \\ &= (1+t^{k}) (e_{n}+e_{n-1}t+\cdots+e_{2}t^{n-2}+e_{1}t^{n-1}) \\ &= \sum_{k=0}^{k-1} (e_{n-k}+e_{k-k})t^{k} + \sum_{k=k}^{n-1} (e_{n-k}+e_{n+k-k})t^{k} \text{ in } \mathbf{A}. \end{aligned}$$

The second equality holds since k is a power of 2 and so all the binomial coefficients in $(1 + t)^k$ except for the first and last are even. From the above, we see that

$$D^{k}(E) = (e_{1} + e_{k+1}, e_{2} + e_{k+2}, \dots, e_{n-k} + e_{n}, e_{n-k+1} + e_{1}, \dots, e_{n} + e_{k}).$$

We now check condition (ii) of Theorem 1. In doing so, we use the fact that n - k = (r - 1)k. For i = 1, we have

 $(e_1 + e_{k+1}) + (e_{k+1} + e_{2k+1}) + \dots + (e_{n-k+1} + e_1) \equiv 0 \pmod{2}.$

Similarly, (ii) holds for all other values of i. Thus, $D^{k}(E)$ is in a cycle and $L(E) \leq k$.

For the second part, it is also sufficient to show that $L(E) \leq k - 1$. Consider the tuple $F = (f_1, f_2, \ldots, f_n) \in \mathcal{G}(1)$ defined by

 $f_1 = 0, f_i = e_1 + e_2 + \dots + e_{i-1} \pmod{2}, i = 2, \dots, n.$

Since S has a predecessor, E does as well; because the entries of E are either 0 or 1, Theorem 1(i) gives

 $e_1 + e_2 + \cdots + e_n \equiv 0 \pmod{2}$.

This means that $f_n = e_n$ and so D(F) = E. Thus, $L(E) = L(D(F)) \le k - 1$. Theorem 2: Let n = kr, where $k = 2^k$ and r is odd with r > 1. Then $\mathcal{L}_n(m) \le (m-1)(n-2) + k$.

Proof: Let *S* ∈ $\mathscr{G}_n(m)$. If all the nonzero entries of *S* are equal, then by Lemma 3, *L*(*S*) ≤ *k* and so the theorem holds. Otherwise, by Lemma 2, $|D^{n-1}(S)| \le m - 1$. Continuing, suppose that, for some $\ell = 1, \ldots, m - 2$, all the nonzero entries of $D^{\ell(n-2)+1}(S)$ are equal. Then, again by Lemma 3, $L(D^{\ell(n-2)+1}(S)) \le k - 1$, which means $L(S) \le \ell(n-2) + k$. On the other hand, if the latter condition does not hold, then, by Lemma 2, $|D^{(m-1)(n-2)+1}(S)| \le 1$. Another application of Lemma 3 gives the desires result. □

If there is a tuple $S \in \mathcal{P}_n(m)$ with L(S) = (m-1)(n-2) + k, then the proof of Theorem 2 tells us what the tuples in the game must look like.

1990]

261

Corollary 1: Let n = kr, where $k = 2^{k}$ and r is odd with r > 1. If

$$\mathscr{L}_{n}(m) = (m - 1)(n - 2) + k,$$

then there exists $S \in \mathscr{G}_n(m)$ such that

- (i) $|D^{\ell(n-2)+1}(S)| = m \ell$ and $\mu(D^{\ell(n-2)+1}(S)) = n 2$ for $\ell = 0, \ldots, m - 1$,
- (ii) $L(D^{(m-1)(n-2)+1}(S)) = k 1.$

Proof: This follows immediately from the proof of Theorem 2. \Box

In a moment we will state a condition for the existence of a game of maximum length in terms of the *n*-tuple (0, ..., 0, 1, 1). Before proceeding, two comments are in order. First, if the entries of an *n*-tuple are rearranged so that adjacent elements remain adjacent, then similar games result. Or, more precisely, if $S = (s_1, s_2, ..., s_n)$ and σ_1 is a permutation contained in the dihedral group \mathcal{D}_n , then

(4)
$$\mathcal{D}(\sigma_1(S)) = \sigma_2(\mathcal{D}(S))$$
 for some $\sigma_2 \in \mathscr{D}_n$.

Second, it is convenient to associate with $S = (s_1, s_2, \ldots, s_n)$ an *n*-tuple $\mathcal{M}(S) \in \mathcal{S}(1)$ which is related to the parity of the entries of S. We define $\mathcal{M}(S) = (m_1, m_2, \ldots, m_n)$ in the obvious way with $m_i \equiv s_i \pmod{2}$. Observe that

(5)
$$\mathcal{M}(D(S)) = D(\mathcal{M}(S)).$$

Theorem 3: Let n = kr, where $k = 2^{\kappa}$ and r is odd with r > 1. Suppose for $m \ge 4$, $\mathscr{L}_n(m) = (m-1)(n-2) + k$. Then, for some $\sigma \in \mathscr{D}_n$,

 $D^{2(n-2)}(\mathbb{E}) = \sigma(\mathbb{E}), \text{ where } \mathbb{E} = (0, \ldots, 0, 1, 1).$

Proof: By hypothesis, there exists an *n*-tuple S with |S| = m and

L(S) = (m - 1)(n - 2) + k.

Let $T = D^{(m-4)(n-2)+1}(S)$. Corollary 1 implies that

 $|T| = |D^{(m-4)(n-2)+1}(S)| = 4, \ \mu(T) = n - 2, \ \text{and} \ |D^{(n-2)}(T)| = 3.$

Since $\mu(T) = n - 2$, T has exactly two adjacent entries with values in $\{1,2,3\}$. One of these must equal either 1 or 3; for, if not, then $|D^{(n-2)}(T)| \leq 2$. Moreover, since T has a predecessor, Theorem 1(i) guarantees that both are in $\{1,3\}$. This shows that

$$\mathcal{M}(T) = \sigma_1(\mathbb{E})$$
 for some $\sigma_1 \in \mathcal{D}_n$.

Similarly,

 $\mathscr{M}(\mathbb{D}^{2(n-2)}(\mathbb{T})) = \sigma_2(\mathbb{E}) \text{ for } \sigma_2 \in \mathscr{D}_n.$

Hence,

 $\sigma_{2}(\mathbf{E}) = \mathcal{M}(D^{2(n-2)}(T))$ $= D^{2(n-2)}(\mathcal{M}(T))$ $= D^{2(n-2)}(\sigma_{1}(\mathbf{E}))$ $= \sigma_{3}(D^{2(n-2)}(\mathbf{E}))$

The second equality follows from (5); the last, from (4). Thus, for $\sigma = \sigma_3^{-1}\sigma_2 \in \mathcal{D}_n$, $D^{2(n-2)}(\mathbf{E}) = \sigma(\mathbf{E})$.

Theorem 3 is the heart of the matter. Whether or not there exists an *n*-tuple which has the maximum possible length depends in large part on \mathbb{E} . Since $\mathbb{E} \in \mathscr{S}(1)$, Theorem 3 can be recast in terms of polynomials in A. Using (3), we see that, in order to have an *n*-tuple of maximum length,

262

[Aug.

$$(1+t)^{2(n-2)} \mathscr{P}_{\mathbb{F}}(t) = \mathscr{P}_{\sigma(\mathbb{F})}(t).$$

Since $\mathscr{P}_{\mathbb{E}}(t) = 1 + t$, $\mathscr{P}_{\sigma(\mathbb{E})}(t) = t^{j} + t^{j+1}$ for some j, where, if necessary, the exponent j + 1 is reduced modulo n. Thus, we have

Corollary 2: Let n = kr, where $k = 2^{\kappa}$ and r is odd with r > 1. Suppose that, for $m \ge 4$, $\mathcal{L}_n(m) = (m-1)(n-2) + k$. Then, for some j,

(6)
$$(1+t)^{2n-3} = t^j(1+t)$$

in A. 🗌

Theorem 4: Let n be an integer such that $n \neq 2^{\omega}$ and $n \neq 2^{\omega} + 1$ for any ω . Then, for $m \ge 4$, $\mathcal{L}_n(m) < (m-1)(n-2) + k$.

Proof: First, suppose *n* is even. By Theorem 1(ii), $\mathbf{E} = (0, \ldots, 0, 1, 1)$ is not in a cycle. Thus, $D^i(\mathbf{E}) \neq \mathbf{E}$ for any *i*. Now, if $D^{2(n-2)}(\mathbf{E}) = \sigma(\mathbf{E})$ for some $\sigma \in \mathcal{Q}_n$, then $D^{2(n-2)p}(\mathbf{E}) = \mathbf{E}$ where *p* is the order of σ in \mathcal{Q}_n . Consequently, the conclusion of Theorem 3 cannot hold.

For *n* odd, we will expand $(1 + t)^{2n-3}$ denoting the l^{th} binomial coefficient by c_l .

$$(1+t)^{2n-3} = \sum_{\ell=0}^{2n-3} c_{\ell} t^{\ell} = \sum_{\ell=0}^{n-3} (c_{\ell} + c_{\ell+n}) t^{\ell} + (c_{n-2}t^{n-2} + c_{n-1}t^{n-1})$$
$$= \sum_{\ell=0}^{n-3} (c_{\ell} + c_{n-3-\ell}) t^{\ell} + (c_{n-2}t^{n-2} + c_{n-2}t^{n-1})$$
$$= \sum_{\ell=0}^{\frac{n-5}{2}} (c_{\ell} + c_{n-3-\ell}) (t^{\ell} + t^{n-3-\ell})$$
$$+ 2c_{n-3}t^{\frac{n-3}{2}} + c_{n-2}(t^{n-2} + t^{n-1}).$$

The second equality follows by using $t^n = 1$; the third, from $c_{\ell} = c_{2n-3-\ell}$. Now when $2n - 3 = 2^v - 1$ for some v, all the binomial coefficients are odd, so that we have

 $(1 + t)^{2n-3} = t^{n-2}(1 + t).$

Thus, (6) holds for $n = 2^{w} + 1$, where w = v - 1. On the other hand, when $2n - 3 \neq 2^{v} - 1$ for any v, then c_{n-2} is even. So, if t^{k} is present in the expansion of $(1 + t)^{2n-3}$, then so also is t^{n-3-k} . Hence, (6) cannot hold. \Box

3. The Case
$$n = 2^{w} + 1$$

We now consider the case in which $n = 2^{\omega} + 1$. Corollary 2 and Theorem 4 imply that a game of maximum length is possible. We show that this actually occurs. Before examining the general case, we consider the special case n = 3. Lemma 4: Let n = 3 and define $T_m = (m - 1, 1, m)$. Then, for $m \ge 2$, $D(T_m) = \sigma(T_{m-1})$ for some $\sigma \in \mathcal{D}_3$.

Proof: The result is immediate since $D(T_m) = (m - 2, m - 1, 1)$. Lemma 5: Suppose $n = 2^{\omega} + 1$, $\omega \ge 2$. Let $T_m = (0, 0, \ldots, 0, m - 1, 1, m)$. Then, for $m \ge 2$,

$$D^{n-4}(T_m) = (0, m-1, t_3, t_4, \dots, t_{n-1}, m)$$

$$D^{n-3}(T_m) = (m-1, 1, \dots, 1, m)$$

$$D^{n-2}(T_m) = (m-2, 0, \dots, 0, m-1, 1)$$

where the entries in $D^{n-4}(T_m)$ have the property that $|t_i - t_{i+1}| = 1$ for i = 2, ..., n - 1.

1990]

Proof: The proof proceeds by induction on w. Suppose that w = 2 so that n = 5. Then $T_m = (0, 0, m - 1, 1, m)$ and it is easily seen that $D(T_m) = (0, m - 1, m - 2, m - 1, m)$.

Suppose that the Lemma 5 holds for w - 1; more specifically, suppose that

$$D^{\ell-4}(T_m) = (0, m-1, r_3, r_4, r_{\ell-1}, m), \text{ and }$$

$$D^{k-4}(T_{m-1}) = (0, m-2, s_3, s_4, \dots, s_{k-1}, m-1),$$

where $\ell = 2^{\omega-1} + 1$, $|r_i - r_{i+1}| = 1$, and $|s_i - s_{i+1}| = 1$ for $i = 2, \ldots, \ell - 1$. Consider the $(2^{\omega} + 1)$ -tuple T_m . We can view T_m as a $2^{\omega-1}$ zero-tuple concatenated with a $2^{\omega-1} + 1$ " T_m -type-tuple." Thus, when we compute $D^k(T_m)$ for k less than $2^{\omega-1} - 2$, we have the same pattern we have for the $2^{\omega-1} + 1$ case. Thus, we have

ĸ	D(1)
$\frac{2^{w-1}}{2^{w-1}} - 3$	$(0, 0, \ldots, 0, 0, 0, m - 1, r_3, r_4, \ldots, r_{\ell-1}, m)$
$2^{\omega-1} - 2$	$(0, 0, \ldots, 0, 0, m - 1, 1, 1, 1, \ldots, 1, m)$
$2^{\omega-1} - 1$	$(0, 0, \ldots, 0, m-1, m-2, 0, 0, \ldots, 0, m-1, m)$
$2^{\omega - 1}$	$(0, 0, \ldots, m - 1, 1, m - 2, 0, \ldots, 0, m - 1, 1, m)$
•	
2 ^w - 3	$(0, m - 1, s_{\ell-1}, \ldots, s_3, m - 2, m - 1, r_3, r_4, \ldots, n_{\ell-1}, m_{\ell-1}, m_{\ell-1}, m_{\ell-1}, m_{\ell-1}, m_{\ell-1})$

Note that for $k = 2^{\omega-1}$, $D^k(T_m)$ may be viewed as the $2^{\omega-1} + 1$ " T_{m-1} -type" tuple, (0,..., 0, m - 1, 1, m - 2), concatenated with the $2^{\omega-1}$ tuple, (0,..., 0, m - 1, 1, m). The latter is like the $2^{\omega-1} + 1$ " T_m -type" tuple, except that it is missing the leading zero. By induction, the second through $(n - 1)^{\text{st}}$ entries in $D^k(T_m)$, $k = 2^{\omega} - 3 = n - 4$, differ from the next one by 1. Thus, $D^{n-4}(T_m)$ has the proper form. The conclusion for $D^{n-3}(T_m)$ and $D^{n-2}(T_m)$ follows immediately. \Box

Theorem 5: Suppose $n = 2^{\omega} + 1$ for $\omega \ge 1$. Define $R_m = (0, 0, ..., 0, m - 1, m)$ for $m \ge 1$. Then $L(R_m) = (m - 1)(n - 2) + 1$.

Proof: Note that $D(R_m) = T_m = (0, ..., 0, m - 1, 1, m)$. Now, by Lemmas 4 and 5, $D^{n-2}(T_m) = \sigma(T_{m-1})$ for some $\sigma \in \mathscr{D}_n$ and $m \ge 2$. Further, T_1 is contained in a cycle, but no other T_m is. Thus, we have $L(R_m) = (m - 1)(n - 2) + 1$.

4. Remaining Questions

For *n* not a power of 2 and $n \neq 2^{\omega} + 1$, how large is $\mathscr{L}_n(m)$? What tuple produces the longest game? Only for n = 7 are the answers to these questions known [6].

Because Theorem 3 cannot hold for even n, it is tempting to try to prove a related version using $\mathbb{E} = (0, \ldots, 0, 1, 0, \ldots, 0, 1)$, where the l's occur in the $(n - k)^{\text{th}}$ and n^{th} places. All efforts to date have failed. What relation, if any, does $\mathscr{L}_{2n}(m)$ have to $\mathscr{L}_n(m)$? The following is a limited answer to that question.

Theorem 6: $2\mathscr{L}_n(m) \leq \mathscr{L}_{2n}(m)$.

Proof: Let $S \in \mathscr{G}_n(m)$ with $L(S) = \mathscr{L}_n(m)$. Then the tuple $S \wedge 0$, where

 $S \wedge 0 = (0, s_1, 0, s_2, 0, s_3, \dots, 0, s_n)$

is in $\mathscr{G}_{2n}(m)$. By Theorem 1(ii), $D(S \wedge 0)$ is in a cycle if and only if S is. Further, $D^2(S \wedge 0) = D(S) \wedge 0$. Thus, $L(S \wedge 0) = 2L(S)$.

Unfortunately, from the few cases studied, it appears that the above inequality is a strict one.

[Aug.

The *n*-number game has been studied extensively; indeed, many key results keep reappearing in the literature and being reproved. An extensive bibliography appears in [7]. In the interest of completeness, additional references which either do not appear in that article or were published after 1982 are listed below.

References

- K. D. Boklan. "The n-Number Game." Fibonacci Quarterly 22 (1984):152-55.
 J. W. Creely. "The Length of a Two-Number Game." Fibonacci Quarterly 25 (1987):174-79.
- 3. J. W. Creely. "The Length of a Three-Number Game." Fibonacci Quarterly 26 (1988):141-43.
- 4. A. Ehrlich. "Columns of Differences." Math Teaching (1977):42-45.
- 5. A. L. Ludington. "Cycles of Differences of Integers." J. Number Theory 13 (1981):155-61.
- 6. A. L. Ludington. "The Length of the 7-Number Game." Fibonacci Quarterly 26 (1988):195-204.
- 7. L. Meyers. "Ducci's Four-Number Problem: A Short Bibliography." Crux Math. 8 (1982):262-66.
- 8. S. P. Mohanty. "On Cyclic Difference of Pairs of Integers." Math. Stud. 49 (1981):96-102.
- 9. W. Webb. "A Mathematical Curiosity." Math Notes from Wash. State Univ. 20 (1980).
- 10. W. Webb. "The Length of the Four-Number Game." Fibonacci Quarterly 20 (1982):33-35.
