LENGTH OF THE n-NUMBER GAME

Anne Ludington-Young

Loyola College, Baltimore, MD 21210
(August 1988)
The n-number game is defined as follows. Let $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be an n-tuple of nonnegative integers. A new n-tuple $D(S)=\left(\hat{s}_{1}, \hat{s}_{2}, \ldots, \hat{s}_{n}\right)$ is obtained by taking numerical differences; that is, $\hat{s}_{i}=\left|s_{i}-s_{i+1}\right|$. Subscripts are reduced modulo n so that $\hat{s}_{n}=\left|s_{n}-s_{1}\right|$. The sequence $S, D(S)$, $D^{2}(S), \ldots$ is called the n-number game generated by S. To see that a game contains only a finite number of distinct tuples let $|S|=\max \left\{s_{i}\right\}$ and observe that $|S| \geq|D(S)|$. Since there are only a finite number of n-tuples with entries less than or equal to $|S|$, eventually repetition must take place. When $n=2^{w}$, it is well known that every game terminates with ($0,0, \ldots, 0$). That this is not the case for other values of n is easily seen by considering the following 3-tuple:

$$
\begin{aligned}
R & =(1,0,0) \\
D(R) & =(1,0,1) \\
D^{2}(R) & =(1,1,0) \\
D^{3}(R) & =(0,1,1) \\
D^{4}(R) & =(1,0,1)=D(R)
\end{aligned}
$$

The tuples $D(R), D^{2}(R)$, and $D^{3}(R)$ form what is called a cycle.
For any n-tuple S, we say the game generated by S has length λ, denoted by $L(S)$, if $D^{\lambda}(S)$ is in a cycle, but $D^{\lambda-1}(S)$ is not. Thus, in the example above, $L(R)=1$, while $L(D(R))=0$. For each n, the length of games is unbounded. That is, for any λ, there exists an n-tuple S such that $L(S)>\lambda$. On the other hand, for tuples S with $|S| \leq m$, there is a game of maximum length, since there are only a finite number of such tuples. We introduce the following notation:

$$
\begin{aligned}
& \mathscr{S}_{n}(m)=\{S \mid S \text { is an } n \text {-tuple with }|S|=m\}, \\
& \mathscr{L}_{n}(m)=\max \left\{L(S) \mid S \in \mathscr{S}_{n}(m)\right\} .
\end{aligned}
$$

On occasion, when the context is clear, we will drop the subscript. The values of $\mathscr{L}_{4}(\mathrm{~m})$ and $\mathscr{L}_{7}(\mathrm{~m})$, along with tuples giving games of maximum lengths, have been determined in [10] and [6]. We consider this question when n is not a power of 2. We first find an upper bound on $\mathscr{L}_{n}(m)$. Then we show that this bound is actually realized when $n=2^{\omega}+1$.

Before proceeding, a few additional comments are in order. Observe that, for any tuple S, if we multiply all the entries by a constant c and denote the resulting tuple by $c S$, then
(1) $\quad D(c S)=c D(S)$.

Additionally, if all the nonzero entries of S are equal with $S \in \mathscr{F}(m)$, then $S=m E$ for some $E \in \mathscr{F}(1)$. In particular, an entry e_{i} in E equals 1 if and only if the corresponding entry in S, s_{i}, equals m.

Since a game concludes when a cycle is reached, it is important to be able to identify those tuples which occur in a cycle. This author did that in [5]. The following theorem gives the salient facts from that work. We say that an n-tuple S has a predecessor if $S=D(R)$ for some n-tuple R.
Theorem 1: Let $n=k r$ where $k=2^{k}$ and r is odd with $r>1$. Suppose S is an n-tuple. Then
S has a predecessor if and only if there exist values $\varepsilon_{\ell} \in\{-1,1\}$, $\ell=1,2, n$, such that

$$
\sum_{\ell=1}^{n} \varepsilon_{l} s_{l}=0
$$

$$
\begin{equation*}
S \text { is in a cycle if and only if all its entries are } 0 \text { or }|S| \text { and } \tag{ii}
\end{equation*}
$$

$$
\sum_{j=0}^{r-1} e_{i+j k} \equiv 0(\bmod 2), \text { for } i=1, \ldots, k
$$

where $S=|S| \cdot E$ with $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathscr{S}(1)$.
Part (ii) guarantees that when n is not a power of 2 , there are nontrivial cycles; indeed, for n odd, the tuple $\mathbb{E}=(0, \ldots, 0,1,1)$ is in a cycle. Moreover, (ii) along with (1) gives
(2) $L(c S)=L(S)$.

2. A Bound on $\mathscr{L}_{n}(m)$

For $S \in \mathscr{S}_{n}(m)$, we say that S has $\mu 0^{\prime} s$ and $m^{\prime} s$ in a row, denoted by $\mu(S)$, if the following conditions are met: there exists an integer η such that $s_{i} \in$ $\{0, m\}$ for $i=\eta, \eta+1, \ldots, \eta+\mu-1$, at least one of these s_{i} equals m, and μ is as large as possible. As usual, we reduce subscripts modulo n. Thus, for example,

$$
\mu(S)=6 \text { when } S=(3,2,3,0,1,3,0,3,0,0)
$$

Loosely speaking, a tuple S will produce a long game if, at each step, $\mu\left(D^{k}(S)\right)$ is as large as possible. In determining an upper bound on $\mathscr{L}_{n}(m)$, the following lemmas will be useful.
Lemma 1: Let $S \in \mathscr{S}_{n}(m), \mu(S)=t$, and $t<n$. If $D(S) \in \mathscr{C}_{n}(m)$, then $\mu(D(S)) \leq$ $t-1$.

Proof: By hypothesis, for some n, we have

$$
\begin{array}{ll}
s_{i} \in\{0, m\} & \text { for } i=n, \eta+1, \ldots, \eta+t-1 \\
s_{i}=m & \text { for some } i, \eta \leq i \leq \eta+t-1 \\
1 \leq s_{n-1}, & s_{\eta+t} \leq m-1
\end{array}
$$

As before, let $D(S)=\left(\hat{s}_{1}, \ldots, \hat{s}_{n}\right)$. Then

$$
\begin{aligned}
& \hat{s}_{i} \in\{0, m\} \text { for } i=\eta, \eta+1, \ldots, \eta+t-2, \\
& 1 \leq \hat{s}_{\eta-1}, \hat{s}_{\eta+t-1} \leq m-1 . \\
& \text { Hence, if }|D(S)|=m \text {, then } \mu(D(S)) \leq t-1 .
\end{aligned}
$$

At first glance, it might seem in Lemma 1 that, if $|D(S)|=m$, then $\mu(D(S))$ must equal $t-1$. It is possible, however, to have strict inequality. This would occur if $\hat{s}_{i}=0$ for $\eta \leq i \leq \eta+t-2$, while $\hat{s}_{j}=m$ for some other j.
Lemma 2: Suppose that $S \in \mathscr{S}_{n}(m)$ and not all the nonzero entries equal m. Then $\left|D^{n-1}(S)\right| \leq m-1$. Further, if S has a predecessor, then $\left|D^{n-2}(S)\right| \leq m-1$.
Proof: Let $\mu(S)=t$. By hypothesis, $t \leq n-1$, and if S has a predecessor, then by Theorem 1 (i), $t \leq n-2$. In either case, Lemma 1 applies. So, if $\left|D^{i}(S)\right|=m$, for $i=1, \ldots, t-1$, then $\mu\left(D^{i}(S)\right) \leq t-i$. of course, if $\mu\left(D^{j}(S)\right)=1$, then $\left|D^{j+1}(S)\right| \leq m-1$. Thus, $\left|D^{t}(S)\right| \leq m-1$.

In a moment we will consider those tuples in which all nonzero entries equal m. In that case, $S=m E$ for some $E \in \mathscr{S}(1)$. For tuples in $\mathscr{S}_{n}(1)$, the following is useful. Let $\mathbb{A}=\mathbb{Z}_{2}[t] / \mathscr{I}$ where $\mathbb{Z}_{2}[t]$ is the polynomial ring over
\mathbb{Z}_{2} and \mathscr{I} is the principal ideal generated by $t^{n}+1$. We associate with $E=$ $\left(e_{1}, \ldots, e_{n}\right) \in \mathscr{S}_{n}(1)$, the polynomial

$$
\mathscr{P}_{E}(t)=e_{n}+e_{n-1} t+\cdots+e_{2} t^{n-2}+e_{1} t^{n-1} \text { in } \mathbb{A}
$$

Since $\hat{e}_{i}=\left|e_{i}-e_{i+1}\right|=e_{i}+e_{i+1}$ in \mathbb{Z}_{2} and $t^{n}=1$ in \mathbb{A},

$$
\begin{align*}
\mathscr{P}_{D(E)}(t) & =\left(e_{n}+e_{1}\right)+\left(e_{n-1}+e_{n}\right) t+\cdots+\left(e_{2}+e_{3}\right) t^{n-2}+\left(e_{1}+e_{2}\right) t^{n-1} \tag{3}\\
& =(1+t) \mathscr{P}_{E}(t)
\end{align*}
$$

Lemma 3: Let $n=k r$, where $k=2^{k}$ and r is odd with $r>1$. Suppose $S \in \mathscr{S}_{n}(m)$ and all the nonzero entries equal m. Then $L(S) \leq k$. Further, if S has a predecessor, then $L(S) \leq k-1$.
Proof: As usual, we let $S=m E$, where $E=\left(e_{1}, \ldots, e_{n}\right) \in \mathscr{P}(1)$. For the first part, by (2), we need only show that $D^{k}(E)$ is in a cycle. Using (3), we find

$$
\begin{aligned}
\mathscr{P}_{D^{k}(E)}(t) & =(1+t)^{k} \mathscr{P}_{E}(t) \\
& =\left(1+t^{k}\right) \mathscr{P}_{E}(t) \\
& =\left(1+t^{k}\right)\left(e_{n}+e_{n-1} t+\cdots+e_{2} t^{n-2}+e_{1} t^{n-1}\right) \\
& =\sum_{\ell=0}^{k-1}\left(e_{n-\ell}+e_{k-\ell}\right) t^{\ell}+\sum_{\ell=k}^{n-1}\left(e_{n-\ell}+e_{n+k-\ell}\right) t^{\ell} \text { in } \mathbb{A} .
\end{aligned}
$$

The second equality holds since k is a power of 2 and so all the binomial coefficients in $(1+t)^{k}$ except for the first and last are even. From the above, we see that

$$
D^{k}(E)=\left(e_{1}+e_{k+1}, e_{2}+e_{k+2}, \ldots, e_{n-k}+e_{n}, e_{n-k+1}+e_{1}, \ldots, e_{n}+e_{k}\right) .
$$

We now check condition (ii) of Theorem 1 . In doing so, we use the fact that $n-k=(r-1) k$. For $i=1$, we have

$$
\left(e_{1}+e_{k+1}\right)+\left(e_{k+1}+e_{2 k+1}\right)+\cdots+\left(e_{n-k+1}+e_{1}\right) \equiv 0(\bmod 2)
$$

Similarly, (ii) holds for all other values of i. Thus, $D^{k}(E)$ is in a cycle and $L(E) \leq k$.

For the second part, it is also sufficient to show that $L(E) \leq k-1$. Consider the tuple $F=\left(f_{1}, f_{2}, \ldots, f_{n}\right) \in \mathscr{F}(1)$ defined by

$$
f_{1}=0, f_{i}=e_{1}+e_{2}+\cdots+e_{i-1}(\bmod 2), i=2, \ldots, n
$$

Since S has a predecessor, E does as well; because the entries of E are either 0 or 1 , Theorem $1(i)$ gives

$$
e_{1}+e_{2}+\cdots+e_{n} \equiv 0(\bmod 2)
$$

This means that $f_{n}=e_{n}$ and so $D(F)=E$. Thus, $L(E)=L(D(F)) \leq k-1 . \square$
Theorem 2: Let $n=k r$, where $k=2^{k}$ and r is odd with $r>1$. Then $\mathscr{L}_{n}(m) \leq$ $(m-1)(n-2)+k$.
Proof: Let $S \in \mathscr{S}_{n}(m)$. If all the nonzero entries of S are equal, then by Lemma $3, L(S) \leq k$ and so the theorem holds. Otherwise, by Lemma $2,\left|D^{n-1}(S)\right| \leq m-1$. Continuing, suppose that, for some $\ell=1, \ldots, m-2$, all the nonzero entries of $D^{\ell(n-2)+1}(S)$ are equal. Then, again by Lemma 3 , $L\left(D^{\ell(n-2)+1}(S)\right) \leq k-1$, which means $L(S) \leq \ell(n-2)+k$. On the other hand, if the latter condition does not hold, then, by Lemma 2, $\left|D^{(m-1)(n-2)+1}(S)\right| \leq 1$. Another application of Lemma 3 gives the desires result.

If there is a tuple $S \in \mathscr{S}_{n}(m)$ with $L(S)=(m-1)(n-2)+k$, then the proof of Theorem 2 tells us what the tuples in the game must look like.

Corollary 1: Let $n=k r$, where $k=2^{k}$ and r is odd with $r>1$. If

$$
\mathscr{L}_{n}(m)=(m-1)(n-2)+k
$$

then there exists $S \in \mathscr{S}_{n}(m)$ such that
(i) $\left|D^{\ell(n-2)+1}(S)\right|=m-\ell$ and $\mu\left(D^{\ell(n-2)+1}(S)\right)=n-2$ for $\ell=0, \ldots, m-1$,
(ii) $L\left(D^{(m-1)(n-2)+1}(S)\right)=k-1$.

Proof: This follows immediately from the proof of Theorem 2.
In a moment we will state a condition for the existence of a game of maximum length in terms of the n-tuple ($0, \ldots, 0,1,1$). Before proceeding, two comments are in order. First, if the entries of an n-tuple are rearranged so that adjacent elements remain adjacent, then similar games result. Or, more precisely, if $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and σ_{1} is a permutation contained in the dihedral group \mathscr{D}_{n}, then
(4) $\quad D\left(\sigma_{1}(S)\right)=\sigma_{2}(D(S))$ for some $\sigma_{2} \in \mathscr{D}_{n}$.

Second, it is convenient to associate with $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ an n-tuple $\mathscr{M}(S) \in \mathscr{S}(1)$ which is related to the parity of the entries of S. We define $\mathscr{M}(S)=\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ in the obvious way with $m_{i} \equiv s_{i}(\bmod 2)$. Observe that
(5)

$$
\mathscr{M}(D(S))=D(\mathscr{M}(S))
$$

Theorem 3: Let $n=k r$, where $k=2^{k}$ and r is odd with $r>1$. Suppose for $m \geq 4, \mathscr{L}_{n}(m)=(m-1)(n-2)+k$. Then, for some $\sigma \in \mathscr{D}_{n}$, $D^{2(n-2)}(\mathbb{E})=\sigma(\mathbb{E})$, where $\mathbb{E}=(0, \ldots, 0,1,1)$.
Proof: By hypothesis, there exists an n-tuple S with $|S|=m$ and

$$
L(S)=(m-1)(n-2)+k
$$

Let $T=D^{(m-4)(n-2)+1}(S)$. Corollary 1 implies that
$|T|=\left|D^{(m-4)(n-2)+1}(S)\right|=4, \mu(T)=n-2$, and $\left|D^{(n-2)}(T)\right|=3$.
Since $\mu(T)=n-2, T$ has exactly two adjacent entries with values in $\{1,2,3\}$. One of these must equal either 1 or 3 ; for, if not, then $\left|D^{(n-2)}(T)\right| \leq 2$. Moreover, since T has a predecessor, Theorem $1(i)$ guarantees that both are in $\{1,3\}$. This shows that

$$
\mathscr{M}(T)=\sigma_{1}(\mathbb{E}) \text { for some } \sigma_{1} \in \mathscr{D}_{n} .
$$

Similarly,

$$
\mathscr{M}\left(D^{2(n-2)}(T)\right)=\sigma_{2}(\mathbb{E}) \text { for } \sigma_{2} \in \mathscr{D}_{n} .
$$

Hence,

$$
\begin{aligned}
\sigma_{2}(\mathbb{E}) & =\mathscr{M}\left(D^{2(n-2)}(T)\right) \\
& =D^{2(n-2)}(\mathscr{M}(T)) \\
& =D^{2(n-2)}\left(\sigma_{1}(\mathbb{E})\right) \\
& =\sigma_{3}\left(D^{2(n-2)}(\mathbb{E})\right)
\end{aligned}
$$

The second equality follows from (5); the last, from (4). Thus, for $\sigma=\sigma_{3}^{-1} \sigma_{2} \in$ $\mathscr{D}_{n}, D^{2(n-2)}(\mathbb{E})=\sigma(\mathbb{E}) . \quad \square$

Theorem 3 is the heart of the matter. Whether or not there exists an $n-$ tuple which has the maximum possible length depends in large part on \mathbb{E}. Since $\mathbb{E} \in \mathscr{S}(1)$, Theorem 3 can be recast in terms of polynomials in \mathbb{A}. Using (3), we see that, in order to have an n-tuple of maximum length,

$$
(1+t)^{2(n-2)} \mathscr{P}_{\mathbb{E}}(t)=\mathscr{P}_{\sigma(\mathbb{E})}(t)
$$

Since $\mathscr{P}_{\mathbb{E}}(t)=1+t, \mathscr{P}_{\sigma(\mathbb{E})}(t)=t^{j}+t^{j+1}$ for some j, where, if necessary, the exponent $j+1$ is reduced modulo n. Thus, we have
Corollary 2: Let $n=k r$, where $k=2^{k}$ and r is odd with $r>1$. Suppose that, for $m \geq 4, \mathscr{L}_{n}(m)=(m-1)(n-2)+k$. Then, for some j,
(6) $\quad(1+t)^{2 n-3}=t^{j}(1+t)$
in \mathbb{A}.
Theorem 4: Let n be an integer such that $n \neq 2^{w}$ and $n \neq 2^{w}+1$ for any w. Then, for $m \geq 4, \mathscr{L}_{n}(m)<(m-1)(n-2)+k$.
Proof: First, suppose n is even. By Theorem 1 (ii), $\mathbb{E}=(0, \ldots, 0,1,1)$ is not in a cycle. Thus, $D^{i}(\mathbb{E}) \neq \mathbb{E}$ for any i. Now, if $D^{2(n-2)}(\mathbb{E})=\sigma(\mathbb{E})$ for some $\sigma \in \mathscr{D}_{n}$, then $D^{2(n-2) p}(\mathbb{E})=\mathbb{E}$ where p is the order of σ in \mathscr{D}_{n}. Consequently, the conclusion of Theorem 3 cannot hold.

For n odd, we will expand $(1+t)^{2 n-3}$ denoting the $l^{\text {th }}$ binomial coefficient by c_{ℓ}.

$$
\begin{aligned}
(1+t)^{2 n-3} & =\sum_{\ell=0}^{2 n-3} c_{\ell} t^{\ell}=\sum_{\ell=0}^{n-3}\left(c_{\ell}+c_{\ell+n}\right) t^{\ell}+\left(c_{n-2} t^{n-2}+c_{n-1} t^{n-1}\right) \\
& =\sum_{\ell=0}^{n-3}\left(c_{\ell}+c_{n-3-\ell}\right) t^{\ell}+\left(c_{n-2} t^{n-2}+c_{n-2} t^{n-1}\right) \\
& =\sum_{l=0}^{\frac{n-5}{2}}\left(c_{\ell}+c_{n-3-\ell}\right)\left(t^{\ell}+t^{n-3-\ell}\right) \\
& +2 c_{\frac{n-3}{}} t^{\frac{n-3}{2}}+c_{n-2}\left(t^{n-2}+t^{n-1}\right)
\end{aligned}
$$

The second equality follows by using $t^{n}=1$; the third, from $c_{\ell}=c_{2 n-3-\ell}$. Now when $2 n-3=2^{v}-1$ for some v, all the binomial coefficients are odd, so that we have

$$
(1+t)^{2 n-3}=t^{n-2}(1+t)
$$

Thus, (6) holds for $n=2^{w}+1$, where $w=v-1$. On the other hand, when $2 n-3 \neq 2^{v}-1$ for any v, then c_{n-2} is even. So, if t^{ℓ} is present in the expansion of $(1+t)^{2 n-3}$, then so also is t^{n-3-l}. Hence, (6) cannot hold.

3. The Case $n=2^{w}+1$

We now consider the case in which $n=2^{w}+1$. Corollary 2 and Theorem 4 imply that a game of maximum length is possible. We show that this actually occurs. Before examining the general case, we consider the special case $n=3$.
Lemma 4: Let $n=3$ and define $T_{m}=(m-1,1, m)$. Then, for $m \geq 2, D\left(T_{m}\right)=$ $\sigma\left(T_{m-1}\right)$ for some $\sigma \in \mathscr{D}_{3}$.
Proof: The result is immediate since $D\left(T_{m}\right)=(m-2, m-1,1) . \square$
Lemma 5: Suppose $n=2^{w}+1, w \geq 2$. Let $T_{m}=(0,0, \ldots, 0, m-1,1, m)$. Then, for $m \geq 2$,

$$
\begin{aligned}
& D^{n-4}\left(T_{m}\right)=\left(0, m-1, t_{3}, t_{4}, \ldots, t_{n-1}, m\right) \\
& D^{n-3}\left(T_{m}\right)=(m-1,1, \ldots, 1, m) \\
& D^{n-2}\left(T_{m}\right)=(m-2,0, \ldots, 0, m-1,1)
\end{aligned}
$$

where the entries in $D^{n-4}\left(T_{m}\right)$ have the property that $\left|t_{i}-t_{i+1}\right|=1$ for $i=2$, ..., n - 1 .

Proof: The proof proceeds by induction on w. Suppose that $w=2$ so that $n=5$. Then $T_{m}=(0,0, m-1,1, m)$ and it is easily seen that $D\left(T_{m}\right)=(0, m-1$, $m-2, m-1, m)$.

Suppose that the Lemma 5 holds for $w-1$; more specifically, suppose that

$$
\begin{aligned}
& D^{\ell-4}\left(\bar{T}_{m}\right)=\left(0, m-1, r_{3}, r_{4}, r_{\ell-1}, m\right), \text { and } \\
& D^{\ell-4}\left(\bar{T}_{m-1}\right)=\left(0, m-2, s_{3}, s_{4}, \ldots, s_{\ell-1}, m-1\right),
\end{aligned}
$$

where $\ell=2^{\omega-1}+1,\left|r_{i}-r_{i+1}\right|=1$, and $\left|s_{i}-s_{i+1}\right|=1$ for $i=2, \ldots, \ell-1$. Consider the $\left(2^{\omega}+1\right)$-tuple T_{m}. We can view T_{m} as a $2^{\omega-1}$ zero-tuple concatenated with a $2^{\omega-1}+1$ " T_{m}-type-tuple." Thus, when we compute $D^{k}\left(\mathbb{T}_{m}\right)$ for k less than $2^{\omega-1}-2$, we have the same pattern we have for the $2^{\omega-1}+1$ case. Thus, we have

$D(T)$ $2^{w-1}-3$	$\left(0,0, \ldots, 0,0,0, m-1, r_{3}, r_{4}, \ldots, r_{l-1}, m\right)$
$2^{w-1}-2$	$(0,0, \ldots, 0,0, m-1,1,1,1, \ldots, 1, m)$
$2^{w-1}-1$	$(0,0, \ldots, 0, m-1, m-2,0,0, \ldots, 0, m-1, m)$
2^{w-1}	$(0,0, \ldots, m-1,1, m-2,0, \ldots, 0, m-1,1, m)$
\vdots	$\left(0, m-1, s_{l-1}, \ldots, s_{3}, m-2, m-1, r_{3}, r_{4}, \ldots\right.$,
2^{w-3}	

Note that for $k=2^{w-1}, D^{k}\left(T_{m}\right)$ may be viewed as the $2^{w-1}+1$ " T_{m-1}-type" tuple, $(0, \ldots, 0, m-1,1, m-2)$, concatenated with the 2^{w-1} tuple, $(0, \ldots, 0, m-1$, $1, m)$. The latter is like the $2^{w-1}+1$ " T_{m}-type" tuple, except that it is missing the leading zero. By induction, the second through ($n-1)^{\text {st }}$ entries in $D^{k}\left(T_{m}\right), k=2^{w}-3=n-4$, differ from the next one by 1. Thus, $D^{n-4}\left(T_{m}\right)$ has the proper form. The conclusion for $D^{n-3}\left(T_{m}\right)$ and $D^{n-2}\left(T_{m}\right)$ follows immediately.
Theorem 5: Suppose $n=2^{w}+1$ for $w \geq 1$. Define $R_{m}=(0,0, \ldots, 0, m-1, m)$ for $m \geq 1$. Then $L\left(R_{m}\right)=(m-1)(n-2)+1$.
Proof: Note that $D\left(R_{m}\right)=T_{m}=(0, \ldots, 0, m-1,1, m)$. Now, by Lemmas 4 and 5, $D^{n-2}\left(T_{m}\right)=\sigma\left(T_{m-1}\right)$ for some $\sigma \in \mathscr{D}_{n}$ and $m \geq 2$. Further, T_{1} is contained in a cycle, but no other T_{m} is. Thus, we have $L\left(R_{m}\right)=(m-1)(n-2)+1$.

4. Remaining Questions

For n not a power of 2 and $n \neq 2^{w}+1$, how large is $\mathscr{L}_{n}(m)$? What tuple produces the longest game? Only for $n=7$ are the answers to these questions known [6].

Because Theorem 3 cannot hold for even n, it is tempting to try to prove a related version using $\mathbb{E}=(0, \ldots, 0,1,0, \ldots, 0,1)$, where the 1 's occur in the $(n-k)^{\text {th }}$ and $n^{\text {th }}$ places. All efforts to date have failed. What relation, if any, does $\mathscr{L}_{2 n}(m)$ have to $\mathscr{L}_{n}(m)$? The following is a limited answer to that question.
Theorem 6: $2 \mathscr{L}_{n}(m) \leq \mathscr{L}_{2 n}(m)$.
Proof: Let $S \in \mathscr{S}_{n}(m)$ with $L(S)=\mathscr{L}_{n}(m)$. Then the tuple $S \wedge 0$, where

$$
S \wedge 0=\left(0, s_{1}, 0, s_{2}, 0, s_{3}, \ldots, 0, s_{n}\right)
$$

is in $\mathscr{S}_{2 n}(m)$. By Theorem $1(\mathrm{ii}), D(S \wedge 0)$ is in a cycle if and only if S is. Further, $D^{2}(S \wedge 0)=D(S) \wedge 0$. Thus, $L(S \wedge 0)=2 L(S)$.

Unfortunately, from the few cases studied, it appears that the above inequality is a strict one.

The n-number game has been studied extensively; indeed, many key results keep reappearing in the literature and being reproved. An extensive bibliography appears in [7]. In the interest of completeness, additional references which either do not appear in that article or were published after 1982 are listed below.

References

1. K. D. Boklan. "The n-Number Game." Fibonacci Quarterly 22 (1984):152-55.
2. J. W. Creely. "The Length of a Two-Number Game." Fibonacci Quarterly 25 (1987):174-79.
3. J. W. Creely. "The Length of a Three-Number Game." Fibonacci Quarterly 26 (1988):141-43.
4. A. Ehrlich. "Columns of Differences." Math Teaching (1977):42-45.
5. A. L. Ludington. "Cycles of Differences of Integers." J. Number Theory 13 (1981):155-61.
6. A. L. Ludington. "The Length of the 7-Number Game." Fibonacci Quarterly 26 (1988) : 195-204.
7. L. Meyers. "Ducci's Four-Number Problem: A Short Bibliography." Crux Math. 8 (1982): 262-66.
8. S. P. Mohanty. "On Cyclic Difference of Pairs of Integers." Math. Stud. 49 (1981): 96-102.
9. W. Webb. "A Mathematical Curiosity." Math Notes from Wash. State Univ. 20 (1980).
10. W. Webb. "The Length of the Four-Number Game." Fibonacci Quarterly 20 (1982) : 33-35.
