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The n-number game is defined as follows. Let S = (sl5 s2» •••» sn) be an 
n-tuple of nonnegative integers. A new n-tuple D(S) = (sls s2' •••» sn) is 
obtained by taking numerical differences; that is, s^ = \si - s^ + i| • Sub-
scripts are reduced modulo n so that sn = \sn - sx| . The sequence 5, D(S) , 
D2(S), . .. is called the n-number game generated by S. To see that a game 
contains only a finite number of distinct tuples let \s\ = maxls^} and observe 
that \S\ > \D(S) |. Since there are only a finite number of rz-tuples with 
entries less than or equal to l^, eventually repetition must take place. When 
n = 2W, it is well known that every game terminates with (0, 0, . .., 0). That 
this is not the case for other values of n is easily seen by considering the 
following 3-tuple: 

R = (1, 0, 0) 
D(R) = (1, 0, 1) 

D2(R) = (1, 1, 0) 
D3(R) = (0, 1, 1) 
Dh(R) = (l, 0, 1) = D(R) 

The tuples D(R), D2(R), and D3(R) form what is called a cycle. 
For any n-tuple S9 we say the game generated by S has length \ , denoted by 

L(S) , if DX(S) is in a cycle, but Dx~l(S) is not. Thus, in the example above, 
L(R) = 1, while L(D(R)) = 0. For each n, the length of games is unbounded. 
That is, for any X, there exists an n-tuple S such that L(S) > A. On the other 
hand, for tuples S with \S\ < m, there is a game of maximum length, since there 
are only a finite number of such tuples. We introduce the following notation: 

5̂ n(777) = {^l^ is an n-tuple with |5| = w}5 

l£n{m) = max{L(S)\S € ^n{m)}. 

On occasion, when the context is clear, we will drop the subscript. The values 
of J/.\(m) and J/'7(m), along with tuples giving games of maximum lengths, have 
been determined in [10] and [6]. We consider this question when n is not a 
power of 2. We first find an upper bound on Jf'n(m). Then we show that this 
bound is actually realized when n = 2W + 1. 

Before proceeding, a few additional comments are in order. Observe that, 
for any tuple S, if we multiply all the entries by a constant c and denote the 
resulting tuple by cS9 then 

(1) D(cS) = cD(S). 
Additionally, if all the nonzero entries of S are equal with S E 9\m) , then 
S = mE for some E e $/'(!) . In particular, an entry ei in E equals 1 if and only 
if the corresponding entry in 5, s^ , equals m. 

Since a game concludes when a cycle is reached, it is important to be able 
to identify those tuples which occur in a cycle. This author did that in [5]. 
The following theorem gives the salient facts from that work. We say that an 
w-tuple S has a predecessor if S = D(R) for some n-tuple R. 

Theorem 1: Let n = kr where k = 2k and r is odd with r > 1. Suppose S is an 
n-tuple. Then 
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( i ) S has a predecessor if and only if there exis t values ez e {-1, 1) , 
£ = 1, 2, n, such that 

n 

E££S£ = 0-
£ = 1 

(ii) S is in a cycle if and only if all its entries are 0 or \s\ and 

J2ei+jk E ° ( m o d 2 ) j f o r £ = ! » • • • > & » 
j = 0 

where 5 = \s\ * E with tf = (£l5 ez, . . . , en) e 9(X) . 
Part (ii) guarantees that when n is not a power of 2, there are nontrivial 

cycles; indeed, for n odd, the tuple E = (0, ..., 0, 1, 1) is in a cycle. More-
over, (ii) along with (1) gives 

(2) L(aS) = L(5). 

2. A Bound on.^n(m) 

For 5 6 SPn{jri), we say that £ /zas y 0 's and w's in a r^u, denoted by y(£)5 

if the following conditions are met: there exists an integer n such that s^ e 
{0, m} for i = n, n + 1, . .., n + y - 1, at least one of these s^ equals m, and 
y is as large as possible. As usual, we reduce subscripts modulo n. Thus, for 
example, 

\i(S) = 6 when S = (3, 2, 3, 0, 1, 3, 0, 3, 0, 0). 

Loosely speaking, a tuple S will produce a long game if, at each step, \i(D*(S)) 
is as large as possible. In determining an upper bound on J£n(m), the follow-
ing lemmas will be useful. 

Lemma 1: Let S e </n(m), y(£) = t, and t < n. If £(£) e 5^(m), then u(£(S)) < 
t - 1. 
Proof: By hypothesis, for some n, we have 

s^ e {0, w} for i = n, n + 1, ..., n + t - 1, 
Si - m for some i , r)<i<r\ + t - l s 
1 < ST]-l, S n + t < 777 - 1 . 

As before, let D(S) = (Sx, ..., sn). Then 

s^ € {0, 777} for i = \], n + 1, ..., n + £ - 2, 
1 < S T ] - l , 5 n + t-l < ̂  " I-

Hence, if |Z?(5)| = m, then \x(D(S)) < t - 1. D 

At first glance, it might seem in Lemma 1 that, if \D(S) | = 777, then y(Ẑ (6')) 
must equal t - 1. It is possible, however, to have strict inequality. This 
would occur if s^ = 0 for n ^ ^ ^ n + £ - 2 , while Sj = m for some other j. 
Lemma 2: Suppose that S € ^n{m) and not all the nonzero entries equal m. Then 
\Dn~l{S)\ < m - 1. Further, if S has a predecessor, then \Dn~2(S)\ < m - 1. 

Proof: Let y(5) = t . By hypothesis, t < n - 1, and if S has a predecessor, 
then by Theorem l(i), t < n - 2. In either case, Lemma 1 applies. So, if 
\DZ(S)\ = 777, for t = 1, . .., £ - 1, then y(Ẑ i(5')) < £ - « £ . Of course, if 
y(£J(£)) = 1, then |^ + 1(5)| < m - 1. Thus, |^t(5) | < m - 1. Q 

In a moment we will consider those tuples in which all nonzero entries 
equal m. In that case, S = mE for some E e^(l). For tuples in ^ ( 1 ) , the 
following is useful. Let A = Z2[t]A/ where Z2[£] is the polynomial ring over 

260 [Aug. 



LENGTH OF THE n-NUMBER GAME 

Z2 and i is the principal ideal generated by tn + 1. We associate with # = 
(e1? . .., en) e j/n(l), the polynomial 

0>E(t) = en + en.lt + ... + e1tn-1 + e^71'1 in A. 

Since ei = |ei - ei + i\ = e^ + ei + i in Z2 and tn = 1 in A, 

(3) ^HE)(t) = {&n + &l)+ {en~l + e^)t + ° " + (̂ 2 + e3)tn~2+ (eY + e2)tn~l 

= (1 + t ) ^ ( t ) . 

Lemma 3: Let n = fa?, where -fe = 2k and r is odd with p > 1. Suppose S e ^n(rn) 
and all the nonzero entries equal 777. Then L(S) < k. Further, if S has a pre-
decessor, then L(S) < k - 1. 

Proof: As usual, we let S = mE, where E = O l 5 . . . , <2n) € ^(1) . For the first 
part, by (2), we need only show that Dk(E) is in a cycle. Using (3), we find 

%HE)W = a + t)k &E(t) 
= ( i + tk) 0>E(t) 

= (1 + ik)(ew + en_]_t + ... + e2tn-2 + e^71"1) 
k -̂1 n - 1 

= Z (en-£ + Z\-l)tl + J] (gn-£ + Zn+k-^t1 i n A" 
£ = 0 £ = k 

The second equality holds since k is a power of 2 and so all the binomial coef-
ficients in (1 + t)k except for the first and last are even. From the above, 
we see that 

Dk(E) = (ei + ek + l , e2 + ek + 2, ..., 'en-k + en, e„_k + 1+-e1, ..., en + ek). 
We now check condition (ii) of Theorem 1. In doing so, we use the fact that 
n - k = (r - l)k. For i = 1, we have 

(el + ek+l) + (ek+l + e2k + i) + ••• + (en.k+i + eY) = 0 (mod 2). 

Similarly, (ii) holds for all other values of i. Thus, Dk(E) is in a cycle and 
L(E) < k. 

For the second part, it is also sufficient to show that L(E) < k - 1. Con-
sider the tuple F = (fi, f2, ..., /n) e 5̂ (1) defined by 

fl = °> A = el + e2 + •'• + ei-\ (mod 2), i = 2, ..., n. • 
Since S has a predecessor, # does as well; because the entries of E are either 
0 or 1, Theorem l(i) gives 

el + e2 + ••• + en = 0 (mod 2). 

This means that fn = en and so £(F) = E. Thus, L(£) = L(D(F)) < k - 1. D 

Theorem 2: Let n = fcr, where k = 2k and r is odd with p > 1. Then &n(m) < 
(m - l)(n - 2) + Zc. 
Proof: Let 5 e ^n{jn) . If all the nonzero entries of 5 are equal, then by Lemma 
3, L(S) < k and so the theorem holds. Otherwise, by Lemma 2, \Dn~l(S) | < 777 - 1. 
Continuing, suppose that, for some £ = l,...,777-2, all the nonzero entries of 
Di(n-2) + l(S) a r e equal. Then, again by Lemma 3, L ( ^ ^ n _ 2 ) +1 (S)) < k - 1, which 
means L(5) < £(n - 2) + fc. On the other hand, if the latter condition does not 
hold, then, by Lemma 2, \D^m~ 1)(n~2) + 1 (S) \ < 1. Another application of Lemma 3 
gives the desires result. D 

If there is a tuple S e ^n(m) with L(S) = (m - l)(n - 2) + k, then the proof 
of Theorem 2 tells us what the tuples in the game must look like. 
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Corollary 1: Let n = kv * where k = 2K and r i s odd wi th r > 1. I f 

££nW) = (m - l ) ( n - 2) + fc, 
then there exists S E S^n(m) such that 

(i) \D^n-2) + l(S)\ = m - I and u(Z?£(n-2)+1(5)) = n - 2 
for £ = 0 , ..., m - 1, 

(ii) L(Z^(m-1)(n-2)+1(5)) = fc - 1. 

Proof: This follows immediately from the proof of Theorem 2. D 

In a moment we will state a condition for the existence of a game of maxi-
mum length in terms of the n-tuple (0, . .., 0, 1, 1). Before proceeding, two 
comments are in order. First, if the entries of an n-tuple are rearranged so 
that adjacent elements remain adjacent, then similar games result. Or. more 
precisely, if S = (si , s2 , ..., sn) and o^ is a permutation contained in the 
dihedral group 9n, then 

(4) V(ol(S)) = o2(D(S)) for some a2 € 9n. 

Second, it is convenient to associate with S= (s^, s2, •••» sn) a n ^-tuple 
^(S) E y(l) which is related to the parity of the entries of 5'. We define 
<JZ(S) = (mi, iri23 ...5 mn) in the obvious way with mi E s^ (mod 2). Observe 
that 

(5) ^(D(S)) = D(J[{S)). 

Theorem 3: Let n = kr, where k = 2K and r is odd with r > 1. Suppose for 
77? > 4, ^(TT?) = (m - l)(n - 2) + fc. Then, for some a e ^ n , 

D2(n~2)(E) = a(E), where E = (0, . . . , 0, 1, 1) . 

Proof: By hypothesis, there exists an n-tuple 5 with \S\ = m and 

L(5) = (m - l)(n - 2) + fc. 
Let S7 = 2?(w-̂ )(w-2)+l(5)- Corollary 1 implies that 

|̂ | = |^-4)(n-2) + l(5)| = 4j u ( T ) = n - 2, and I^K""2^) | = 3. 

Since u (T) = n - 2, T has exactly two adjacent entries with values in {1,2,3}. 
One of these must equal either 1 or 3; for, if not, then \D^n~2\T) | < 2. More-
over, since T has a predecessor, Theorem l(i) guarantees that both are in 
{1,3}. This shows that 

Jf(T) = ax(E) for some ol E 9n . 

Similarly, 

^(DHn~2\T)) = a2(E) for a2 e 9n . 

Hence, 
a2(E) = ^(D2(n~2\T)) 

= ^ - ^ ( a ^ E ) ) 
= a3(Z)2(n-2)(E)) 

The second equality follows from (5); the last, from (4). Thus, for o= o^ o^E 
9n9 D2^n-2\-E) = a(E). D 

Theorem 3 is the heart of the matter. Whether or not there exists an n-
tuple which has the maximum possible length depends in large part on E. Since 
E e y ( l ) , Theorem 3 can be recast in terms of polynomials in A. Using (3), we 
see that, in order to have an n-tuple of maximum length, 
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(1 + *)*<*-*> ̂ E(t) = ^a ( E )(t). 

Since ^(t) = 1 + £, ̂ a(E)(^) = ^J + ^' + 1 f o r s o m e J> where, if necessary, the 
exponent j + 1 is reduced modulo n. Thus, we have 

Corollary 2: Let n = for5, where k = 2K and r is odd with v > 1. Suppose that, 
for /?? > 4, if„(m) = (777 - 1) (n - 2) + L Then, for some j, 

(6) (1 + t)2n~3 = tJ'(l + t) 

in A. D 

Theorem 4: Let n be an integer such that n * 2W and n * 2W + 1 for any w. Then, 
for m > 4, &n(m) < (m - 1) (w - 2) + /c. 

Proof: First, suppose n is even. By Theorem l(ii), E = (0, . .., 0, 1, 1) is 
not in a cycle. Thus, ^(E) * E for any i . Now, if £2(n-2)(E) = a(E) for some 
a e £?n, then £2(n_2)P(E) = E where p is the order of a in @n. Consequently, the 
conclusion of Theorem 3 cannot hold. 

For n odd, we will expand (1 + t ) 2 n ~ 3 denoting the Ith binomial coefficient 
by c r 

£ = 0 £ = 0 

1= 0 
. ft- 5 

1= 0 n-3 
+ 2cn_3t 2 + cn_2(in~2 + tn~l). ___ 

The second equality follows by using tn = 1; the third, from c£ = C2T-2-3-£- N o w 

when 2n - 3 = 2V - 1 for some v, all the binomial coefficients are odd, so that 
we have 

(1 + t ) 2 n ~ 3 = tn"2(l + t). 

Thus, (6) holds for n = 2W + 1, where u = i? - 1. On the other hand, when 
2n - 3 * 1° - 1 for any y, then cn_2 is even. So, if t l is present in the 
expansion of (1 + i ) 2 n ~ 3 , then so also is tn~3~l. Hence, (6) cannot hold. Q 

3. The Case n = 2 W + 1 

We now consider the case in which n = 2W + 1. Corollary 2 and Theorem 4 
imply that a game of maximum length is possible. We show that this actually 
occurs. Before examining the general case, we consider the special case n = 3. 

Lemma 4: Let n = .3 and define Tm = (m - 1, 1, m) . Then, for 77? > 2, £(Tm) = 
aC^.i) for some a e ®3. 

Proof: The result is immediate since £(Tm) = (777 - 2, 777 - 1, 1) . D 

Lemma 5: Suppose n = 2W + 1, w > 2. Let ^ = (0, 0, . . . , 0, 777 - 1, 1, 777). 
Then, for 777 > 2, 

Dn~h{Tm) = ( 0 , 777 - 1 , t 3 , £ 4 , . . . , t n _ l 3 7??) 
Dn-3(Tm) = (777 - 1 , 1 , . . . , 1 , 777) 
^ n _ 2 ( ^ ) = (777 - 2 , 0 , . . . , 0 , 777 - 1 , 1 ) 

where the entries in Dn~^ (Tm) have the property that \ti - £•£ + ]_ | = 1 for i = 2, 
. . . , n - 1. 
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Proof: The proof proceeds by induction on w. Suppose that w = 2 so that n = 5. 
Then Tm = (0, 0, m - 1, 1, m) and it is easily seen that D(Tm) = (0, m - 1, 
m - 2, m - 1, m). 

Suppose that the Lemma 5 holds for w - 1; more specifically, suppose that 

Dl~h(Tm) = (0, 777 - 1, P3, P4, r£-i, 77?), and 

^^^(^-i) = (0, 777 - 2, S3, Si+, ..., S£_X, 77? - 1), 

where £ = 2w~l + 1, |P^ - P̂  + il = 1» and \s{_ - s^ + i\ = 1 for i = 2, . . . , £ - 1 . 
Consider the (2W + l)-tuple Tm. We can view Tm as a 2w~l zero-tuple concatena-
ted with a 2w~l + 1 '%-type-tuple." Thus, when we compute Dk(Tm) for k less 
than 2 -1 - 2, we have the same pattern we have for the 2w~l + 1 case. Thus, 
we have 

k D (T ) 
2^-1 _ 
2W~* -
2W~^ -
n t f - 1 

2 ^ - 3 

3 
2 
1 

(0 , 0, . . . 
(0 , 0, . . . 
(0 , 0, . . . 
(0 , 0, . . . 

( 0 , 7 7 7 - 1 , 

, 0 , 0 , 0 , 77? - 1 , P 3 , Tk, . . . , P £ _ l , 77?) 
, 0 , 0 , 77? - 1 , 1 , 1 , 1 , . . . , 1 , m) 
, 0 , 7 ? ? - 1 , m - 2 , 0 , 0 , . . . , 0 , 7 ? ? - 1 , 7??) 
, 7 7 7 - 1 , 1 , 77? - 2 , 0 , . . . , 0 , 77? - 1 , 1 , 77?) 

_ 1 ? . . . , S 3 , 77? - 2 , 777 - 1 , P 3 , P ^ , . . - , 
P £ _ X , 77?) . 

Note that for k = 2w~l, Dk(Tm) may be viewed as the 2W~1 + 1 "^.^-type" tuple, 
(0, . . . , 0, 777 - 1, 1, 77? - 2) , concatenated with the 2w~l tuple, (0, . . . , 0, m - 1, 
1, 77?). The latter is like the 2w~l + 1 "T^-type" tuple, except that it is 
missing the leading zero. By induction, the second through {n - l)st entries 
in Dk(Tm), k = 2 w - 3 ~ n - l \ , differ from the next one by 1. Thus, Dn~h{Tm) 
has the proper form. The conclusion for Dn~^(Tm) and Dn~2(Tm) follows 
immediately. D 

Theorem 5: Suppose n = 2W + 1 for w > 1. Define Rm = (0, 0, ..., 0, 77? - 1, 77?) 
for 777 > 1. Then L(Rm) = (m - 1) (n - 2) + 1. 

Proof: Note that D(Rm) = Tm = (0, ..., 0, 777 - 1, 1, 77?). Now, by Lemmas 4 and 5, 
Dn~2(Tm) = o(Tm_l) for some oe @n and 77? > 2. Further, Tl is contained in a 
cycle, but no other Tm is. Thus, we have L(Rm) = (77? - 1) (n - 2) + 1. 

4. Remaining Questions 

For n not a power of 2 and n * 2W + 1, how large is 0̂ (77?)? What tuple pro-
duces the longest game? Only for n - 1 are the answers to these questions 
known [6]. 

Because Theorem 3 cannot hold for even n9 it is tempting to try to prove a 
related version using E = (0, ..., 0, 1, 0, ..., 0, 1), where the l's occur in 
the (n - k)th and nth places. All efforts to date have failed. What relation, 
if any, does ^in^ n a v e t o ^n(ri) ? The following is a limited answer to that 
question. 

Theorem 6: 2^n{m) < ^2n(m) . 
Proof: Let S e S?n{m) wi th L(S) = &n(m) . Then the t u p l e S A 0, where 

S A 0 = (0 , si, 0, sz, 0, s 3 , . . . , 0, sn) 

is in yZn(m) . By Theorem l(ii), D(S A 0) is in a cycle if and only if S is. 
Further, P 2 ^ A 0) = D(S) A 0. Thus, L(S A 0) = 2L(5). D 

Unfortunately, from the few cases studied, it appears that the above in-
equality is a strict one. 
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The n-number game has been studied extensively; indeed, many key results 
keep reappearing in the literature and being reproved. An extensive bibliog-
raphy appears in [7]. In the interest of completeness, additional references 
which either do not appear in that article or were published after 1982 are 
listed below. 
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