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1. Introduction 

In order to determine the sequence v - ([ma] 9 m = 1, 2, 3, . . .) , for irra-
tional a (where [x] denotes the largest integer not exceeding x), Bernoulli [1] 
considered the sequence of differences cZi , d^* ^3» • ••> where 

( 1 ) dm = Km + l ) a ] - [/77a], 777 = 1 , 2 , 3 , . . . . 

Clearly then, 
7 7 7 - 1 

[ma] = Yl &i + Ca]> m = 3, 4, 5, ... . 
i= l 

Thus, knowing the first two terms of v , one can then determine the entire se-
quence from (1). For example, with a = v2, we have the following. 

m 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

dm 

1 
2 
1 
2 
1 
1 
2 
1 
2 
1 

[ma] 
1 
2 
4 
5 
7 
8 
9 
11 
12 
14 

It may be shown that dm may only equal [a] or [a] + 1 (that is, 0 or 1 when 
0 < a < 1) . If we replace [a] by s (small) and [a] + 1 by 1 (large), then we 
obtain a string of such characters. This we will refer to as the characteris-
tic of a. For example, the characteristic of a = /2 is sslslsslsl... . 

String operations may be used to generate the characteristic from its first 
few terms, by utilizing the continued fraction expansion of a. Bernoulli was 
the first to guess the rules which were the basis of these string operations. 
These were reformulated in a more attractive form by Christoffel [2]. However, 
it had to wait until Markoff [9] before the first proofs were offered. In 
Section 4 we show how the characteristic is generated. 

In this paper we demonstrate a rather intriguing connection between the 
characteristic of a and the sequence of arcs or gaps formed by the partition of 
the circle by the successive placement of points by the angle a revolutions. 
The connection is not immediately obvious and does not hold for all values of 
a. We use results from the Three Gap Theorem, a result first conjectured by 
Steinhaus (see [6, 10, 11, 13-15, 18, 19]) which states that N points placed on 
the circle as above partition it into gaps of either three or two different 
lengths. 

Consider such a circle when N is equal to the denominator of a convergent 
[see (2)] to a. Only in this case is the circle partitioned into gaps of 
exactly two different lengths. We can label these gaps as large or small, 
assigning I or s where appropriate and thus we have a string of gap types, 
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ordered clockwise about the circle, with the first element describing the gap 
adjacent to the origin. 

We show that when N is the denominator of a total convergent [see (3)] this 
string, after a trivial permutation, forms the first few terms of the charac-
teristic, but only for special values of a (for example, those numbers with 
identical terms in their continued fraction expansion). One such value is the 
golden number, a = T = ( /5~ - l)/2. The golden number's characteristic has 
interesting properties (see [16]) and we give it a special name—the Golden 
Sequence. 

In order to state Christoffel's rule for generating the characteristic, we 
introduce in Section 2 some aspects from the theory of continued fractions. 
The Three Gap Theorem is later described in more detail in Section 3 before we 
prove our main result (in Section 4,2). 

2. Continued Fractions 

Write to - a and express (for n = 0, 1, 2, . . . ) , 

an
 = [t nJ , 

- 1 

tn+l = Ttni9 

where {x} = x - [x] is the fractional part of x. Thus, we can generate the 
simple continued fraction expansion of a, namely, 

1 
a = ag + 9 

CLi + 
1 

a2 + 

a3 + ... 

= {a0; a\, a25 a3, . . .}. 

The partial convergents to a are defined as 
V -• 

(2) —Zlj-— = {a0; a\, a2, . ..» an-l> t}, i = 1, 2, ..., an - 1, 
$n, i 

while 
V T) 

(3) —'—— = — = {̂ o? al5 a Z' ...J CLn-\, an}, 
defines the total convergents. 

For example, the continued fraction of x is given by 
T = {0; 1 + T} = {0; 1, 1 + T} = {0; 1, 1, 1, ...}. 

All convergents to T are total convergents and 

Pn = qn-l = Fn = Fn-l + Fn~2> * * ^ F~l = l> F0 = 0. 
We quote some results from the theory of continued fractions (see Khint-

chine [7]); 

(4) - - ^-j- , p_2 - q_Y - 0, q_2 - p_x - 1, 

<6> In" ~ Pn = t V + V ' 
Un + \Pn ^ Pn + l 

< 7) ^n,ikn-laW + Rn-lhn.M = 1' 

<8> Pn,i kn-lal + Pn-lkn.M = a> 
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(9) min II gall = | |a„a| |5 

(1 - {qna}, n odd, 

(10) |k„a« = I 
\{qna}, n even, 

where \\qa\\ = \qa - p|, p = [qa + 1/2]. That is, ||ga|| is equal to the absolute 
difference between qa and its nearest integer. Note that p = [q a + 1/2]. 

Also, if a = {0; a, a, ...} = (/a2 + 4 - a)/2, then 

( 1 1 ) p = (1/cQ* - (-«)" 
U i ; P^ a + 1/a ^ - 1 * 

3. The Three Gap Theorem 

The reader is referred to van Ravenstein [18] for an account of the Three 
Gap Theorem as well as the proofs of many of the results used in this section. 
Alternatively, the reader may see van Ravenstein [19] where the theorem is also 
discussed with special reference to the golden number. 

3.1 Order of Points 

Consider N points placed in succession on a circle at an angle of a . We 
are interested in determining the order of the points as they appear in clock-
wise order on the circle. This is equivalent to ordering ({na} = no. mod 1, 
n = 0, 1, 2, . .., N - 1) into an ascending sequence. (y mod x = y -x[y/x] = 
x{y/x}.) Let ({UJOL}) , j =: 1, 2, ..., 71/ be that ordered sequence. That is, 

{ui, u2, • •, uN} = {0, 1, ..., N - 1}, 

where {UJOL} < {UJ+ i<y.}. It is shown in Slater [11] and Sos [14] (or see [18], 
Th. 2.2) that the elements UA are obtained by the following relation, 

!

u2, 0 < Uj < N - u2> 

u2 - uN, N - u2 ^ Uj < uN, 

-uN, uN < Uj < N, 

for j = 1, 2, ..., N, w1 = uN + l = 0. Points Uj and u-+l delimit the j t h gap, 
which is of length {(u-+1 - Uj)a}. 

Here, we will only be concerned with the case where the circle is parti-
tioned into gaps of just two different lengths. This occurs when N = u2 + % 
or, equivalently, when N is the denominator of a convergent to a. 

It may be shown (from [18], Lemma 2.1) that, for N = u2 + u^ = qUii (i> = 15 
2, ..., an, n > 2), 

(13) Uj = ((-l)n-1(j - Dqn-i) mod qn>i, j = I, 2, ..., qn}i. 
For any other value of N, the circle is composed of gaps of three different 
lengths. 

3.2 The String of Gap Types 

Now let us consider the more dynamic situation—we will describe the change 
in gap structure induced by the addition of extra points. In particular, we 
are interested in the transition from a circle of qn_i gaps to one of qn gaps. 
Notation is needed. 

Suppose the circle is partitioned into gaps of only two different lengths, 
say large and small. We label a large gap 1 and a small gap s. Let 

®n = 4>n, l*n,2 • • * $n,qn 

denote the string of gap types when N = qn , ordered clockwise from the origin 
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n odd, 

n even, 
Pn(s) = 

(sa-~ 

\lsa-

-ll, 

-1 
3 

n odd, 

n even 

around the circle so_ that <j>n,j denotes the gap type (either s or I) of the j t h 

gap formed by points UA and u-+l- Assume that $Q = s. 
For any string S and nonnegative integer t , denote by £* the concatenation 

of 5 with itself t times, where 5°  is the empty string. For any strings Si, S^* 
we write SiS^ for the concatenation of S\ followed by S%. 

Define Pn such that 

(sa«l9 

{lsan, 
The following theorem shows that Pn is the production rule which describes 

the manner in which the string of gap types develops as more points are in-
cluded on the circle. The result may, after a little effort, be derived from 
(12). We omit the proof, and refer the reader to Theorem 4.1 in [18]. 

Theorem 1: 

$n =P w($ n_!) = Pn^n-l,l)Pn^n-l,z) ••• P„ (<f>„-if qn_,) • • 

Example: For the golden number, x = (/5 - l)/2, 

(si, n odd, 
Pn(l) =1 P„(8) = Z. 

{is, n even, 
Hence, 

^2 
3̂ 

= I, 
= Zs, 
= sll, 

i+ = lists, 
s = slsllsll. 

We now introduce the following two results which we will need to prove our 
main result in Section 4.2. Proposition 2 demonstrates a simple property of 
the production rule Pn , while Proposition 3 shows that a component of the 
string $n is symmetric. 

Let 0 = 0]_02-.. 6fc denote a string of k letters, where 0^ = s or Z-, i = 1, 
2, ..., /c. For any string S, let 5* denote the string S in reverse order. We 
write P„(6)* and P„(6fe)* for (Pn(0))* and (Pw(0fc))*, respectively. 

Proposition 2: P n(0)* = Pn_i(0*). 

Proof; Pn(0)* = (Pn(e1)P„(62) ... Pn(0fe))*5 

= P#z(8k)*Pw(6k_1)* ... Pn(6i)*, 
Pn_i(ek)Pn_1(ek_1) ... P.z-iOi), 

= p^.iO^efc.i ... ex), 
= P„-I(0*), 

where we have used the fact that Pn(s)* = Pn_i(s) and Pn(l)* = Pn-i(l) . D 

Let 5 n = ^ , 2 ^ , 3 • • • *«, qn-l-
Proposition 3: B* = Bn (n > 1 ) . 
Proof: For n = 1, the result is trivial since from Theorem 1, $]_ = sai I. Now 
consider the case n > 2. It is necessary to show that 

4>n,j = $n,qn-j+l> 0 = 2> 3 , . . . , qn - 1 . 
From (13), with i = an (since N = qn), 

(14) wj = ((-l)"-1^' - D ^ - i ) mod ^n, j = 1, 2, ..., <7n. 
Thus, 
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uqn-j+z = ( ( - i ) n l(qn - U - ! ) ) ^ - i ) m o d 3V> 
= ( ( - D " ( J ~ D ^ n - i ) mod cyn ( j = 2, 3 , . . . , qn). 

H e n c e , 
W J + uq,-J + 2 = qn ( j = 2 , 3 , . . . , ? „ ) . 

T h u s , 
H7 + 1 " MJ = <1n ~ Uqn~J + l - (<ln " uqn-J+2) («/ = 2 > 3 , . . . , <?„ - 1 ) , 

= uqr,-o+2 ~ uqn-j + l > 
from which the result follows. Q 

4. The C h a r a c t e r i s t i c of a 

4 . 1 Genera l a 

The following method of constructing the characteristic is described in 
Venkov ([20], pp. 65-68). Markoff first showed that the characteristic of a is 
equal to 3132^3 - -•? where 

B„ = 6^li1en_2B„_1, 60 = s , Bl = s"!"^. 

We mention that if a is rational, say a = {aQ; a\9 a2, • • • •> aN}9 then 3]_32 
... 3/v-i (3/i/)°°  is the characteristic where N is even (so that the number of 
terms is odd). If N is odd, the number of terms can be made odd, as . ..a#_.]_, 
aN} can be replaced by ...aN-i, aN - 1, 1}, if aN > 1. If a# = 1 (and a * 1), 
then ...%_£, % _ ] _ , a#} can be replaced by ...a/v_2, %-i + IK 

Let a = {0; 1, 2, 3} = {0; 1, 2, 2, 1} = 7/10. Then 

3o = s, 
3i = Z, 
32 = 3i303i = 1st, 
33 = 323i32 = Islllsl, 
3̂  = 3233 = Isllslllsl. 

The characteristic is then given by 3i 3233 (3̂ )°°, that is, 

llsllslllsl(Isllslllsl)™. 

Fraenkel et al. ([4], Theorem 1) offer an alternative method of construc-
tion: they show that the characteristic is equal to lim &n, where 

(16) 6„ - C-lK-2> &0 - s . 6 ! - s^'H. 
They actually form the characteristic by means of "shift operators." It may be 
shown, however, that the recurrence relation (16) is an equivalent means of 
formulating the characteristic, in terms of the actual operations required. 

Note that if a = {a^i a\9 a2, ..., aN}, then 6^ is the characteristic (if N 
is even). 

Example: As in the above example, consider a = 7/10. Then 

60 = s, 
61 = I, 
62 = lis, 
63 = llsllsl, 
6̂  = llsllsllls. 

Thus, 6£ is the characteristic. 

The method of Fraenkel et al. [4] generalizes the work done by Stolarsky 
([12], Theorem 2), who shows how to generate the characteristic for the parti-
cular case where a = {1; a, a, ...}, the positive root of x2-+ (a - 2)x - a = 0. 
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In this paper, we present a new proof of Theorem 1 in [4] and Theorem 2 in 
[12] for the case a = {0, a, a, . . . } , the positive root of x2 + ax - 1 = 0 by 
exhibiting a connection between the characteristic of a and its string of gap 
types (see Theorems 5 and 8 below). 

4.2 The Characteristic of a - {0; a, a, ...} 

From now on, unless otherwise stated, assume that a = {0; a, a, ...}. For 
this case, we show how the string of gap types $n is generated recursively and 
how it is related to the characteristic of a. 

Theorem 4: 
vn-l^n-2 (n > 2), $0 = s, $! 

Proof: Theorem 1 implies the truth of the assertion for n = 2, 3. Using the 
induction hypothesis we show that the result holds in general by verifying it 
for n = k + 1, assuming that it holds for n = k and n - k - 1. 

w 
= p f c + i ( ^ - i * f e - 2 ) 
= pk+1(4°o p k + 1 ( * k _ 2 ) 

Thus, 
. 1 ( * J _ 1 ) a ^ _ 1 ( * k _ 2 ) . 

*k+l = **"**- ! ' 
which follows from Theorem 1 and Proposition 2 for 0 = $£_]_ and the fact that 
Pk+l = Pk.l for all k > 2. • 

The following theorem shows how the string $n is related to another string 
fin which corresponds to the first qn elements of the characteristic. One 
merely places the first element of §n in the penultimate position of §n to 
obtain ttn. 

We let An = ^ j , Bn be as in Proposition 3, and Cn = §n,qn' N o w' l e t 

\ln — DnAnCn. 

Theorem 5: 
ttn = ^_1ftn_ 2 in > 2 ) , fi0 = s, Qi = sa~ll. 

Proof: The result is readily shown to be true for n = 2, 3 from direct obser-
vation of the strings fi2 a n d ^3- These strings derive from <£>2 a n d $3> which 
may be written down using Theorem 4. In what follows, assume that n > 3. 

Induction on n using Theorem 1 implies 

Is, n odd, 
(17) An = Cn_! = < 

\Z, n even. 
(This is actually true for n > 2.) 

We are required to show that 
BnAnCn = (Bn - \An - lCn- 1 )aBn- 2An- 2Cn - 2 » 

or, using (17), 

(18) Bn = (Bn_iAn_iCn„i)a Bn_z-

Theorem 4 is equivalent to the statement 

AnBn^n = ^n-lBn-lAn-1) An-2Bn-2^n- 2• 

Using (17) and rearranging terms leads to 
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Bn - Bn-iAn_i(Cn-.iBn_iAn-i)a An-it 

F u r t h e r m a n i p u l a t i o n g i v e s 

- l A - l ^ n - l . ) Bn-2> (Bt 
(Recall from Proposition 3 that Bn = Bn.) Thus, which is equivalent to (18). 

the theorem is proved. Q 

The following corollary gives the production rule for the string ^O^1^2B'* 
The proof is by induction and is omitted. Note that the production rule is 
independent of n. 

sa~ll, Q(l) Corollary 6: Suppose t h a t Q(s) = s u ^ , y,{L) = su 

tin = Q(Qn-i) = ^-l^n-i (n > 2 ) , ^ 0 = s, 

Example: For a = T , we have Q(s) = I, Q(l) = Is3 

H e n c e , 
QQ = s , 
Ql = I, 

^3 = Isl, 
Qi+ = Islls, 
^ 5 = Isllslsl. 

~lls. Then 

} l = s a ~ l l . D 

and - l "n-2 f o r n > 1 . 

The Golden Sequence is then limn A Comparing Theorem 5 with Fraenkel et 
alTs result ([4], Theorem 1) [equivalent to our Equation (16)] identifies Qn as 
the first qn elements of the characteristic. That is, ttn = Sn, where 5n is 
defined by (16). Thus, the string of gap types is generated in the same way as 
the characteristic, a result all the more surprising since it does not hold for 
all a. We proceed to verify the connection between Qn and the characteristic 
by exploiting the relationship between §n and ft„. This, then (with Theorem 5), 
forms the new proof of Theorem 1 in [4] and Theorem 2 in [12] for the case a = 
{0; a9 a, . . . } . The proof sheds light on the set of numbers for which the 
string of gap types corresponds to the characteristic. First, we need the 
following, which is proved in van Ravenstein ([17], Equation 5.12). 

Lemma 7: [ka] Pn 

i s any i r r a t i o n a l number 

Let £ln — a)n j 0 3 n 2 • • 

Theorem 8: For n > 2 , 

1, 2, ?*,• 1 (n > 2, I < i < an), where a 

n » Q n 

03 
n,j 

0, 

I, dj = 1, 

where dj is defined by (1) and j = 1, 

Proof: Equation (14) is equivalent to 

Thus, for j 

( - i ) B _ 1 ( j 

= 2, 3, ... 

1) 
%-l) 

In 7' 
(-l)"-1 '̂ - D- <?n 

(19) 

(20) 

"j + l UJ (-1) n - \ , 
in-I - (-D* ln\ 

in-1 
U ~ 1) 

<7n-

(-l)n-lqn-x ~ (-IV^qJUa] - [ (j - l)a]). 
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The l a t t e r s t e p fo l lows from Lemma 7 and Equat ion ( 1 1 ) . Hence, for j = 2 , 3 , 
. . . , qn - 1, 

U-ir-Hq^, - qn), d._Y = 1. 
From (9) and ( 1 0 ) , i t may now be shown t h a t 

(21) 
U , d.Y = 1, 

J • 

where j = 2, 3, . . . , qn - 1. 
To complete the proof, first note from (6) that 

(pn - 1, n odd, 

( p n , n even. 

From Lemma 7, [ ( q n - l ) a ] = [ (q n - l)pn/qn] = pn .- 1. T h e r e f o r e , 

( 0 , n odd, 

V1, n even. 
From (14) and (9) we have 

<22) •»,! 
Z, d^-x = 0. 

The result for §n,q follows similarly. From Lemma Al (see Appendix), 
[(qn + l)a] = pn. Hence, 

(0, n even, 
dRn = [(qn + Da] - [qna] =1 

{1, n odd, 
and thus, from (14) and (9), 

(s, dqn = 0, 
(23) 4>„ =< 

(l, d,n = 1. 

Theorem 5 and Equations (21)-(23) establish the proof. D 

Corollary 9: Suppose that a = {0; a\9 a2> . ..}» where a^ = a^-j+i for j = 1, 2, 
, 1. Then 

"i.3 = 

(s, 

I 
dj = 0, 

dj = 1. 
Proof: For this value of a, 

-f- = - ^ = {0; ai3 CLi-i, •••> a2* ̂ l>°  

The proof is then identical to the proof of Theorem 8; in particular, the step 
from (19) to (20) follows. D 

The correspondence between §n and the characteristic does not hold for all 
a, as the following (counter)example shows. 

2T + 9 
Let a = {0;l, 2, 3, 1 + T } = . Then 

3T + 13 
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$0 = s, $]_ = I, $2 = Iss, $3 = ssslsslssl, 

and thus, 

^o = s, Q>i = Z-, ̂ 2 = sis, 3̂ = sslsslsssl, 

which does not correspond to the characteristic, since 

60 = s, 6]_ = I, &2
 = Z^s, 63 = llsllsllsl. D 

Conjecture: The correspondence between $̂  and the characteristic holds only for 
a equivalent to the number {0; a, a, a, ...}. 

APPENDIX. The Evaluation of [Not], N = 1, 2, ... 

We have shown how one may evaluate the integer parts of positive consecu-
tive multiples of a number by forming its characteristic. Here, we present an 
alternative method by which we decompose the number into terms related to its 
continued fraction expansion. The method appears in Fraenkel et al.[3] and is 
central to their paper. We offer a new and shorter proof. 

Lemma Al (see Fraenkel et al. [4], Lemma 2) : Suppose that n > 0 and 0 < q < qn . 
Then [ (q + qn_l)a] = pn_l + [^a]. 

Lemma A2 (see, e.g., Fraenkel [5], Theorem 3): There is a unique decomposition 
of any natural number N in the form 

m 

N - EM*. 
^ = 0 

where the b^ s are integers; 0 < b$ < q\, 0 < bi < a^+i> i > 0, and bi = a^ + i, 
only if b-i _ 1 = 0. Since this expansion is unique, 

(A) £A?i < ?* + !' i= 0 

Theorem A3: I f N = YJh.qi, t h e n 
i = fe 

[/1/a] 
£ ^ZV ^ even> 

i = k 

-1 + Z ^P 7 - > fc o d d 
£ = fc ^ •• 

w h e r e Z?fc * 0 ( i . e . , k = m a x { j : bj > 0}) . 

Proof: If N = ^ b i q i , bk * 0, t h e n 

[/1/a] 
w - 1 

EM* + (bm ~ l^m + Oa 
i = fe 

From (A) , 

lib q + (2>m - l ) ^ m < bmqm< am + lqm< qm + l. 
i= k 

Hence, from Lemma Al, 

[/1/a] = p + 
71- I v " 

E ^ i + 0>m " D^/77 a 
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F u r t h e r a p p l i c a t i o n of (A) and the lemma l e a d s to 

[Na] = h Pm + 
m-l 

. • 7 ^ ^ ^ 

% = k 

Clearly, we are led to 
m 

W«] = E KVm + lbkqka}. 
i = k + 1 

From (6), . 

b.q.a - b-j p7 = T ; . 
k^. k k tk+lPk + Pfc + 1 

Thus, -1 < bk(qka - pk) < 1, since 0 < bk < â  + 1. Hence, 

' bkp , /c even, 

\bkp. - 1, k odd. 

This completes the proof. • 
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