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1. Introduction

Eric Halsey [3] has invented a method for defining the Fibonacci numbers
F(x), where x is a real number. Unfortunately, the Fibonacci identity

(L) F(x) = F(xe = 1) + F(x - 2)

is destroyed. We shall return later to his method.
Francis Parker [6] defines the Fibonacci function by

Px) a® - cos mxo ™%
x = -
/5
where o is the golden ratio. In the same way, we can define a Lucas function

L(x) = o + cos wmxa™%.

F(x) and L(x) coincide with the usual Fibonacci and Lucas numbers when x is
an integer, and the relation (1) is verified. But the classical Fibonacci
relations do not generalize. For instance, we do not have

FQ2x) = F(x)L(x).

Horadam and Shannon [4] define Fibonacci and Lucas curves. They can be
written, with complex notation

a® — eiﬂxu—x
2 F = B
(2) (x) 7
(3) L(x) = o% + et™%q~%,

Again, we have F(n) = F,, L(n) = L,, for all integers n.

We shall prove in the sequel that the well-known identities for #, and L,
are again true for all real numbers x, if F(x) and L(x) are defined by (2) and
(3). For example, we have immediately

F(2x) = F(x)L(x).

We shall also relate these F(x) and L(x) to other Fibonacci properties as well
as to Halsey's extension of the Fibonacci numbers.

2. Preliminary Lemma

Let us consider the set F of functions w:R + € such that
(4) Ve €R, wlx) =w(x - 1) +wlx - 2).
E is a complex vector space, and the following lemma is immediate.

Lemma 1: Let o be the positive root of r2=7r + 1. Then the functions f and g,
defined by

fl@) =a® g) = %"

are members of .
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Let us define now a subspace V of Z by
V={w:R~>C, w=>rf+ug, X, n € C}.
The functions F and L, defined by (2) and (3), are members of V.

Lemma 2: For all complex numbers ¢ and b, there is a unique function w in V
such that

w(0) = a, w(l) = b.
Proof: We have

w0) = A+ u=a, w(l)=1r - ua"l =h.
By Cramer's rule, X and p exist and are unique.

Lemma 3: Let w be a member of V, and % a real number. Then the functions wy
and wé, defined by

w, (@) = wx = k), wix) =e™ukh - x),
are members of V.
Proof: The proof is simple and therefore is omitted here.

Lemma 4: Let u and v be two elements of V and 6 :R%2 + €, the function defined
by
u(x), ulx + 1)

§(x, y) = u(@v(y + 1) - ulx + Dvly).
v(y), vy + 1)

Then we have

(5) §(x, y) = e™¥s(x - y, 0).
Proof: First, we have

ulx), ulx) + ulx - 1) ulx), ux -1)
(6) Sz, y) = =

v(y), v(y) +vly -1 v(y), vy - 1)

-8(x -1, y - 1).
Now, let us define
n(, y) = ez -y, 0) = et (u(x - yv(1) - ulx -y + 1v(0)).
Let x be a fixed real number. By Lemma 3, the functions
y > 8(x, y)s y > nlms y)
are members of V. We have
§(x, 0) = n(xz, 0),
and, by (6),
§(xy, 1) = =8(x ~ 1, 0) = n(x, 1).
By Lemma 2 we have, for all real numbers y,
8@, y) = nix, »).
This concludes the proéf.

Lemma 5: Let F and [ be the Fibonacci and Lucas functions defined by (2) and
(3). Then, for all real numbers, we have:

(7 L(x) = Flx + 1) + F(x - 1)
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(8) 5F(x) = 20(x + 1) - L(x);
9) L(x) = 2F(x + 1) - F(x).

The proofs readily follow from the lemmas and the definitions of the functions.

3. The Main Result

Theorem 1: Let u and v be two functions of V. Then, for all values of z, y,
and z, we have

(10) (@) vy +2) - ulc+z)vy) = eF) [ul@-y)v(l) -ul@-y+1)v0)],

where F is defined by (2).

Proof: For x and y fixed, consider the function A:
A(z) = u(x)v(y + 3) - ulx + 2)vy).

By Lemma 3, A is a member of V, and we have, with the notation of Lemma 4,
AC0) = 0, A(l) = 6(x, y)-

Thus, we have, since the two members take the same values at z = 0, 2z = 1:
A(z) = 8(x, Y)F(2).

The proof follows by Lemma 4.

4. Special Cases

Let us examine some particular cases of (10):
Case 1. u=v=7rF
Since F(0) 0, F(1) = 1, we have

(11) F(x)F(y + 2) - F(z + 2)F(y) = e F(2)F(x - y).
Case 2. u=v =1
Since L(0) 2, L(1) = 1, we have, by (8),

(12) L(x)L(y + 2) - L(z + 2)L(y) = -5¢*"¥F(z)F(z - y).
Case 3. u=7F, v =1L
We have, by (9),

(13) F(x)L(y + 8) - F(x + 3)L(y)
Case 4. u=1>L, v =F

(14) L(x)F(y + 2) - L(x + 2)F(y) = e*"YF(z)L(z - y).
Case 5. Let y = 0 in (12) and (13) to get

(15) 20(x + 2) = L(x)L(z) + 5F(x)F(z),

(16) 2F(x + 2) = F(x)L(2) + F(8)L(x).
Case 6. Let y = 1 in (11)-(14) to get

(17) F(x + 2) F(x)F(z + 1) + F(2)F(x - 1),

(18) L(x + 2) = L(x)L(z + 1) 5F(z)F(x - 1),

(19) F(x + 2) = F(x)L(z + 1) - F(z)L(x - 1),

(20) L(x + 2) L(x)F(z + 1) + F(g)L(x - 1).

- "YF(2)L(x - y).
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Case 7. Let y =x - 2z in (11)-(l4) to get
(21)  (F@)2 - F(z + 2)F(z - 2) = " @=2(F(3))2,
(22) (L(x))2 = L(x + 2)L(x - 8) = -5¢*"@-2)(F(3))2,
(23) F(x)L(x) - F(x + 8)L(z - 2) = -e"¢~®p(2)L(2),
(24) F(x)L(x) - F(x - 2)I(z + 2) = e @ ~3AF(5)L(5).
Remark: (21) and (22) are Catalan's relations for F(x), L(x).

5. Application: A Reciprocal Series of Fibonacci Numbers

Theorem 2: Let x be a strictly positive real number and F the Fibonacci func-
tion. Then we have

o eiwzk_lx YL

Bl - 25 F(x)eE

Proof: We recall the relation attributed to De Morgan by Bromwich and to Cata-
lan by Lucas,
k-1 n
no 22 1 =z - 22
(25) = o
kgll—zzk 1-2z1-22

where z is a complex number (Izl #1). Now put z = e®™q~2% in (25) to obtain:

. k-1 _nk . k-1 . k-1
n eurZ z 2%x n eﬂz x 1 n einZ x
26 = = — -
(26) kz=:1 1 - eiwzkxa-2k+lx kgl aka _ ein2kxu—2kx Skz_‘_‘l F(zkx)
On the other hand, the right member of (25) becomes
imx =2z _ _in2'x -2"*lg inx no_
27 1 e o e o _ 1 e F((2 1)x)
1 - eireg-2z 1 - ety /5F () F(z+ 27

(26) and (27) give us

no in2 e pinap((27 - 1)a)
(28) 3. =

K1 F(2kx) F(2"« x)F(x)

k-1 .
© ewz x gtnx

29) X

=1 F(2kx) F(x)a®

and so

Remark: Put x = m in (29), where m is a natural integer. After some calcula-
tions in the case m odd, we obtain the well-known formula:

> 1 /5

(30) k; F(2fm)  o2m - 1

Formula (30) was found by Lucas (see [5], p. 225) and was rediscovered by Brady
[1]. See also Gould [2] for complete references. -

6. Halsey's Fibonacci Function

First, we recall a well-known formula,

m(n)
-k -1
F, = "

R G

where m(n) is an integer such that (n/2) - 1 < m(n) < (n/2).

),nZI,
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We have used the binomial coefficients (Z) only when »n is a positive inte-
ger but it is very convenient to extend their definitions. Then
x)_l <x)_x(x—l)...(x—k+l)
(O T k) k!
defines the binomial coefficients for all values of =z.
From this, we can introduce the function &,

, k> 1,

m(x)
-k -1
(31) G(x) = * , 0,
¥ k; (*7x ) e

where m(x) is the integer defined by (x/2) - 1 < m(x) < (x/2). Then, clearly,
we have

Gn) = F,, n 2 1.

Theorem 3: G coincides with Halsey's extension of Fibonacci numbers, namely,
m ()

Glx) = 3, [(x - K)B(x - 2k, k+ 1)1, = > 0,
k=0
where B(x, y) is the beta-function:

1
B(x, y) = f Tl - )Y ide, x>0, y > 0.
Q

Proof: It is sufficient to show that
1 x -k -1
2 = .
G2 (x - K)B(x - 2k, k + 1) ( k )

In fact, the left member of (32) is

I'(x - k + 1) _ (¢ - kK)(x -k ~-1) «.. (x - 2K)T(x - 2k)
(x - )T (x - 2k)T(k + 1) (x = k)T'(x - 2k)k!
-k -1) oo (- 2k) (x -k - 1)
B k! - k ’

in which we have used the well-known properties of the gamma-function:
T(x) = (x - DI(x - 1), T(k) = (-1
This concludes the proof.
Let p be a positive integer, and let G, be the polynomial defined by

R G}

We see, from (31), that

(33) G(x) = Gp(x), 2p < x < 2p + 23

thus,
Gp(Zp + l) = G(2p + 1) = F2p+1,

Gp(Zp + 2) G(Zp + 2) = F2p+2a

In fact, we have a deeper result, which we state as the following theorem.

Theorem 4: Gp(n) = F, forn=p+ 1, p+ 2, ..., 2p + 2.
Proof: We shall prove this by mathematical induction. If p = 0, we have
Go(l) = 00(2) = 1.

Now we suppose that Gp_l(n) =F, m=p, ..., 2p). Then we have
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(x -p-1) ... (x - 2p)

Gp(@) = Gy @) + (7 b D= i@ + T

and thus,
Gp(n) = Gp_l(n) =F,, forn=p+1, ..., 2p;
but we have seen above that
Gp(Zp + l) = F2p+l’ Gp(Zp + 2) = F2p+2.
This concludes the proof.
Corollary: G is continuous for all values of x > 0.

Proof: By (33), it is sufficient to show the continuity from the right at x =
2p. But

%z%pG(x) = Gp(Zp) = sz (by Theorem 4)
x >2p = G(Zp).

Finally, we see that Halsey's function is a continuous piecewise polyno-
mial. For instance,

G(x) =1, 0 < < 2,
G(x) = x -1, 2 < < 4,
2 _
Gy = E=222 10, 4 <o cs.
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