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1. Introduction 

In 1856 I. A. Griinert ([6], see also [9], p. 226) proved that if n is an 
integer, ft > 2 and 0 < x < y < z are real numbers satisfying the equation 

(1.1) xn + yn = zn 

then 

(1.2) z - y < -. 

This result was rediscovered by G. Towes [10], and then by D. Zeitlin [11]. 
In 1979 L. Meres [7] improved the result of Griinert, replacing (1.2) by 

(1.3) z - y < -, for a = n + 1 - n2"n, n > 2. 

In [1], we improved the result of Meres, replacing (1.3) by 

(1.4) z - y < + , for n > 4. 

Next, in [2], it has been proved that if k is a positive integer and, for 
ft > [(2k + D C J , ?! = (log 2)/[2(l - log 2)], Equation (1.1) has a solution in 
real numbers 0 < x < y < z, then 

(1.5) z - y < —^-7-. 
^ ft + fc 

Fell, Graz, & Paasche [5] have proved that, if (1.1) has a solution in pos-
itive integers x < y < z9 where n > 2, then 
(1.6) x2 > 2y + 1. 

In 1969, M. Perisastri ([8], cf. [9], p. 226) proved that 

(1.7) x1 > z. 

In [2], it has been proved that 

(1.8) x1 > 2z + 1. 

A. Choudhry, in [4], improved the inequality (1.8) to the form 

(1.9) xl + ^^>z. 

In fact, A. Choudhry proved that 

(1.10) z < C(n) • x1 + ̂ T , 

where ĵ  
2n 

(1.11) C(n) = —, for ft > 2. 
ft n- 1 

First we remark that inequality (1.9) in the Theorem of Choudhry follows 
immediately from (1.1) and the assumption that 0 < x < y < z. Really, we have 
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xn = zn - yn = (z - y)(zn~l + zn~zy + ... + z/*-l) > zn~l, 
and (1.9) follows. 

In this paper we prove the following theorems. 

Theorem 1: If the equation (1.1) has a solution in positive integers x < y < z 
where n > 2, then 

(1.12) z < Cl(n) • xl + ^ t 

where j_ 
9 In 

(1.13) Cl(n) = -Z-j-. 
n n- i 

We remark that (7]_(n) < C(n) < 1. 
Next, we have the following theorem. 

Theorem 2: If z - x < C3 then (1.1) has only a finite number of solutions in 
positive integers x < y < z and 

(1.14) z < Cln • 2 n + l). 

We remark that, from Theorem 1 (see [2]) and the inequality (1.5), we get the 
following corollary. 

Corollary: If k is a positive integer (1.1) has a solution in positive integers 
x < y < z for n > [(2k + D C J , Ci = (log 2)/[2(l - log 2)], then 

x > k + [(2k + D C J . 
Let G2(k) be the set of all matrices of the form 

v sv 

KkS V / 

where k * 0 is a fixed integer and r, s * 0 are arbitrary integers. 
Let RK denote the ring of all integers of the field K = Q(fk). Then, in 

[3], we proved the following theorem. 

Theorem 3: A necessary and sufficient condition for (1.1) to have a solution 
in elements A, B, C € (̂ (fc) is the existence of the numbers a, Bs y e BK, where 
K = Q(fk) such that an + 3n = yn. The proof of Theorem 3 in [3] is based on 
some properties of the matrix 

(a b\ 
), with a, by cs d € Z. \o d/ 

In this paper we give a very simple proof of this theorem. 

2. Proof of Theorems 

2.1 Proof of Theorem 1 

For the proof of Theorem 1, we note that 
n - 1 

(2.1) zn~l + zn~2y + ... + zyn~2 + yn~l > n(zy) 2 . 

From (1.1) and x < y < z we have zn < 2yn\ hence, 

(2.2) y > (•!)*. z. 

Since 

(2.3) xn = (z - y)(zn~1 + zn~zy + .-- + sz/""2 + yn~l), 

we see, by (2.1), (2.2), and (2.3), that it follows that 
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(2 .4 ) xn > n* 2 n - 1 ( | ) 

From ( 2 . 4 ) , we get 

i - l 
In 

22n l + ^ - r 
z < — • x n~ i 

nn~ i 
and the proof i s comple te . 

2 .2 Proof of Theorem 2 

From ( 1 . 1 ) , we have 

(2.5) yn = (z - ̂ )(2n_1 + 2n~2x + --- + sa;""2 + x n - 1 ) . 

Since x < z/ < z, then by (2.5) it follows that 

(2.6) 2/n < (z - x)n • sn-1. 

From (2.6) and (2.2), we get 
/ — \ -i n - i 

(2.7) z/n < (s - x)n(2nz/j" = n • 2 n (s - x)z/n_1. 
From (2.7), we get 

n- 1 
(2.8) y < n • 2 « (s - x). 
From (2.8) and our assumption that z - x < C, we have 

n- 1 
(2.9) z/ < n • 2 * C. 

w - 1 
Since a; < z/, we see by (2.9) that x < n • 2 n C. From our assumption, it now 
follows that 

n- 1 / n - lv 
2 < x + 6 , < n - 2 " 6 r + 6, = 6,(^l+n«2 n j 

and the proof is finished. 

2.3 Proof of Theorem 3 

First we remark that it suffices to prove that the set G2(k) is isomorphic 
to RK, where K = Q(fk) . Let 

<|>: G2(k) + i?z, £ = «(/£), 

Then we prove that <J> is an isomorphism. Indeed, we have, for A, B € G2(k) 9 

<K4 • 5) = <()(i4) • <|)(5) and $(A + B) = $(A) + $(B); 

therefore, G2(k) - RK, where Z = Q{fk) . The proof is complete. 
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