ON FERMAT'S EQUATION

Krystyna Białek and Aleksander Grytczuk
Pedagogical University, Zielona Gora, Poland
(Submitted February 1989)

1. Introduction

In 1856 I. A. Grünert ([6], see also [9], p. 226) proved that if n is an integer, $n \geq 2$ and $0<x<y<z$ are real numbers satisfying the equation (1.1) $x^{n}+y^{n}=z^{n}$
then
(1.2) $z-y<\frac{x}{n}$.

This result was rediscovered by G. Towes [10], and then by D. Zeitlin [11].
In 1979 L. Meres [7] improved the result of Grünert, replacing (1.2) by
(1.3) $z-y<\frac{x}{a}$, for $a=n+1-n^{2-n}, n \geq 2$.

In [1], we improved the result of Meres, replacing (1.3) by
(1.4) $z-y<\frac{x}{n+1}$, for $n \geq 4$.

Next, in [2], it has been proved that if k is a positive integer and, for $n>\left[(2 k+1) C_{1}\right], C_{1}=(\log 2) /[2(1-\log 2)]$, Equation (l.1) has a solution in real numbers $0<x<y<z$, then
(1.5) $z-y<\frac{x}{n+k}$.

Fell, Graz, \& Paasche [5] have proved that, if (1.1) has a solution in positive integers $x<y<z$, where $n \geq 2$, then
(1.6) $x^{2}>2 y+1$.

In 1969, M. Perisastri ([8], cf. [9], p. 226) proved that
(1.7) $x^{2}>z$.

In [2], it has been proved that
(1.8) $x^{2}>2 z+1$.
A. Choudhry, in [4], improved the inequality (1.8) to the form
(1.9) $x^{1+\frac{1}{n-1}}>z$.

In fact, A. Choudhry proved that
(1.10) $z<C(n) \cdot x^{1+\frac{1}{n-1}}$,
where
(1.11) $\quad C(n)=\frac{2^{\frac{1}{n}}}{\frac{1}{n-1}}$, for $n \geq 2$.
First we remark that inequality (1.9) in the Theorem of Choudhry follows immediately from (1.1) and the assumption that $0<x<y<z$. Really, we have

$$
x^{n}=z^{n}-y^{n}=(z-y)\left(z^{n-1}+z^{n-2} y+\cdots+y^{n-1}\right)>z^{n-1}
$$

and (1.9) follows.
In this paper we prove the following theorems.
Theorem 1: If the equation (1.1) has a solution in positive integers $x<y<z$ where $n \geq 2$, then
(1.12) $z<C_{1}(n) \cdot x^{1+\frac{1}{n-1}}$
where

$$
\begin{equation*}
C_{1}(n)=\frac{2^{\frac{1}{2 n}}}{n^{\frac{1}{n-1}}} \tag{1.13}
\end{equation*}
$$

We remark that $C_{1}(n)<C(n)<1$.
Next, we have the following theorem.
Theorem 2: If $z-x \leq C$, then (1.1) has only a finite number of solutions in positive integers $x<y<z$ and
(1.14) $z<C\left(n \cdot 2^{\frac{n-1}{n}}+1\right)$.

We remark that, from Theorem 1 (see [2]) and the inequality (1.5), we get the following corollary.
Corollary: If k is a positive integer (1.1) has a solution in positive integers $x<y<z$ for $n>\left[(2 k+1) C_{1}\right], C_{1}=(\log 2) /[2(1-\log 2)]$, then $x>k+\left[(2 k+1) C_{1}\right]$.

Let $G_{2}(k)$ be the set of all matrices of the form

$$
\left(\begin{array}{cc}
r & s \\
k s & r
\end{array}\right),
$$

where $k \neq 0$ is a fixed integer and $r, s \neq 0$ are arbitrary integers.
Let R_{K} denote the ring of all integers of the field $K=Q(\sqrt{k})$. Then, in [3], we proved the following theorem.

Theorem 3: A necessary and sufficient condition for (1.1) to have a solution in elements $A, B, C \in G_{2}(k)$ is the existence of the numbers $\alpha, \beta, \gamma \in R_{K}$, where $K=Q(\sqrt{k})$ such that $\alpha^{n}+\beta^{n}=\gamma^{n}$. The proof of Theorem 3 in [3] is based on some properties of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \text { with } a, b, c, d \in Z
$$

In this paper we give a very simple proof of this theorem.

2. Proof of Theorems

2.1 Proof of Theorem 1

$$
\begin{align*}
& \text { For the proof of Theorem } 1 \text {, we note that } \\
& \text { 1) } z^{n-1}+z^{n-2} y+\cdots+z y^{n-2}+y^{n-1}>n(z y)^{\frac{n-1}{2}} \tag{2.1}
\end{align*}
$$

From (1.1) and $x<y<z$ we have $z^{n}<2 y^{n}$; hence,

$$
\begin{equation*}
y>\left(\frac{1}{2}\right)^{\frac{1}{n}} \tag{2.2}
\end{equation*}
$$

Since
(2.3) $x^{n}=(z-y)\left(z^{n-1}+z^{n-2} y+\cdots+z y^{n-2}+y^{n-1}\right)$, we see, by (2.1), (2.2), and (2.3), that it follows that
(2.4) $x^{n}>n \cdot z^{n-1}\left(\frac{1}{2}\right)^{\frac{n-1}{2 n}}$.

From (2.4), we get

$$
z<\frac{2^{\frac{1}{2 n}}}{n^{\frac{1}{n-1}}} \cdot x^{1+\frac{1}{n-1}}
$$

and the proof is complete.

2.2 Proof of Theorem 2

From (1.1), we have
(2.5) $y^{n}=(z-x)\left(z^{n-1}+z^{n-2} x+\cdots+z x^{n-2}+x^{n-1}\right)$.

Since $x<y<z$, then by (2.5) it follows that
(2.6) $y^{n}<(z-x) n \cdot z^{n-1}$.

From (2.6) and (2.2), we get
(2.7) $\quad y^{n}<(z-x) n\left(2^{\frac{1}{n}} y\right)^{n-1}=n \cdot 2^{\frac{n-1}{n}}(z-x) y^{n-1}$.

From (2.7), we get
(2.8) $y<n \cdot 2^{\frac{n-1}{n}}(z-x)$.

From (2.8) and our assumption that $z-x \leq C$, we have
(2.9) $y<n \cdot 2^{\frac{n-1}{n}} c$.

Since $x<y$, we see by (2.9) that $x<n \cdot 2^{\frac{n-1}{n} C}$. From our assumption, it now follows that

$$
z \leq x+C<n \cdot 2^{\frac{n-1}{n}} C+C=C\left(1+n \cdot 2^{\frac{n-1}{n}}\right)
$$

and the proof is finished.

2.3 Proof of Theorem 3

First we remark that it suffices to prove that the set $G_{2}(k)$ is isomorphic to R_{K}, where $K=Q(\sqrt{k})$. Let

$$
\phi: G_{2}(k) \rightarrow R_{K}, K=Q(\sqrt{k}),
$$

and

$$
\phi\left(\left(\begin{array}{cc}
r & s \\
k s & r
\end{array}\right)\right)=r+s \sqrt{k}
$$

Then we prove that ϕ is an isomorphism. Indeed, we have, for $A, B \in G_{2}(k)$,
$\phi(A \cdot B)=\phi(A) \cdot \phi(B)$ and $\phi(A+B)=\phi(A)+\phi(B) ;$
therefore, $G_{2}(k) \simeq R_{K}$, where $K=Q(\sqrt{k})$. The proof is complete.

References

1. K. Bialek. "Remark of Fermat's Equation." Discuss. Math. 7 (1985):119-22.
2. K. Bialek. "On Some Inequalities Connected with Fermat's Equation." EZ. Math. 43.3 (1988): 78-83.
3. K. Bialek \& A. Grytczuk. "The Equation of Fermat in $G_{2}(k)$ and $Q(\sqrt{k})$." Acta Acad. Paed. Agriens 18.11 (Matematika-Eger Hungary) (1987):81-90.
4. A. Choudhry. "On Fermat's Last Theorem." Elem. Math. 43.6 (1988):182-83.
5. A. Fell \& I. Paasche. "P66 Fermatproblem." Praxis der Math. 3 (1961):80.
6. I. A. Grünert. "Wenn $n>1$, so gibt es unter den ganzen Zahlen von 1 bis nicht zwei Werte von x und y für welche wenn z einen ganzen Wert bezeichnet, $x^{n}+y^{n}=z^{n}$ ist." Archiv. Math. Phys. 27 (1856):119-20.
7. L. Meres. "About Certain Inequalities Connected with the Great Theorem of Fermat." Zeszyt. Nauk. Polit. Slaskiej 560 Mat.-Fiz. 30 (1979):215-18.
8. M. Perisastri. "On Fermat's Last Theorem." Amer. Math. Monthly 76 (1969): 671-75.
9. P. Ribenboim. 13 Lectures on Fermat's Last Theorem. New York-HeidelbergBerlin: Springer Verlag, 1980.
10. G. Towes. "On Fermat's Last Theorem." Amer. Math. Monthly 41 (1934):419424.
11. D. Zeitlin. "A Note on Fermat's Last Theorem." Fibonacci Quarterly 12 (1974):368-402.
