J. H. E. Cohn

Royal Holloway & Bedford New College, Egham, Surrey TW20 OEX, England (Submitted December 1988)

Introduction

Suppose a (large) integer \mathbb{N} is given and we wish to choose positive integers A, B such that

- (a) the sequence $\{w_n\}$ defined by $w_1 = A$, $w_2 = B$, and $w_{n+2} = w_{n+1} + w_n$, $n \ge 1$, contains the integer N,
- (b) s = A + B is minimal.

What can be said about s in relation to N, and how are A and B to be found? We also consider some generalizations.

The case N = 1,000,000 was recently the subject of a problem in a popular computing magazine [1]. Obviously, for $N \ge 2$, A = 1, B = N - 1 is one pair satisfying (a) and so the problem does have a solution for each N. Also $s \ge 2$, and equality here holds whenever $N = F_k$, a Fibonacci number. Hence,

lim inf s = 2 as $N \to \infty$.

In the opposite direction, we shall show that $s > \gamma \sqrt{N}$ for infinitely many N, but that for all sufficiently large N, $s < \gamma \sqrt{N} + 0(N^{-1/2})$, where $\gamma = 2/\sqrt{\alpha}$ and $\alpha = (1 + \sqrt{5})/2$. We shall also show how to select A and B for each N.

The Original Problem

Clearly, for a solution to the problem $A \ge B > 0$, for if B > A, then the pair $A_1 = B - A$, $B_1 = A$ would yield a smaller s. Starting from A, B, we then obtain, successively, A, B, A + B, ..., t, N and we now define, for each t < N, the sequence

$$t_0 = N$$
, $t_1 = t$, $t_{n+2} = t_n - t_{n+1}$, $n \ge 0$,

i.e., work backwards, so to speak, until we arrive at

 $t_k = A + B$, $t_{k+1} = B$, $t_{k+2} = A$, $t_{k+3} \le 0$.

Thus, the only choice at our disposal is t; k is then characterized by being the smallest integer for which $t_{k+3} \leq 0$, and our object is to choose t so as to minimize $s = t_k$.

Let α and β be the roots of $\theta^2 = \theta + 1$. Then $\alpha\beta = -1$, $\alpha + \beta = 1$, and

 $F_n = (\alpha^n - \beta^n) / (\alpha - \beta).$

Then the roots of $\theta^2 = 1 - \theta$ are $-\alpha$ and $-\beta$, so that, for suitable constants c and d,

$$t_n = (-1)^n \{ c \alpha^n + d \beta^n \}.$$

Using the initial conditions $t_0 = N$, $t_1 = t$, we then find that

(1) $t_n = (-1)^n \{ NF_{n-1} - tF_n \}.$

Also, for n > 0,

(2) $\alpha F_{n-1} - F_n = -\beta^{n-1} = (-1)^n \alpha^{-n+1}$, and so

30

[Feb.

(3) $(-1)^n \{ \alpha F_{n-1} - F_n \} > 0.$

We now prove the following.

Theorem: Let

t.

 $t_n = (-1)^n \{ NF_{n-1} - tF_n \},\$

where t_k = A + $B, \ t_{k+1}$ = $B, \ t_{k+2}$ = A. Then t = $[n/\alpha]$ gives the smallest value for t_k = A + B = s and

$$s < 2\sqrt{(N/\alpha)} \simeq 1.5723\sqrt{N}.$$

There are two cases. Suppose first that $N > \alpha t$. Then

$$f_n = (-1)^n t \{ \alpha F_{n-1} - F_n \} + (-1)^n \{ N - \alpha t \} F_{n-1} > (-1)^n \{ N - \alpha t \} F_{n-1} ,$$

so t_n can be negative or zero only if n is odd. Thus, k must be even, and if k = 2k, then $t_{2k+1} > 0$, $t_{2k+3} \le 0$. Thus, from (1)

$$\frac{F_{2K}}{F_{2K+1}} < \frac{t}{n} \leq \frac{F_{2K+2}}{F_{2K+3}}$$

and defining $\rho = N/\alpha - t > 0$, we have

$$\frac{F_{2K+3} - \alpha F_{2K+2}}{\alpha F_{2K+3}} \le \frac{\rho}{N} < \frac{F_{2K+1} - \alpha F_{2K}}{\alpha F_{2K+1}}$$

i.e., in view of (2),

(4)
$$\alpha^{2K+1}F_{2K+1} < N/\rho \le \alpha^{2K+3}F_{2K+3}$$

whence,

$$\begin{aligned} \alpha^{4K+2} + 1 &= \alpha^{2K+1} (\alpha^{2K+1} - \beta^{2K+1}) < N\sqrt{5}/\rho \\ &\leq \alpha^{2K+3} (\alpha^{2K+3} - \beta^{2K+3}) = \alpha^{4K+6} + 1; \end{aligned}$$

 $\mathbf{s}\mathbf{o}$

(5)
$$\alpha^{4K+2} < N\sqrt{5}/\rho - 1 \le \alpha^{4K+6}$$
.

Also, in this case,

(6)
$$s = t_{2K} = NF_{2K-1} - tF_{2K}$$

= $N(F_{2K-1} - F_{2K}/\alpha) + \rho F_{2K}$
= $N/\alpha^{2K} + \rho F_{2K} = \xi + \eta$, say

Of these two terms, ξ is always the larger; in fact, from (4), we have

$$\frac{\alpha F_{2K+1}}{F_{2K}} < \frac{\xi}{\eta} = \frac{N}{\rho \alpha^{2K} F_{2K}} \le \frac{\alpha^3 F_{2K+3}}{F_{2K}},$$

whence

(7)

(8)
$$\alpha^2 < \xi/\eta \leq \alpha^6 + 2|\beta|^{2K-3}/F_{2K}$$
.

We now show that, for all $t < N/\alpha$, $t = [N/\alpha]$ gives the smallest value for s. For, let $t = [N/\alpha]$ and t' < t be any other integer, yielding, respectively, ρ , K, ξ , η , s and ρ' , K', ξ' , η' , and s'. Then $t' \le t - 1$, whence $\rho' \ge \rho + 1$ and, in view of (5), $K' \le K$. If K' = K, then $\xi' = \xi$ and $\eta' > \eta$, which gives s' > s, whereas, if K' < K, then

$$s' = \xi' + \eta' > \xi' \ge \alpha^2 \xi = (\alpha + 1)\xi > \xi + \eta = s,$$

in view of (8). Moreover, using (7), we see that

1991]

$$\begin{split} \frac{s^2}{N} &= \frac{(\xi + n)^2}{N} = \frac{\xi n}{N} \left\{ \frac{\xi}{n} + 2 + \frac{n}{\xi} \right\} \le \frac{\rho F_{2K}}{\alpha^2} \left\{ \frac{\alpha^3 F_{2K+3}}{F_2} + 2 + \frac{F_{2K}}{\alpha^3 F_{2K+3}} \right\} \\ &= \frac{\rho}{\alpha^{2K+3} F_{2K+3}} (\alpha^3 F_{2K+3} + F_{2K})^2 \\ &= \frac{\rho(\alpha - \beta)}{\alpha^{4K+6} + 1} \left\{ \frac{\alpha^3 (\alpha^{2K+3} - \beta^{2K+3}) + (\alpha^{2K} - \beta^{2K})}{(\alpha - \beta)} \right\}^2 \\ &= \frac{\rho \alpha^{4K+6}}{\alpha^{4K+6} + 1} \cdot \frac{(\alpha^3 - \beta^3)^2}{(\alpha - \beta)} < 4\rho\sqrt{5} \,. \end{split}$$

Thus,

(9) $s < 2N^{1/2} \rho^{1/2} 5^{1/4}$.

The case in which $N < \alpha t$ is entirely similar. Suppressing the details we find that k must be odd, and if k = 2M - 1, then with $\sigma = t - N/\alpha$, we obtain

(4')
$$\alpha^{2M}F_{2M} < N/\sigma \le \alpha^{2M+2}F_{2M+2}$$
,

(5')
$$\alpha^{4M} < N\sqrt{5}/\sigma + 1 \le \alpha^{4M+4}$$
,

(6') $s = N/\alpha^{2M-1} + \sigma F_{2M-1} = \xi + \eta$, say.

(7')
$$\frac{F_{2M}}{F_{2M-1}} < \frac{\xi}{\eta} = \frac{N}{\sigma \alpha^{2M-1} F_{2M-1}} \le \frac{\alpha^3 F_{2M+2}}{F_{2M-1}}$$

(8')
$$\alpha^2 - \beta^{4M-3}\sqrt{5} < \xi/\eta < \alpha^6$$
.

For all sufficiently large N,

(9')
$$s < 2N^{1/2}\sigma^{1/2}5^{1/4} + O(N^{-1/2}).$$

At this stage we may immediately make the observation that, for any N, one of σ and ρ lies below 1/2, and so (9) and (9') immediately give an upper bound of $(2N\sqrt{5})^{1/2} + O(N^{-1/2})$ or approximately $2 \cdot 115N^{1/2}$. It is, however, possible to improve this.

Let us suppose that $\rho/\sigma = \alpha^{-2\theta}$, so that

(10)
$$\rho = 1/(1 + \alpha^{2\theta})$$
 and $\sigma = \alpha^{2\theta}/(1 + \alpha^{2\theta})$,

since $\sigma + \rho = 1$. Then, if $\theta \ge 1 - 1/N$, i.e., ρ is small, we use the inequality (9), and if $\theta \le -1 + 1/N$, i.e., σ is small, we use the inequality (9') and, in either case, obtain

(11)
$$s < 2N^{1/2} 5^{1/4} / (1 + \alpha^2)^{1/2} + O(N^{-1/2}) = \gamma N^{1/2} + O(N^{-1/2}),$$

as required. The remaining case is $|\theta| < 1 - 1/N$. Let $N\sqrt{5}/\rho - 1 = \alpha^{\lambda}$, and let $N\sqrt{5}/\sigma + 1 = \alpha^{\mu}$. Then a little manipulation yields

$$2\theta > \lambda - \mu > 2\theta - 1/N,$$

and so, certainly, $|\lambda - \mu| < 2$. Then we have, from (5), that $\alpha^{\lambda} > \alpha^{4K+2}$, i.e., $\lambda > 4K + 2$ and, from (5'), that $4M + 4 > \mu$. Since $\mu + 2 > \lambda$, 4M + 6 > 4K + 2 and so $M \ge K$. Similarly, we find that $M \le K - 1$, and so all in all M = K or K - 1; in other words, the values of k obtained from ρ or σ differ by exactly one. It is easy to see that whichever is the larger value would give the sharper bound for s, but there is no a priori way to determine which does indeed give the larger k. If it is 2K, then we can improve the bound given by (9), by observing that

 $\lambda < \mu + 2\theta < 4M + 4 + 2\theta,$

and so the upper bound for ξ/η given by (8) can be improved to $\alpha^{4+2\theta} + O(1/N)$ and then the same argument which led to (9) now leads to

[Feb.

32

$$\frac{s^2}{N} < \frac{\rho \left(\alpha^{2+\theta} + \alpha^{-2-\theta}\right)^2}{(\alpha - \beta)} + O(1/N) = \frac{(\alpha^{2\theta} + \alpha^{-2-\theta})^{2\theta}}{(\alpha^2 + 1)\sqrt{5}} + O(1/N)$$
$$= f(\theta) + O(1/N), \text{ say.}$$

In the same way, it is possible to improve the bound if the larger value is given by 2M - 1, and the corresponding bound for s^2/N is just $f(-\theta) + O(1/N)$. Since we do not know which of these will apply, we must take the larger one, i.e., $g(\theta) = \max\{f(\theta), f(-\theta)\}$. It is quite simple to see that $f(\theta)$ is an increasing function of θ and so the worst case arises from (1 - 1/N), the upper bound for $|\theta|$, giving

$$s^2/N < 4/\alpha + O(1/N)$$
,

yielding (11) again. This concludes the proof of the theorem.

Now, we show that this bound cannot be reduced. Choosing \mathbb{N} = $F_{2n+1}F_{2n+2},$ we find that

$$\begin{bmatrix} N/\alpha \end{bmatrix} = (\alpha^{4n+2} + \beta^{4n+2} - 3)/5, \ \rho = (\alpha + \beta^{4n+3})/\sqrt{5},$$

$$\sigma = -(\beta + \beta^{4n+3})/\sqrt{5}, \ \lambda = 4n + 2, \ \mu = 4n + 4,$$

and so K = n - 1 and M = n. Therefore, it follows that the latter gives the larger value for k, and that, in view of (9'),

$$\begin{split} s &= N\alpha^{1-2n} + \rho F_{2n-1} \\ &= \frac{(\alpha^{2n+1} - \beta^{2n+1})(\alpha^{2n+2} - \beta^{2n+2})}{5\alpha^{2n-1}} - \frac{(\beta + \beta^{4n+3})(\alpha^{2n-1} - \beta^{2n-1})}{5} \\ &= \frac{1}{5} \{\alpha^{2n+4} + \beta^{2n-2} - \beta^{2n} - \beta^{6n+4} + \alpha^{2n-2} + \beta^{2n} + \beta^{2n+4} + \beta^{6n+4}\} \\ &= \frac{1}{5} (\alpha^{2n+1} - \beta^{2n+1})(\alpha^3 - \beta^3) = F_3 F_{2n+1} = 2F_{2n+1}, \end{split}$$

and now

$$\frac{s^2}{N} = \frac{4F_{2n+1}}{F_{2n+2}} = \frac{4(\alpha^{2n+1} - \beta^{2n+1})}{(\alpha^{2n+2} - \beta^{2n+2})} > \frac{4}{\alpha}.$$

This concludes the discussion of the original problem.

Generalizations

Several generalizations are now possible. the simplest of these consists of choosing a given integer $\alpha \ge 1$ and replacing the original relations by

- (al) the sequence $\{w_n\}$ defined by $w_1 = A$, $w_2 = B$, and $w_{n+2} = aw_{n+1} + w_n$, $n \ge 1$, contains the integer N,
- (b1) $s = \alpha B + A$ is minimal.

This creates but minor changes in the working above. We now let $\alpha > 0$ and $\beta < 0$ be the roots of $\theta^2 = a\theta + 1$ and then $\alpha\beta = -1$, $\alpha + \beta = a$, $\alpha - \beta = (\alpha^2 + 4)^{1/2}$. We define F_n as before *in terms of* α and β , although, of course, F_n will no longer be the Fibonacci number. The effects of this are to replace $\sqrt{5}$ wherever it occurs by the new value of $\alpha - \beta$, and to replace the number $2 = F_3$ in formulas (9), (9'), and (11) and in the value of γ , by $\alpha^2 + 1$. The form of the result remains identical, with

$$\gamma = (a^2 + 1)/\sqrt{\alpha}$$
 and $\alpha = (a + (a^2 + 4)^{1/2})/2$.

The details are omitted.

The next generalization we consider consists of replacing the original relations by

1991]

33

(a2) the sequence $\{w_n\}$ defined by $w_1 = A$, $w_2 = B$, and $w_{n+2} = aw_{n+1} - w_n$, $n \ge 1$, contains the integer \mathbb{N} ,

(b2) $s = \alpha B - A > 0$ is minimal.

Here the integer α cannot be 1, otherwise any such sequence would contain only six distinct numbers, or 2, otherwise the problem becomes trivial since we could always take $w_1 = 1$, $w_2 = 2$, and then $w_N = N$ with s = 3. So we assume that $\alpha \ge 3$. We now let the roots of $\theta^2 = \alpha \theta - 1$ be

$$\alpha = (\alpha + (\alpha^2 - 4)^{1/2})/2$$
 and $\beta = (\alpha - (\alpha^2 - 4)^{1/2})/2$,

and then $\alpha\beta = 1$, $\alpha + \beta = \alpha$, with

 $0 < \beta < 1 < \alpha$ and $\alpha - \beta = \alpha = (\alpha^2 - 4)^{1/2}$.

Again we let $F_n = (\alpha^n - \beta^n) / (\alpha - \beta)$, and proceeding as before we let the integer in the sequence before \mathbb{N} be t, and obtain A, B, aB - A, ..., t, \mathbb{N} , and so, if $t_0 = \mathbb{N}$, $t_1 = t$, $t_{n+2} = at_{n+1} - t_n$, we get a reverse sequence where

(12) $t_n = tF_n - NF_{n-1}$,

(13)
$$F_n - \alpha F_{n-1} = \beta^{n-1} > 0,$$

(14) $t_n = -(N - t\alpha)F_{n-1} + t\beta^{n-1}$.

What happens now depends on the sign of $(N - t\alpha)$.

Case I. $N > t\alpha$. Then, eventually, t_n becomes negative, and we find that

$$s = F_k$$
, $F_{k+1} = B$, $F_{k+2} = A$, and $F_{k+3} \le 0$.

All this parallels the previous work with only minor differences, and if ρ = N/α - t , then we find that

(15)
$$\alpha^{2k+6} \ge 1 + N(\alpha - \beta)/\rho > \alpha^{2k+4}$$
,

(16)
$$s = t_k = tF_k - NF_{k-1}$$
$$= N(F_k/\alpha - F_{k-1}) - \rho F_k$$
$$= N/\alpha^k - \rho F_k = \xi - \eta, \text{ say.}$$

(17)
$$\alpha^4 < \xi/\eta < \alpha^6 + O(1/N)$$
.

Unfortunately, it is no longer necessarily the case that s' > s whenever $t' < t = [N/\alpha]$. For we have $t' \le t - 1$, whence $\rho' \ge \rho + 1$, and so, in view of (15), $k' \le k$. Now, if indeed k' < k, then s' > s, for

$$s' = \xi' - \eta' > \xi'(1 - 1/\alpha^4) \ge \alpha\xi(1 - 1/\alpha^4) > \xi > \xi - \eta = s.$$

However, if k' = k, then s' < s, since now $\rho' > \rho$. Although this is true, we shall see presently that it causes no problems, for then $\rho' > 1$, and in such a case a choice with $t > N/\alpha$ would always yield a smaller s. In any event, we obtain a result analogous to (9),

(18) $s < (a^2 - 1)N^{1/2}\rho^{1/2}(a^2 - 4)^{1/4} + O(N^{-1/2}).$

Case II. $N < t\alpha$, is entirely different. Let $t = N/\alpha + \sigma$. Then

 $t_n = t\beta^{n-1} + \sigma\alpha F_{n-1}$

is positive for all n > 0, and we now need to choose k = K to minimize $s = t_k$. Then $t_K \le t_{K+1}$ gives, in view of (12),

$$N(F_{K} - F_{K-1}) \leq (F_{K+1} - F_{K})t = (F_{K+1} - F_{K})(N/\alpha + \sigma)$$

and so, using (13),

$$(F_{K+1} - F_K) \sigma \geq N(\beta^K - \beta^{K+1})$$

[Feb.

and so

$$(1 - \beta)(\alpha^{K+1} + \beta^{K})\sigma \geq N(\alpha - \beta)(1 - \beta)\beta^{K}$$

which, together with a similar inequality obtained from $t_K \leq t_{K-1}$ yields (19) $\alpha^{2K-1} \leq N(\alpha - \beta)/\sigma - 1 \leq \alpha^{2K+1}$,

and then

s =

$$t_{K} = tF_{K} - NF_{K-1}$$

= $(N/\alpha + \sigma)F_{K} - NF_{K-1}$
= $N/\alpha^{K} + \sigma F_{K} = \xi + \eta$, say.

In this case, it is clear that the smallest s is provided by taking σ as small as possible, and we find, using (19), that the ratio n/ξ lies between α and $(\alpha^{2K} - 1)/(\alpha^{2K+1} + 1) < 1/\alpha$, and so we obtain, as before,

$$\frac{s^2}{N} = \frac{(\xi + \eta)^2}{N} = \frac{\xi \eta}{N} \left\{ \frac{\xi}{\eta} + 2 + \frac{\eta}{\xi} \right\}$$
$$\leq \frac{\sigma F_K}{\alpha^K} \left\{ \frac{\alpha^{2K} - 1}{\alpha^{2K+1} + 1} + 2 + \frac{\alpha^{2K+1} + 1}{\alpha^{2K} + 1} \right\}$$
$$= \frac{\sigma \alpha^{2K+1} (+1)}{(\alpha^{2K+1} + 1)(\alpha - 1)} < \frac{\sigma(\alpha + 1)}{(\alpha - 1)}.$$

Thus,

(20)
$$s < N^{1/2} \sigma^{1/2} \left\{ \frac{1+\beta}{1-\beta} \right\}^{1/2}$$

and this bound is much better than that provided by (18) unless ρ is extremely small, certainly less than 1. This justifies our earlier remark that we need only consider the smallest value of ρ . Since, at any rate, we can always take $\sigma < 1$ in (20), we obtain immediately

$$s < N^{1/2} \left\{ \frac{1+\beta}{1+\beta} \right\}^{1/2}.$$

This can be improved slightly, and we prove that $s\,<\,\mathbb{N}^{1/2}\,\delta,$ where

$$\delta^2 = \frac{1+\beta}{1-\beta} \frac{1}{1+\beta^3}.$$

As before, we define θ by $\rho/\sigma = \alpha^{-2\theta}$ obtaining (10), and define λ and μ by

 $\mathbb{N}(\alpha - \beta)/\rho - 1 = \alpha^{\lambda}$ and $\mathbb{N}(\alpha - \beta)/\sigma + 1 = \alpha^{\mu}$,

whence

$$2\theta < \lambda - \mu < 2\theta + 1/N$$
.

If now $\theta \le 3/2$, then $\sigma \le (1 + \beta^3)^{-1/2}$ and then (20) gives the required result, whereas if $\theta > 5/2 - 1/N$, then we find that

 $\rho^2 < \beta^5/(1 + \beta^5) + O(1/N)$

and then, using (18), we find that

$$\frac{s^2}{N} < \frac{(\alpha^3 - \beta^3)^2}{\alpha - \beta} \frac{\beta^5}{1 + \beta^5} + O(1/N),$$

and since $\beta \, < \, 1$, the result easily follows. The remaining case is where

$$3 < \lambda - \mu < 5$$

and then, in view of (15) and (19), we find that $2k < \lambda$ - 4 and $2 K \ge \mu$ - 1, whence

1991]

35

$$2(K - k) > \mu - \lambda + 3 > -2$$

and so, since both k and K are integers, $K \ge k$. Thus, from (16) and (19), we find that

$$s < N/\alpha^k \le N/\alpha^K < N^{1/2} (1 - \beta^2)^{-1/2} + O(N^{-1/2})$$

and again the result follows.

The following example shows that the result is best possible. Let $N = (F_{n+1} - F_n)L$, where the integer L is to be chosen later. Then

$$N/\alpha = \frac{L}{\alpha - \beta} \{ \alpha^{n} - \alpha^{n-1} - \beta^{n+2} + \beta^{n+1} \}$$

= $(F_n - F_{n-1})L - L\beta^{n}(1 - \beta),$

and so

$$[N/\alpha] = (F_n - F_{n-1})L - 1,$$

provided that $L\beta^n(1 - \beta) < 1$. It is easily seen that this latter condition is equivalent to $L \le F_{n+1} + F_n$, so we let $L = F_{n+1} + F_n - x$, where $x \ge 0$ is to be chosen later. If we now take $t = (F_n - F_{n-1})L = [N/\alpha]$, then

 $t_r = (F_{n-r+1} - F_{n-r})L,$

so the least
$$t_r = t_n = t_{n+1} = L$$
. On the other hand, if $t = [N/\alpha] - 1$, then

$$t_r = (F_{n-r+1} - F_{n-r})L - F_r,$$

so

and

 $\begin{array}{l}t_n = L - F_n = F_{n+1} - x,\\t_{n+1} = L - F_{n+1} = F_n - x,\\t_{n+2} = F_{n-1} - x(\alpha - 1).\end{array}$

Now, if we choose x to be the least integer $\ge F_{n-1}/(\alpha - 1)$, then we find that k = n - 1, and the value of t_k exceeds L, the value given for s by the other choice. Hence, for such an N, we obtain

$$\frac{s^2}{N} = \frac{F_{n+1} + F_n - x}{F_{n+1} - F_n} = \frac{(a - 1)(F_{n+1} + F_n) - F_{n-1}}{(a - 1)(F_{n+1} - F_n)} + 0(1)$$
$$= \frac{aF_{n+1} - F_n}{(a - 1)(F_{n+1} - F_n)} + 0(1)$$
$$= \frac{(1 + \beta^2) - \beta^2}{(1 - \beta + \beta^2)(1 - \beta)} + 0(1)$$
$$= \frac{1 + \beta}{1 - \beta} \frac{1}{1 + \beta^3} + 0(1) = \delta^2 + 0(1), \text{ say.}$$

Thus, letting $n \to \infty$, we find that $s < N^{1/2}\delta + O(N^{-1/2})$.

Reference

1. "Leisure Lines." Personal Computer World 11.3 (1988):211.

[Feb.