RECURRENT SEQUENCES INCLUDING N

J. H. E. Cohn

Royal Holloway \& Bedford New College, Egham, Surrey TW20 OEX, England
(Submitted December 1988)

Introduction

Suppose a (large) integer N is given and we wish to choose positive integers A, B such that
(a) the sequence $\left\{w_{n}\right\}$ defined by $w_{1}=A, w_{2}=B$, and $w_{n+2}=w_{n+1}+w_{n}$, $n \geq 1$, contains the integer N,
(b) $s=A+B$ is minimal.

What can be said about s in relation to N, and how are A and B to be found? We also consider some generalizations.

The case $N=1,000,000$ was recently the subject of a problem in a popular computing magazine [1]. Obviously, for $N \geq 2, A=1, B=N-1$ is one pair satisfying (a) and so the problem does have a solution for each N. Also $s \geq 2$, and equality here holds whenever $N=F_{k}$, a Fibonacci number. Hence,
\lim inf $s=2$ as $N \rightarrow \infty$.
In the opposite direction, we shall show that $s>\gamma \sqrt{N}$ for infinitely many N, but that for all sufficiently large $N, s<\gamma \sqrt{N}+0\left(N^{-1 / 2}\right)$, where $\gamma=2 / \sqrt{\alpha}$ and $\alpha=$ $(1+\sqrt{5}) / 2$. We shall also show how to select A and B for each N.

The Original Problem

Clearly, for a solution to the problem $A \geq B>0$, for if $B>A$, then the pair $A_{1}=B-A, B_{1}=A$ would yield a smaller s. Starting from A, B, we then obtain, successively, $A, B, A+B, \ldots, t, N$ and we now define, for each $t<N$, the sequence

$$
t_{0}=N, t_{1}=t, t_{n+2}=t_{n}-t_{n+1}, n \geq 0
$$

i.e., work backwards, so to speak, until we arrive at
$t_{k}=A+B, t_{k+1}=B, t_{k+2}=A, t_{k+3} \leq 0$.
Thus, the only choice at our disposal is t; k is then characterized by being the smallest integer for which $t_{k+3} \leq 0$, and our object is to choose t so as to minimize $s=t_{k}$.

Let α and β be the roots of $\theta^{2}=\theta+1$. Then $\alpha \beta=-1, \alpha+\beta=1$, and

$$
F_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)
$$

Then the roots of $\theta^{2}=1-\theta$ are $-\alpha$ and $-\beta$, so that, for suitable constants c and d,

$$
t_{n}=(-1)^{n}\left\{c \alpha^{n}+d \beta^{n}\right\}
$$

Using the initial conditions $t_{0}=N, t_{1}=t$, we then find that
(1) $\quad t_{n}=(-1)^{n}\left\{N F_{n-1}-t F_{n}\right\}$.

Also, for $n>0$,
(2)

$$
\alpha F_{n-1}-F_{n}=-\beta^{n-1}=(-1)^{n} \alpha^{-n+1}
$$

and so

RECURRENT SEQUENCES INCLUDING N

$$
\begin{equation*}
(-1)^{n}\left\{\alpha F_{n-1}-F_{n}\right\}>0 \tag{3}
\end{equation*}
$$

We now prove the following.
Theorem: Let

$$
t_{n}=(-1)^{n}\left\{N F_{n-1}-t F_{n}\right\}
$$

where $t_{k}=A+B, t_{k+1}=B, t_{k+2}=A$. Then $t=[n / \alpha]$ gives the smallest value for $t_{k}=A+B=s$ and

$$
s<2 \sqrt{(N / \alpha)} \simeq 1.5723 \sqrt{N}
$$

There are two cases. Suppose first that $N>\alpha$. Then

$$
t_{n}=(-1)^{n} t\left\{\alpha F_{n-1}-F_{n}\right\}+(-1)^{n}\{N-\alpha t\} F_{n-1}>(-1)^{n}\{N-\alpha t\} F_{n-1}
$$

so t_{n} can be negative or zero only if n is odd. Thus, k must be even, and if $k=2 K$, then $t_{2 K+1}>0, t_{2 K+3} \leq 0$. Thus, from (1)

$$
\frac{F_{2 K}}{F_{2 K+1}}<\frac{t}{n} \leq \frac{F_{2 K+2}}{F_{2 K+3}}
$$

and defining $\rho=N / \alpha-t>0$, we have

$$
\frac{F_{2 K+3}-\alpha F_{2 K+2}}{\alpha F_{2 K+3}} \leq \frac{\rho}{N}<\frac{F_{2 K+1}-\alpha F_{2 K}}{\alpha F_{2 K+1}}
$$

i.e., in view of (2),

$$
\begin{equation*}
\alpha^{2 K+1} F_{2 K+1}<N / \rho \leq \alpha^{2 K+3} F_{2 K+3} \tag{4}
\end{equation*}
$$

whence,

$$
\begin{aligned}
\alpha^{4 K+2}+1 & =\alpha^{2 K+1}\left(\alpha^{2 K+1}-\beta^{2 K+1}\right)<N \sqrt{5} / \rho \\
& \leq \alpha^{2 K+3}\left(\alpha^{2 K+3}-\beta^{2 K+3}\right)=\alpha^{4 K+6}+1
\end{aligned}
$$

so
(5) $\quad \alpha^{4 K+2}<N \sqrt{5} / \rho-1 \leq \alpha^{4 K+6}$.

Also, in this case,

$$
\begin{align*}
s=t_{2 K} & =N F_{2 K-1}-t F_{2 K} \tag{6}\\
& =N\left(F_{2 K-1}-F_{2 K} / \alpha\right)+\rho F_{2 K} \\
& =N / \alpha^{2 K}+\rho F_{2 K}=\xi+\eta, \text { say }
\end{align*}
$$

Of these two terms, ξ is always the larger; in fact, from (4), we have
(7) $\quad \frac{\alpha F_{2 K+1}}{F_{2 K}}<\frac{\xi}{\eta}=\frac{N}{\rho \alpha^{2 K} F_{2 K}} \leq \frac{\alpha^{3} F_{2 K+3}}{F_{2 K}}$,
whence

$$
\begin{equation*}
\alpha^{2}<\xi / \eta \leq \alpha^{6}+2|\beta|^{2 K-3} / F_{2 K} \tag{8}
\end{equation*}
$$

We now show that, for all $t<N / \alpha, t=[N / \alpha]$ gives the smallest value for s. For, let $t=[N / \alpha]$ and $t^{\prime}<t$ be any other integer, yielding, respectively, ρ, K, ξ, η, s and $\rho^{\prime}, K^{\prime}, \xi^{\prime}, \eta^{\prime}$, and s^{\prime}. Then $t^{\prime} \leq t-1$, whence $\rho^{\prime} \geq \rho+1$ and, in view of (5), $K^{\prime} \leq K$. If $K^{\prime}=K$, then $\xi^{\prime}=\xi$ and $\eta^{\prime}>\eta$, which gives $s^{\prime}>s$, whereas, if $K^{\prime}<K$, then

$$
s^{\prime}=\xi^{\prime}+\eta^{\prime}>\xi^{\prime} \geq \alpha^{2} \xi=(\alpha+1) \xi>\xi+\eta=s
$$

in view of (8). Moreover, using (7), we see that

$$
\begin{aligned}
\frac{s^{2}}{N} & =\frac{(\xi+\eta)^{2}}{N}=\frac{\xi \eta}{N}\left\{\frac{\xi}{n}+2+\frac{\eta}{\xi}\right\} \leq \frac{\rho F_{2 K}}{\alpha^{2}}\left\{\frac{\alpha^{3} F_{2 K+3}}{F_{2}}+2+\frac{F_{2 K}}{\alpha^{3} F_{2 K+3}}\right\} \\
& =\frac{\rho}{\alpha^{2 K+3} F_{2 K+3}}\left(\alpha^{3} F_{2 K+3}+F_{2 K}\right)^{2} \\
& =\frac{\rho(\alpha-\beta)}{\alpha^{4 K+6}+1}\left\{\frac{\alpha^{3}\left(\alpha^{2 K+3}-\beta^{2 K+3}\right)+\left(\alpha^{2 K}-\beta^{2 K}\right)}{(\alpha-\beta)}\right\}^{2} \\
& =\frac{\rho \alpha^{4 K+6}}{\alpha^{4 K+6}+1} \cdot \frac{\left(\alpha^{3}-\beta^{3}\right)^{2}}{(\alpha-\beta)}<4 \rho \sqrt{5} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
s<2 N^{1 / 2} \rho^{1 / 2} 5^{1 / 4} . \tag{9}
\end{equation*}
$$

The case in which $N<\alpha t$ is entirely similar. Suppressing the details we find that k must be odd, and if $k=2 M-1$, then with $\sigma=t-N / \alpha$, we obtain

$$
\begin{align*}
& \alpha^{2 M} F_{2 M}<N / \sigma \leq \alpha^{2 M+2} F_{2 M+2}, \\
& \alpha^{4 M}<N \sqrt{5} / \sigma+1 \leq \alpha^{4 M+4}, \\
& s=N / \alpha^{2 M-1}+\sigma F_{2 M-1}=\xi+\eta, \text { say } . \\
& \frac{F_{2 M}}{F_{2 M-1}}<\frac{\xi}{n}=\frac{N}{\sigma \alpha^{2 M-1} F_{2 M-1}} \leq \frac{\alpha^{3} F_{2 M+2}}{F_{2 M-1}}, \\
& \alpha^{2}-\beta^{4 M-3} \sqrt{5}<\xi / \eta<\alpha^{6} .
\end{align*}
$$

For all sufficiently large N,
(9') $s<2 N^{1 / 2} \sigma^{1 / 2} 5^{1 / 4}+0\left(N^{-1 / 2}\right)$.
At this stage we may immediately make the observation that, for any N, one of σ and ρ lies below $1 / 2$, and so (9) and (9^{\prime}) immediately give an upper bound of $(2 N \sqrt{5})^{1 / 2}+0\left(N^{-1 / 2}\right)$ or approximately $2 \cdot 115 N^{1 / 2}$. It is, however, possible to improve this.

Let us suppose that $\rho / \sigma=\alpha^{-2 \theta}$, so that

$$
\begin{equation*}
\rho=1 /\left(1+\alpha^{2 \theta}\right) \text { and } \sigma=\alpha^{2 \theta} /\left(1+\alpha^{2 \theta}\right) \tag{10}
\end{equation*}
$$

since $\sigma+\rho=1$. Then, if $\theta \geq 1-1 / N$, i.e., ρ is small, we use the inequality (9), and if $\theta \leq-1+1 / N$, i.e., σ is small, we use the inequality (9^{\prime}) and, in either case, obtain

$$
\begin{equation*}
s<2 N^{1 / 2} 5^{1 / 4} /\left(1+\alpha^{2}\right)^{1 / 2}+\mathrm{O}\left(N^{-1 / 2}\right)=\gamma N^{1 / 2}+\mathrm{o}\left(N^{-1 / 2}\right) \tag{11}
\end{equation*}
$$

as required. The remaining case is $|\theta|<1-1 / N$. Let $N \sqrt{5} / \rho-1=\alpha^{\lambda}$, and let $N \sqrt{5} / \sigma+1=\alpha^{\mu}$. Then a little manipulation yields

$$
2 \theta>\lambda-\mu>2 \theta-1 / N
$$

and so, certainly, $|\lambda-\mu|<2$. Then we have, from (5), that $\alpha^{\lambda}>\alpha^{4 K+2}$, i.e., $\lambda>4 K+2$ and, from (5'), that $4 M+4>\mu$. Since $\mu+2>\lambda, 4 M+6>4 K+2$ and so $M \geq K$. Similarly, we find that $M \leq K-1$, and so all in all $M=K$ or $K-1$; in other words, the values of k obtained from ρ or σ differ by exactly one. It is easy to see that whichever is the larger value would give the sharper bound for s, but there is no a priori way to determine which does indeed give the larger k. If it is $2 K$, then we can improve the bound given by (9), by observing that

$$
\lambda<\mu+2 \theta<4 M+4+2 \theta
$$

and so the upper bound for ξ / η given by (8) can be improved to $\alpha^{4+2 \theta}+0(1 / N)$ and then the same argument which led to (9) now leads to

$$
\begin{aligned}
\frac{s^{2}}{N}<\frac{\rho\left(\alpha^{2+\theta}+\alpha^{-2-\theta}\right)^{2}}{(\alpha-\beta)}+0(1 / N) & =\frac{\left(\alpha^{2 \theta}+\alpha^{-2-\theta}\right)^{2 \theta}}{\left(\alpha^{2}+1\right) \sqrt{5}}+0(1 / N) \\
& =f(\theta)+0(1 / N), \text { say } .
\end{aligned}
$$

In the same way, it is possible to improve the bound if the larger value is given by $2 M-1$, and the corresponding bound for s^{2} / N is just $f(-\theta)+0(1 / N)$. Since we do not know which of these will apply, we must take the larger one, i.e., $g(\theta)=\max \{f(\theta), f(-\theta)\}$. It is quite simple to see that $f(\theta)$ is an increasing function of θ and so the worst case arises from (1-1/N), the upper bound for $|\theta|$, giving

$$
s^{2} / N<4 / \alpha+0(1 / N),
$$

yielding (11) again. This concludes the proof of the theorem.
Now, we show that this bound cannot be reduced. Choosing $N=F_{2 n+1} F_{2 n+2}$, we find that

$$
\begin{aligned}
& {[N / \alpha]=\left(\alpha^{4 n+2}+\beta^{4 n+2}-3\right) / 5, \quad \rho=\left(\alpha+\beta^{4 n+3}\right) / \sqrt{5},} \\
& \sigma=-\left(\beta+\beta^{4 n+3}\right) / \sqrt{5}, \quad \lambda=4 n+2, \quad \mu=4 n+4,
\end{aligned}
$$

and so $K=n-1$ and $M=n$. Therefore, it follows that the latter gives the larger value for k, and that, in view of (9^{\prime}),

$$
\begin{aligned}
s & =N \alpha^{1-2 n}+\rho F_{2 n-1} \\
& =\frac{\left(\alpha^{2 n+1}-\beta^{2 n+1}\right)\left(\alpha^{2 n+2}-\beta^{2 n+2}\right)}{5 \alpha^{2 n-1}}-\frac{\left(\beta+\beta^{4 n+3}\right)\left(\alpha^{2 n-1}-\beta^{2 n-1}\right)}{5} \\
& =\frac{1}{5}\left\{\alpha^{2 n+4}+\beta^{2 n-2}-\beta^{2 n}-\beta^{6 n+4}+\alpha^{2 n-2}+\beta^{2 n}+\beta^{2 n+4}+\beta^{6 n+4}\right\} \\
& =\frac{1}{5}\left(\alpha^{2 n+1}-\beta^{2 n+1}\right)\left(\alpha^{3}-\beta^{3}\right)=F_{3} F_{2 n+1}=2 F_{2 n+1},
\end{aligned}
$$

and now

$$
\frac{s^{2}}{N}=\frac{4 F_{2 n+1}}{F_{2 n+2}}=\frac{4\left(\alpha^{2 n+1}-\beta^{2 n+1}\right)}{\left(\alpha^{2 n+2}-\beta^{2 n+2}\right)}>\frac{4}{\alpha} .
$$

This concludes the discussion of the original problem.

Generalizations

Several generalizations are now possible. the simplest of these consists of choosing a given integer $\alpha \geq 1$ and replacing the original relations by
(a1) the sequence $\left\{w_{n}\right\}$ defined by $w_{1}=A, w_{2}=B$, and $w_{n+2}=\alpha w_{n+1}+w_{n}$, $n \geq 1$, contains the integer N,
(b1) $s=a B+A$ is minimal.
This creates but minor changes in the working above. We now let $\alpha>0$ and $\beta<$ 0 be the roots of $\theta^{2}=\alpha \theta+1$ and then $\alpha \beta=-1, \alpha+\beta=\alpha, \alpha-\beta=\left(\alpha^{2}+4\right)^{1 / 2}$. We define F_{n} as before in terms of α and β, although, of course, F_{n} will no longer be the Fibonacci number. The effects of this are to replace $\sqrt{5}$ wherever it occurs by the new value of $\alpha-\beta$, and to replace the number $2=F_{3}$ in formulas (9), (9'), and (11) and in the value of γ, by $a^{2}+1$. The form of the result remains identical, with

$$
\gamma=\left(\alpha^{2}+1\right) / \sqrt{\alpha} \text { and } \alpha=\left(\alpha+\left(\alpha^{2}+4\right)^{1 / 2}\right) / 2
$$

The details are omitted.
The next generalization we consider consists of replacing the original relations by
(a2) the sequence $\left\{w_{n}\right\}$ defined by $w_{1}=A, w_{2}=B$, and $w_{n+2}=\alpha w_{n+1}-w_{n}$, $n \geq 1$, contains the integer N,
(b2) $s=a B-A>0$ is minimal.
Here the integer a cannot be 1 , otherwise any such sequence would contain only six distinct numbers, or 2 , otherwise the problem becomes trivial since we could always take $w_{1}=1, w_{2}=2$, and then $w_{N}=N$ with $s=3$. So we assume that $\alpha \geq 3$. We now let the roots of $\theta^{2}=\alpha \theta-1$ be

$$
\alpha=\left(\alpha+\left(\alpha^{2}-4\right)^{1 / 2}\right) / 2 \text { and } \beta=\left(\alpha-\left(\alpha^{2}-4\right)^{1 / 2}\right) / 2
$$

and then $\alpha \beta=1, \alpha+\beta=\alpha$, with

$$
0<\beta<1<\alpha \text { and } \alpha-\beta=\alpha=\left(\alpha^{2}-4\right)^{1 / 2}
$$

Again we let $F_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$, and proceeding as before we let the integer in the sequence before N be t, and obtain $A, B, \alpha B-A, \ldots, t$, N, and so, if $t_{0}=N, t_{1}=t, t_{n+2}=a t_{n+1}-t_{n}$, we get a reverse sequence where

$$
\begin{align*}
& t_{n}=t F_{n}-N F_{n-1} \tag{12}\\
& F_{n}-\alpha F_{n-1}=\beta^{n-1}>0 \tag{13}\\
& t_{n}=-(N-t \alpha) F_{n-1}+t \beta^{n-1} \tag{14}
\end{align*}
$$

What happens now depends on the sign of $(N-t \alpha)$.
Case I. $N>t \alpha$. Then, eventually, t_{n} becomes negative, and we find that

$$
s=F_{k}, F_{k+1}=B, F_{k+2}=A, \text { and } F_{k+3} \leq 0
$$

All this parallels the previous work with only minor differences, and if $\rho=$ $N / \alpha-t$, then we find that

$$
\begin{align*}
\alpha^{2 k+6} & \geq 1+N(\alpha-\beta) / \rho>\alpha^{2 k+4} \tag{15}\\
s=t_{k} & =t F_{k}-N F_{k-1} \tag{16}\\
& =N\left(F_{k} / \alpha-F_{k-1}\right)-\rho F_{k} \\
& =N / \alpha^{k}-\rho F_{k}=\xi-\eta, \text { say. } \\
\alpha^{4}<\xi / \eta & <\alpha^{6}+o(1 / N) . \tag{17}
\end{align*}
$$

Unfortunately, it is no longer necessarily the case that $s^{\prime}>s$ whenever $t^{\prime}<t$ $=[N / \alpha]$. For we have $t^{\prime} \leq t-1$, whence $\rho^{\prime} \geq \rho+1$, and so, in view of (15), $k^{\prime} \leq k$. Now, if indeed $k^{\prime}<k$, then $s^{\prime}>s$, for

$$
s^{\prime}=\xi^{\prime}-\eta^{\prime}>\xi^{\prime}\left(1-1 / \alpha^{4}\right) \geq \alpha \xi\left(1-1 / \alpha^{4}\right)>\xi>\xi-\eta=s
$$

However, if $k^{\prime}=k$, then $s^{\prime}<s$, since now $\rho^{\prime}>\rho$. Although this is true, we shall see presently that it causes no problems, for then $\rho^{\prime}>1$, and in such a case a choice with $t>N / \alpha$ would always yield a smaller s. In any event, we obtain a result analogous to (9),

$$
(18)
$$

$$
\begin{equation*}
s<\left(\alpha^{2}-1\right) N^{1 / 2} \rho^{1 / 2}\left(\alpha^{2}-4\right)^{1 / 4}+0\left(V^{-1 / 2}\right) \tag{18}
\end{equation*}
$$

Case II. $N<t \alpha$, is entirely different. Let $t=N / \alpha+\sigma$. Then

$$
t_{n}=t \beta^{n-1}+\sigma \alpha F_{n-1}
$$

is positive for all $n>0$, and we now need to choose $k=K$ to minimize $s=t_{k}$. Then $t_{K} \leq t_{K+1}$ gives, in view of (12),

$$
N\left(F_{K}-F_{K-1}\right) \leq\left(F_{K+1}-F_{K}\right) t=\left(F_{K+1}-F_{K}\right)(N / \alpha+\sigma)
$$

and so, using (13),

$$
\left(F_{K+1}-F_{K}\right) \sigma \geq N\left(\beta^{K}-\beta^{K+1}\right)
$$

and so

$$
(1-\beta)\left(\alpha^{K+1}+\beta^{K}\right) \sigma \geq N(\alpha-\beta)(1-\beta) \beta^{K}
$$

which, together with a similar inequality obtained from $t_{K} \leq t_{K-1}$ yields

$$
\begin{equation*}
\alpha^{2 K-1} \leq N(\alpha-\beta) / \sigma-1 \leq \alpha^{2 K+1}, \tag{19}
\end{equation*}
$$

and then

$$
\begin{aligned}
s=t_{K} & =t F_{K}-N F_{K-1} \\
& =(N / \alpha+\sigma) F_{K}-N F_{K-1} \\
& =N / \alpha^{K}+\sigma F_{K}=\xi+n, \text { say. }
\end{aligned}
$$

In this case, it is clear that the smallest s is provided by taking σ as small as possible, and we find, using (19), that the ratio η / ξ lies between α and $\left(\alpha^{2 K}-1\right) /\left(\alpha^{2 K+1}+1\right)<1 / \alpha$, and so we obtain, as before,

$$
\begin{aligned}
\frac{s^{2}}{N} & =\frac{(\xi+\eta)^{2}}{N}=\frac{\xi \eta}{N}\left\{\frac{\xi}{\eta}+2+\frac{\eta}{\xi}\right\} \\
& \leq \frac{\sigma F_{K}}{\alpha^{K}}\left\{\frac{\alpha^{2 K}-1}{\alpha^{2 K+1}+1}+2+\frac{\alpha^{2 K+1}+1}{\alpha^{2 K}+1}\right\} \\
& =\frac{\sigma \alpha^{2 K+1}(+1)}{\left(\alpha^{2 K+1}+1\right)(\alpha-1)}<\frac{\sigma(\alpha+1)}{(\alpha-1)} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
s<N^{1 / 2} \sigma^{1 / 2}\left\{\frac{1+\beta}{1-\beta}\right\}^{1 / 2} \tag{20}
\end{equation*}
$$

and this bound is much better than that provided by (18) unless ρ is extremely small, certainly less than 1 . This justifies our earlier remark that we need only consider the smallest value of ρ. Since, at any rate, we can always take $\sigma<1$ in (20), we obtain immediately

$$
s<N^{1 / 2}\left\{\frac{1+\beta}{1+\beta}\right\}^{1 / 2} .
$$

This can be improved slightly, and we prove that $s<N^{1 / 2} \delta$, where

$$
\delta^{2}=\frac{1+\beta}{1-\beta} \frac{1}{1+\beta^{3}} .
$$

As before, we define θ by $\rho / \sigma=\alpha^{-2 \theta}$ obtaining (10), and define λ and μ by

$$
N(\alpha-\beta) / \rho-1=\alpha^{\lambda} \text { and } N(\alpha-\beta) / \sigma+1=\alpha^{\mu} \text {, }
$$

whence

$$
2 \theta<\lambda-\mu<2 \theta+1 / N .
$$

If now $\theta \leq 3 / 2$, then $\sigma \leq\left(1+\beta^{3}\right)^{-1 / 2}$ and then (20) gives the required result, whereas if $\theta>5 / 2-1 / N$, then we find that

$$
\rho^{2}<\beta^{5} /\left(1+\beta^{5}\right)+0(1 / N)
$$

and then, using (18), we find that

$$
\frac{s^{2}}{N}<\frac{\left(\alpha^{3}-\beta^{3}\right)^{2}}{\alpha-\beta} \frac{\beta^{5}}{1+\beta^{5}}+0(1 / N)
$$

and since $\beta<1$, the result easily follows. The remaining case is where

$$
3<\lambda-\mu<5
$$

and then, in view of (15) and (19), we find that $2 k<\lambda-4$ and $2 K \geq \mu-1$, whence

$$
2(K-k)>\mu-\lambda+3>-2,
$$

and so, since both k and K are integers, $K \geq k$. Thus, from (16) and (19), we find that

$$
s<N / \alpha^{k} \leq N / \alpha^{K}<N^{1 / 2}\left(1-\beta^{2}\right)^{-1 / 2}+0\left(N^{-1 / 2}\right)
$$

and again the result follows.
The following example shows that the result is best possible. Let $N=$ $\left(F_{n+1}-F_{n}\right) L$, where the integer L is to be chosen later. Then

$$
\begin{aligned}
N / \alpha & =\frac{L}{\alpha-\beta}\left\{\alpha^{n}-\alpha^{n-1}-\beta^{n+2}+\beta^{n+1}\right\} \\
& =\left(F_{n}-F_{n-1}\right) L-L \beta^{n}(1-\beta)
\end{aligned}
$$

and so

$$
[N / \alpha]=\left(F_{n}-F_{n-1}\right) L-1,
$$

provided that $L \beta^{n}(1-\beta)<1$. It is easily seen that this latter condition is equivalent to $L \leq F_{n+1}+F_{n}$, so we let $L=F_{n+1}+F_{n}-x$, where $x \geq 0$ is to be chosen later. If we now take $t=\left(F_{n}-F_{n-1}\right) L=[N / \alpha]$, then

$$
t_{r}=\left(F_{n-r+1}-F_{n-r}\right) L
$$

so the least $t_{r}=t_{n}=t_{n+1}=L$. On the other hand, if $t=[N / \alpha]-1$, then

$$
t_{r}=\left(F_{n-r+1}-F_{n-r}\right) L-F_{r},
$$

so

$$
\begin{aligned}
& t_{n}=L-F_{n}=F_{n+1}-x \\
& t_{n+1}=L-F_{n+1}=F_{n}-x \\
& t_{n+2}=F_{n-1}-x(\alpha-1)
\end{aligned}
$$

and
Now, if we choose x to be the least integer $\geq F_{n-1} /(\alpha-1)$, then we find that $k=n-1$, and the value of t_{k} exceeds L, the value given for s by the other choice. Hence, for such an N, we obtain

$$
\begin{aligned}
\frac{s^{2}}{N}=\frac{F_{n+1}+F_{n}-x}{F_{n+1}-F_{n}} & =\frac{(\alpha-1)\left(F_{n+1}+F_{n}\right)-F_{n-1}}{(\alpha-1)\left(F_{n+1}-F_{n}\right)}+0(1) \\
& =\frac{\alpha F_{n+1}-F_{n}}{(\alpha-1)\left(F_{n+1}-F_{n}\right)}+0(1) \\
& =\frac{\left(1+\beta^{2}\right)-\beta^{2}}{\left(1-\beta+\beta^{2}\right)(1-\beta)}+0(1) \\
& =\frac{1+\beta}{1-\beta} \frac{1}{1+\beta^{3}}+0(1)=\delta^{2}+0(1), \text { say. }
\end{aligned}
$$

Thus, letting $n \rightarrow \infty$, we find that $s<N^{1 / 2} \delta+O\left(N^{-1 / 2}\right)$.

Reference

1. "Leisure Lines." Personal Computer World 11.3 (1988):211.

$* * * * *$

