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Introduction 

In this paper we study a problem related to Fermat?s last theorem. Suppose 
that J, Y, and Z are positive numbers where 

(1) Xa + Ya = Za. 

We show that we can solve this equation for a; that is, we find a unique 

a = a(X, Y, Z) 

in closed form. The method of solution is rather elementary, and we employ 
Wright's generalized hypergeometric function in one variable [1], as defined 
below: n 

p^q 
(al5 Ax), . . . , (ap, Ap); 

L(31 s Bi), ..., (3<7» Bq) i 

When p = q = 1, we see that 

fl r(ai + Ain) 
Z i = 1 
n FI r(3^ + Bin) 

n\ 

i= 1 

(2) 1*1 

(a , A); 

. (3 , B); 
E r ( a + i4n) 3 n 

n= 0 r ( 3 + Bn) n\9 

which i s a g e n e r a l i z a t i o n of the conf luen t hypergeomet r ic func t ion ^ ^ [ a j B ; z] , 

An Equ iva len t Form of Equa t ion (1) 

In Equat ion ( 1 ) , t he case X = Y i s not i n t e r e s t i n g s i n c e , c l e a r l y , 
l n ( l / 2 ) 
l n ( J / Z ) ' 

The re fo r e , we s h a l l assume, wi thou t l o s s of g e n e r a l i t y , t h a t 

Z > Y > X > 0 , 

and w r i t e Equat ion (1) as 
e a InU/Z) + ea ln(Y/Z) - 1 = 0. 

Now, making the transformation 
(3) ealn(Y/Z) = y^ 

we o b t a i n 
InU/Z) 

2/ ln(7/Z) + z/ - 1 = 0, 
and s i n c e 

l n ( J / Z ) l n ( Z / J ) 
l n ( J / Z ) l n ( Z / J ) 

we a r r i v e a t 
ln(Z/X) 

(4) ylniZ/Y) + z/ - 1 = 0. 
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Equat ion (4) i s then e q u i v a l e n t to Equat ion ( 1 ) , and our aim i s to so lve t h i s 
equa t i on for y , t he reby o b t a i n i n g a . We no t e t h a t i t i s no t d i f f i c u l t to 
v e r i f y t h a t Equat ion (4) has a unique p o s i t i v e r o o t y i n the i n t e r v a l ( 1 / 2 , 1) . 

Solution of Equa t ion (4) 

In 1915, Me11in [2 , 3] i n v e s t i g a t e d c e r t a i n t r ans fo rm i n t e g r a l s named a f t e r 
him i n connec t ion wi th h i s s tudy of the t r i n o m i a l equa t i on 

(5) ,N 1 = 0, N > P , yL" + xyl 

where x is a real number and N9 P are positive integers. Mellin showed that, 
for appropriately bounded x9 a positive root of Equation (5) is given by 

F{z)x'zdz9 0 < c < 1/P, (6) 
where 

y - \ 
2T\% JC-

r(;s)r 
F(z) U NV 

NT 1 + - + 
N (> - §> 

k l < (p/N)-p/Na - P / / I / ) P / / V _ 1 < 2. 
and 

(7) 
The inverse Mellin transform, Equation (6), is evaluated by choosing an appro-
priate closed contour and using residue integration to find that 

(8) il+ h) (-*)* 

1 + 
N (I" •)' 

Under the condition shown in Equation (7), Mellin, in fact, found all of 
the roots of Equation (5). However, suppose we relax the restriction that N 
and P are positive integers. Instead, let N and P be positive numbers. We 
then observe that Equation (8) gives a fortiori a positive root of Equation (5) 
for positive numbers N and P. Further, without loss of generality, we set P = 
1, N = w. Then, using the Wright function defined by Equation (2), we arrive 
at the following. The unique positive root of the transcendental equation 

(9) y« + xy 
where 

\x\ < a)/(a 
is given by 

1 = 0, a) > 1, 

1) 1-1/ 0 3 

(10) 1*1 
L5 J ; 

(± +l,±-l); 

We observe that for any \x\ < °°, Equation (9) has a unique positive root y. 
Equations (9) and (10) may also be obtained from Equation (30) on page 713 of 
[4]. 

Let us now apply the latter result to Equation (4). On setting 

l n ( Z / J ) 
x = 1, co" • 1 = A, 

l n ( Z / J ) 
and r iot ing t h a t 1 < 03/(03 - l ) 1 _ 1 / a ) , we f ind 
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(ID y = A ^ , 0 < A < 1. 
(A, A) ; 

(A + 1, A - 1); 

Solution of Equation (1) 

We now solve Equation (1) for a. From the transformation Equation (3), we 
see that 

(12) a ln(J/Z) = In y. 

Then, using Equation (11), we arrive at the following. If Z > Y > X > 0 are 
such that 

Xa + Ya = Za, 
then 

(13) 

where 

(14) 

ln<* A 
(A, A) ; 

(A + 1, A - 1); 

lnCZ/Z) 

ln(Z/J) 
A = )„.„', 0 < A < 1. 

ln(Z/J)' 

We now prove the following. Consider for X < J, M ^ 1, the diophantine 
equation 

XM + YM = ZM. 

Then the positive integers X, J, and Z must satisfy 
(15) XxY~1Zl~x = 1, 

where A is an irrational number such that 0 < A < 1. 
From Equation (12) we have 

(16) (Y/Z)M = y, 

so that y is a rational number in the interval 1/2 < y < 1 as we noted earlier. 
If A is rational, there exist relatively prime integers s and t such that 

A = OJ"1 = sit. 

Hence, y i s the unique p o s i t i v e r o o t of 

2/*/fi + y - 1 = 0. 
Now, since A < 1, then s < t , and we obtain the polynomial equation of degree t 
with integer coefficients: 

yt + (-1)8^8 + + 1 0. 

The only positive rational root that this equation may have is y = 1 (see [5], 
p. 67). But y < 1, so the assumption that A is rational leads to a contradic-
tion. We have then that A is irrational, and Equation (15) follows from Equa-
tion (14). This proves our result. W. P. Wardlaw has given another proof that 
A is irrational in [6]. 

The Wright function ^± appearing in Equation (13) depends only on the par-
ameter A. Thus, for brevity, we define 

nA) 1*1 

(A, A) ; 

(A + 1, A - 1); 
, 0 < A < 1* 
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From our p rev ious r e s u l t , we see t h a t , i f Fe rma t f s theorem* i s f a l s e , then 
t h e r e e x i s t p o s i t i v e i n t e g e r s X < Y < Z such t h a t A i s i r r a t i o n a l . 

The re fo re , Fe rma t f s theorem i s f a l s e i f and only i f t h e r e e x i s t p o s i t i v e 
i n t e g e r s Y < Z, M > 2 , and an i r r a t i o n a l number X (0 < A < 1) such t h a t 

(Y/Z)M = A¥(A). 
Thus, Fermat's conjecture may be posed as a problem involving the special func-
tion A¥(A). We remark that recently, Fermatfs conjecture has been given in 
combinatorial form [7]. 

Some Elementary Properties of A¥(A) 

Although the series representation for A¥(A), which follows below in Equa-
tion (17), does not converge for X = 0, 1, it is natural to define 

X¥(A) 
A = 1 

1/2, AY(A) 1. 
A= 0 

Using this definition, we give a brief table of values for AW(A), which is cor-
rect to five significant figures: 

X A¥(A) 

0.0 1.00000 
0.1 0.83508 
0.2 0.75488 
0.3 0.69814 
0.4 0.65404 
0.5 0.61803 

X AW(A) 

0.6 0.58768 
0.7 0.56152 
0.8 0.53860 
0.9 0.51825 
1.0 0.50000 

Observe that we may write the inverse relation 

A = In AY(A)/ln[l - AY(A)]. 

Note also that when A = 1/2, oo = 2 and Equation (9) becomes y2 + y - 1 = 0, whose 
positive root is (-1 + /5)/2. 

The following series representations for AW (A) , 0 < A < 1 may easily be de-
rived from the first one below: 

(17) 

(18) 

(19) 

(20) 

A^x 
(A, A) 

(A + 1, A - 1); 
-1 - *E (-Dn r(A + An) 

rf^o n\ T(A + 1 + (A - l)n) 

(-Dn sin[ir(1 - X)n]B(Xns n - An) 
'n" n = l (1 - A)n - 1 

n= 0 

1 + A y (~}}l(xa + n) " l ) 
n=i n \ n - 1 / 

Equation (18) follows from Equation (17) by using 

T(z)T(-z) = -TT/S sin i\z; 

B(x, y) is the beta function. Equation (19) follows from Equation (17) by using 
Gauss's theorem for 2

Fl\-a> b\ a; 1]. Equation (20) follows from Equation (17) by 
using /«\ 

"Fermat1s theorem states that there are no integers x, y, z > 0, n > 2 such that xn + yn - zn . 
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Equation (20), for 1/A an integer greater than one, is due to Lagrange ([2], p. 
56). 

Conclusion 

The equation Ia + Ja = Za has been solved for a as a function of I, Y, and 
Z in terms of a Wright function -^\ with negative unit argument. An equivalent 
form of Fermatfs last theorem has been given using this function. Further, 
some elementary properties of -^\ have been stated. 
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