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1. Introduction

Let U = {U,};_, be a Lucas sequence defined by integers Uy =0, U; = 1, P,
@, and by the recursion

Uy4+1 = PU,, - QU,_y, for n 2 1.
The polynomial
f(xz) = 22 - Px + @

with discriminant

D = P2 - 4q
is called the characteristic polynomial of the sequence U. 1In the case where
P = -g =1, the sequence U is the Fibonacci sequence and we denote its terms by
FO) F]_: Fz,

Let p be an odd prime with pXQ and let ¢ > 1 be an integer. The positive
integer u = u(p?¢) is called the rank of apparition of p¢ in the sequence U if
p¢|U, and peIUm for 0 < m < u; furthermore, % = %u(p®) is called the period of
the sequence U modulo p¢ if it is the smallest positive integer for which U; = 0
and Uz4; = 1 (mod p€). 1In the Fibonacci sequence, we denote the rank of appa-
rition of p¢ and period of F modulo p¢ by f(p¢) and f(p¢), respectively.

Let the number g be a primitive root (mod p¢). If x = g satisfies the con-
gruence

(1) fx) = 22 = Px+ @ = 0 (mod pé),

then we say that g is a Lucas primitive root (mod p¢) with parameters P and §.
Throughout this paper, we shall write '"Lucas primitive root mod pe" without
including the phrase, "with parameters P and §," if the sequence U is given.
This is the generalization of the definition of Fibonacci primitive roots (FPR)
modulo p that was given by D. Shanks [6] for the case P = - = 1.

The conditions for the existence of FPR (mod p) and their properties were
studied by several authors. For example, D. Shanks [6] proved that if there
exists a FPR (mod p) then p = 5 or p = #1 (mod 10); furthermore, if p # 5 and
there are FPR's (mod p), then the number of FPR's is two or one, according to
whether p = 1 (mod 4) or p = -1 (mod 4). In [7], D. Shanks & L. Taylor have
shown that if g is a FPR (mod p) then g - 1 is a primitive root (mod p). M. J.
DeLeon [4] proved that there is a FPR (mod p) if and only if f(p) =p - 1. 1In
[2] we studied the connection between the rank of apparition of a prime p and
the existence of FPR's (mod p). We proved that there is exactly one FPR (mod
p) if and only if f(p) =p - 1 or p = 5; moreover, if p = 1 (mod 10) and there
exist two FPR's (mod p) or no FPR exists, then f(p) < p - 1. M. E. Mays [5]
showed that if both p = 60k - 1 and g = 30k - 1 are primes then there is a FPR
(mod p).

*This research was partially supported by Hungarian National Foundation for Scientific Research
Grant No. 907.
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The purpose of this paper is to give some connections among the rank of
apparition of p¢ in the Lucas sequence U, the period of U modulo p¢, and the
Lucas primitive roots (mod p¢); furthermore, we show necessary and sufficient
conditions for the existence of Lucas primitive roots (mod p¢). 1In the case in
which P = - = e = 1, our results reproduce and improve upon some results for
FPR's (mod p) mentioned above.

We shall prove the following two theorems.

Theorem 1: Let U be a Lucas sequence defined by integers P # 0 and ¢ = -1, let
p be an odd prime with pID = P2 + 4, and let e > 1 be an integer. Then there
is a Lucas primitive root (mod p¢) if and only if

u(p®) = ¢(p°),
where ¢ denotes the Euler function. There is exactly one Lucas primitive root

(mod p¢) if u(p®) = ¢(peé and p = -1 (mod 4), and there are exactly two Lucas
primitive roots (mod p¢) if u(p?) = ¢(p¢) and p = 1 (mod 4).

Theorem 2: Let U be a Lucas sequence defined by integers P # 0 and @ = -1, let
p be an odd prime with p*D = P2 + 4, and let e > 1 be an integer. Then there
is exactly one Lucas primitive root (mod p¢) if and only if u(p®) = ¢(p¢) and
p = -1 (mod 4), and exactly two Lucas primitive roots (mod p¢) exist if and
only if

1 (med 8)

u(p® = ¢(p¢)/2 and p

or
upe) = ¢(pe)/4 and p =5 (mod 8).

From these theorems, some other results follow.
Corollary 1: 1f U, p, and e satisfy the conditions of Theorem 2 and
u(pe) = ¢(pe))

then g is a Lucas primitive root (mod p¢) if and only if x = g satisfies the
congruence

(2) U,z + Uy-; = -1 (mod pe),
where n = ¢(p®) /2.

Corollary 2: 1f U, p, and e satisfy the conditions of Theorem 2 and g is a Lucas
primitive root (mod p¢), then g - P is a primitive root (mod p¥?).

Corollary 3: 1f P = 0 is an integer and both g and p = 2g + 1 are primes with
conditions plP and (D/p) = 1, where D = P2 + 4 and (D/p) is the Legendre sym-
bol, then there is exactly omne Lucas primitive root (mod p) with parameters P
and @ = -1.

2. Known Results and Lemmas

Let U be a Lucas sequence defined by nonzero integers P and ¢, and let
D = P2 - 4@ be the discriminant of the characteristic polynomial of U. 1If p is
an odd prime with p*Q and ¢ > 1 is an integer, then, as is well known, we have:

(1) Un
(ii) U, = 0 and U,,; = 1 (mod p¢) if and only if %(p®)|n;

0 (mod p®) if and only if u(p®)|n;

(iii) u(p) = p if p|D,
u(p)]p - (D/p) if p*D, where (D/p) is the Legendre symbol;

(iv) a(p®) = u(p) * p® ¥if U@) = - = ©(@" = u@**!) and e 2 k;
(v) u(p) |u(p);
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(vi) Let u(p®) = 2%' and d(p?®) = 264", where d(p¢) denotes the least positive
integer d for which Q4 = 1 (mod p¢) and u', d' are odd integers. We have

A(pe [u(p®), d(p¢)] if a=b > 0,
u =
2[u(p®), d(pe)] if a = b,

where [x, y] denotes the least common multiple of integers x and y. (For
these properties of Lucas sequences, we refer to [1], [3], [8]).

First, we note that congruence (1) is solvable if and only if the congru-
ence yzz D = p?2 - 4g (mod p®€) has solutions. Thus, in case pID, congruence (1)
is solvable if and only if (D/p) = 1; furthermore, if (D/p) = 1, then (1) has
two distinct solutions (mod p¢9).

Let p be an odd prime for which (D/p) = 1 and let g; and g, be the two dis-
tinct solutions of (1). Then we have

(3) g1 - go # 0 (mod p),

(4) g1+t g2 =P g192 = @ (mod p€);

furthermore, it can easily be seen by induction that

(5) gg = U,g; - QUy-1 (mod pé) (=1, 2)

for every integer m > 1. Let n; = n;(p®) be the least positive integer for
which

g;i = 1 (mod pé).
We may assume that ny(p®) 2 n,(p°).

Lemma 1: If p is an odd prime with conditions p[Q, (D/p) = 1, and e is a posi-
tive integer, then

u(pe) = [n1(pe), ny(pe1.

Proof: Since (D/p) = 1, congruence (1) has two distinct solutions g; and g,
which belong to the exponents n; = n;(p¢) and n, = n,(p¢) (mod p¢). Let % =
u(p®) and g = [ny, ny]. The definition of % implies that

1 = Uﬁ+l = PUyz - QUﬁ_l = _QUE—I (mod pe);
therefore, by (5), for © = 1 and © = 2, we have
gl = Ug. - QUz_y = -QUz_; = 1 (mod p®)
and so q|% follows.
On the other hand, by (5) and the definition of ¢, we have
- 9 q -
Uggr = Ugg2 = g1 = g2 = 0 (mod p®),
which with (3) implies U; = 0 (mod p?). Thus,
_ _ _ 9 _
Uq+1 = PUq - QUq—l = _QUq—l = Uqgl - 'QUq—'l = g1 = 1 (mod pg),
and so, by (ii), we have & = q.

Lemma 2: Let @ = -1 and D = P2 + 4. 1If p is an odd prime with (D/p) =1 and e
is a positive integer, then

]

n1 (P9 = ny(p®) = 4u(p®) 4if u(p®) # 0 (mod 2)
u(pe) =<n1(p¢) = ny(p®) 2u(pe) if u(p®) = 0 (mod 4)
ny1(pé) 2ny(p€) = u(p®) if u(p® = 2 (mod 4).

Proof: Since @ = -1 and p is an odd prime, we have d(p¢) = 2. Thus, by (vi),
we have
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by 1if u = u(® #0 (mod 2)
(6) u =70 =<2u if u = u(p®) = 0 (mod &)
u if u = u(®e) = 2 (mod 4).

Since (D/p) = 1, congruence (1) has two distinct solutions, g1 and g,, which
belong to exponents n; = n,(p¢) and n, = ny(p¢) modulo pe.
If ny = np = n, then, by (4), we have

1= (g,90" = @"= (-1)" (mod p®)

and so n = 2m, where m is a positive integer. Now it can easily be seen that
g7 = gg = -1 (mod p®); thus, by (5), it follows that
Upgy = Uyg, = g = g5 = 0 (mod p®).
By (3) and (i), it follows that uim. Hence, 2u|n. On the other hand, by Lemma
1, % = n and so Zulﬂ; therefore, by (6), we have 7 = n = 4u if y # 0 (mod 2) or
“u=mn=2u if u = 0 (mod 4), since in the third case the relation Zulﬁ cannot
be satisfied.
Now let n; > np. 1In this case, we have g%"zz 1 (mod p®) and

1% g;‘Z = (glgg)m Q" = (1) (mod pey.

Thus, 7, is an odd integer; furthermore, n1|2n2. By our assumption, it follows
that »n; = 2n, . Thus, by Lemma 1, W = n; = 2n, follows, and, by (6), we obtain
U =mny =2n, =u, because ¥ = 2n, = 2 (mod 4). This completes the proof.

[
i

1

3. Proofs of Results

Proof of Theorem 1: 1f there exists a Lucas primitive root (mod p¢), that is,
if congruence (1) is solvable and n;(p?¢) = ¢(pe) or ny(p¢) = ¢(p¢), then (D/p)
= 1 and, by Lemma 1, using the relation ni]¢(pe), we get

upe) = ¢(p9.

Now assume that %(p¢) = ¢(p?) = pe'l(p - 1). Using (iv) we get u(p)=p - 1
and using (iii) and (v) we have

u()| (@ - 1, p - (0/p).
If (D/p) = -1, then u(p) = 2 and so p|P = U,. From this

(D/p) = ((P2 + &)/p) = (4/p) =1,
a contradiction. Thus, (D/p) = 1 and (1) is solvable.

If p = -1 (mod 4), then u(p®) = 2 (mod 4). By Lemma 2, we have

u(p®) = n1(p = 2ny(p°) = ¢(p°),

which proves that in this case there is exactly one Lucas primitive root (mod
e

v ).If p =1 (mod 4), then %(p?¢) = 0 (mod 4). In this case, by Lemma 2,

u(p®) = ny1(pe) = ny(p®) = ¢(p°)>
which proves that there are exactly two Lucas primitive roots (mod p¢). This
completes the proof.

Proof of Theorem 2: If there is exactly one Lucas primitive root mod p¢, that
is, congruence (1) is solvable and n;(p¢) = ¢(p®), ny(p? < ¢(p°), then (D/p) =
1. By Lemma 2, we have

u(p®) = n1(p° = 2n(p®) = uP®) = ¢(p°)
and p = -1 (mod 4).

1991] 69



LUCAS PRIMITIVE ROOTS

If u(p?) = ¢(p®) and p = -1 (mod &), then u(pe) = 2 (mod 4). TUsing (6), we
have 7i(pe¢) = u(pe¢) = ¢(pe); thus, by Theorem 1, it follows that there exists
exactly one Lucas primitive root (mod p¢).

Now we assume that there are exactly two Lucas primitive roots (mod p¢).
Then (D/p) = 1 and, by Lemma 2, we have

¢(pe)/2 4if ¢(pe)/2 = 0 (mod 4)

u(p®)
or

u(p®) = ¢(e)/4 if ¢(pe)/4 # 0 (mod 2).

It follows that u(p?¢) = ¢(p?)/2 and p =1 (mod 8) or u(p?) = ¢(p¢)/4 and p
(mod 8).

If u(p® = ¢(p¢)/2 and p = 1 (mod 8) or u(p¢) = ¢(p°)/4 and p = 5 (mod 8),
then u(p¢) = 0 (mod 4) or u(peé) Z 0 (mod 2). By (6), we get u(p¢) = ¢(p?).
From this, using Theorem 1, it follows that in this case there are exactly two
Lucas primitive roots (mod p€).

5

Hy

Proof of Corollary 1: If g is a Lucas primitive root (mod p¢), then
g¢(pe)/2 = -1 (mod pe);

thus, by (5), x = g satisfies congruence (2).
Let n = ¢(p®)/2 and let g be an integer satisfying the congruence

(7) U,g + Uy,-1 = -1 (mod p°?).
From this it follows that

(8) WUg + U,_)? = UZ(g? = Pg = 1) + Uyg(PU, + 20, ) + (U + UZ_y)
= 1 (mod p?®).
It is well known that
- = 2 _ 2 =
(9 U,(PU, - 2QU, ) = U, ~ and UZ-@QU2_, =10,
for any integer n > 1. 1In our case, § = -1 and u(p®) =¢(p®) = 2n; therefore, by
(8) and (9)

(10) U2(g2 = Pg = 1) + Uy, _; = 1 (mod p®)
follows. But

(1) Uy, =Up,yy - PUy, = U, .1 =1 (mod pe),

2n-1
since, by the condition u(p¢) = ¢(p®) = 2n, as we have seen above, we have
u(p®) = ¢(p®) = 2n = u(pe); furthermore, it can easily be seen that p*Un, S0,

by (10) and (11), we get

92 - Pg-1=0 (mod pe).
Thus, by (5) and (7), we have
(12) gt =U,g+U,-y = -1 (mod pe).

By Lemma 2, using the condition u(p¢) = ¢(p®) and (12), it follows that g be-
longs to the exponent u(p®) = ¢(p¢) modulo pe, that is, g is a Lucas primitive
root (mod pe).

Proof of Corollary 2: 1f g is a primitive root (mod p¢) and g2 = Pg + 1 (mod
p€), then g(g = P) = 1 (mod p?). This shows that g - P is a primitive root
(mod pe).

Proof of Corollary 3: Using Lemma 2, by our assumptions we have
u(p) = 29 =p - 1.

Using Theorem 2, this proves that there exists exactly one Lucas primitive root
(mod p).
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