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1. Introduction 

Let U = {Un}^=0 be a Lucas sequence defined by integers UQ = 0, £/]_ = 1, P, 
Q, and by the recursion 

Un+1 = PUn - QUn.l9 for n > 1. 

The polynomial 

/(a?) = x2 - Px + § 

with discriminant 

D = Pz - UQ 

is called the characteristic polynomial of the sequence U. In the case where 
P = -g = 1, the sequence U is the Fibonacci sequence and we denote its terms by 
F0, Fl9 F2, ... . 

Let p be an odd prime with p\Q and let e > 1 be an integer. The positive 
integer u = u(pe) is called the rank of apparition of pe in the sequence U if 
pe\Uu and pe\Um for 0 < m < u; furthermore, u = u(pe) is called the period of 
the sequence U modulo pe if it is the smallest positive integer for which U^ E 0 
and #fz+l E 1 (mod pe) . In the Fibonacci sequence, we denote the rank of appa-
rition of pe and period of F modulo pe by f(pe) and f(pe), respectively. 

Let the number g be a primitive root (mod pe). If a? = ̂  satisfies the con-
gruence 

(1) f(x) = x2 - P̂r + Q E 0 (mod p e ) , 

then we say that g is a Lucas primitive root (mod pe) with parameters P and §. 
Throughout this paper, we shall write "Lucas primitive root mod pe" without 
including the phrase, "with parameters P and Q9" if the sequence U is given. 
This is the generalization of the definition of Fibonacci primitive roots (FPR) 
modulo p that was given by D. Shanks [6] for the case P = -Q ~ 1. 

The conditions for the existence of FPR (mod p) and their properties were 
studied by several authors. For example, D. Shanks [6] proved that if there 
exists a FPR (mod p) then p = 5 or p = ±1 (mod 10); furthermore, if p * 5 and 
there are FPRTs (mod p) , then the number of FPR's is two or one, according to 
whether p = 1 (mod 4) or p = -1 (mod 4). In [7], D. Shanks & L. Taylor have 
shown that if g is a FPR (mod p) then g - 1 is a primitive root_ (mod p) . M. J. 
DeLeon [4] proved that there is a FPR (mod p) if and only if f(p) = p - 1. In 
[2] we studied the connection between the rank of apparition of a prime p and 
the existence of FPRfs (mod p) . We proved that there is exactly one FPR (mod 
p) if and only if f(p) = p - 1 or p = 5; moreover, if p = 1 (mod 10) and there 
exist two FPRfs (mod p) or no FPR exists, then f(p) < p - 1. M. E. Mays [5] 
showed that if both p = 60& - 1 and q = 30fc - 1 are primes then there is a FPR 
(mod p). 

*This research was partially supported by Hungarian National Foundation for Scientific Research 
Grant No. 907. 
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The purpose of this paper is to give some connections among the rank of 
apparition of pe in the Lucas sequence U9 the period of U modulo pe, and the 
Lucas primitive roots (mod pe); furthermore, we show necessary and sufficient 
conditions for the existence of Lucas primitive roots (mod pe). In the case in 
which P = -Q = e = 1, our results reproduce and improve upon some results for 
FPR's (mod p) mentioned above. 

We shall prove the following two theorems. 

Theorem 1: Let U be a Lucas sequence defined by integers P * 0 and Q = -1, let 
p be an odd prime with p\P = P2 + 4, and let e > 1 be an integer. Then there 
is a Lucas primitive root (mod pe) if and only if 

u(pe) = cf>(pe)5 
where <j> denotes the Euler function. There is exactly one Lucas primitive root 
(mod pe) if u(pe) = §(pe) and p = -1 (mod 4), and there are exactly two Lucas 
primitive roots (mod pe) if u(pe) - §(pe) and p E 1 (mod 4). 

Theorem 2: Let U be a Lucas sequence defined by integers P * 0 and § = -1, let 
p be an odd prime with p\V = P2 + 4, and let g > 1 be an integer. Then there 
is exactly one Lucas primitive root (mod pe) if and only if u(pe) = (j>(pe) anc* 
p E -1 (mod 4) s and exactly two Lucas primitive roots (mod pe) exist if and 
only if 

u(pe) = cf)(pe)/2 and p E 1 (mod 8) 
or 

u{pe) = cf)(pe)/4 and p E 5 (mod 8). 

From these theoremss some other results follow. 

Corollary 1: If U9 p, and e satisfy the conditions of Theorem 2 and 

u(pe) = <Kpe), 
then g is a Lucas primitive root (mod pe) if and only if x = g satisfies the 
congruence 

(2) Unx + */„_! E -1 (mod p*)s 

where n ~ §(pe)/2, 

Corollary 2: If U, p, and e satisfy the conditions of Theorem 2 and g is a Lucas 
primitive root (mod p e ) s then g - P is a primitive root (mod p e ) . 

Corollary 3: If P * 0 is an integer and both q and p = 2^ + 1 are primes with 
conditions p\P and {Dip) = 1, where £ = P2 + 4 and (P/p) is the Legendre sym-
bol, then there is exactly one Lucas primitive root (mod p) with parameters P 
and Q = -1. 

2. Known Results and Lemmas 

Let U be a Lucas sequence defined by nonzero integers P and $* and let 
D = P2 - kQ be the discriminant of the characteristic polynomial of U'. If p is 
an odd prime with pjg and g > 1 is an integer, then, as is well known, we haves 

(i) Un E 0 (mod pe) if and only if u(pe)\n; 

(ii) Pn E 0 and Un+i = 1 (mod pe) if and only if u(pe)\n\ 

( i i i ) w(p) = p i f p\.D, 
u{p) \p - (D/p) i f pj[D, where (P/p) i s the Legendre symbol; 

( i v ) u(pe) = u(p) ' pe~k If u(p) = . - . = w(pfe) * w(pfe + 1 ) and e * /c; 

(v) w ( p ) | w ( p ) ; 
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(vi) Let u(pe) = 2auf and d(pe) = 2bdr, where d(pe) denotes the least positive 
integer d for which Qd = 1 (mod pe) and u', <ff are odd integers. We have 

( [u(pe), d(p&)] if a = b > 0, 
u(pe) = { 

\2[u(p0), d(pe)l if a * b, 
where [x, y] denotes the least common multiple of integers x and y. (For 
these properties of Lucas sequences, we refer to [1], [3], [8]). 

First, we note that congruence (1) is solvable if and only if the congru-
ence y2- = D = P2- - kQ (mod pe) has solutions. Thus, in case p\D, congruence (1) 
is solvable if and only if (D/p) = 1; furthermore, if (D/p) = 1, then (1) has 
two distinct solutions (mod pe). 

Let p be an odd prime for which (D/p) = 1 and let g^ and g2 be the two dis-
tinct solutions of (1). Then we have 

(3) gY - g2 £ 0 (mod p), 

(4) 9\ + 92 E p> 9\92 E Q (mod P e); 
furthermore, it can easily be seen by induction that 

(5) g? E un9i - QUn_x (mod pe) (i = 1, 2) 

for every integer n > 1. Let n-i = ni(pe) be the least positive integer for 
which 

g^ = 1 (mod pe). 

We may assume that n\(pe) > n2 (pe) . 

Lemma 1: If p is an odd prime with conditions p\Q, (D/p) = 1, and e is a posi-
tive integer, then 

u(pe) = [«i(pe), n2(pe)]. 

Proof: Since (D/p) = 1, congruence (1) has two distinct solutions g\ and g2 
which belong to the exponents n^ = n^p6) and n2 = n2(pe) (mod p e ) . Let w = 
u(pe) and q = [n^, n 2]. The definition of w implies that 

1 = ̂ + 1 = PUU - S^-i = -5^-1 (mod p e ) ; 

therefore, by (5), for i = 1 and £ = 2, we have 

^ F = uu9i ~ Ws-i = -QVn-i = 1 (mod p«) 
and so q\u follows. 

On the other hand, by (5) and the definition of q, we have 
Uq9\ ~ Uq92 E g\ ~ 92 E 0 (mod P&)> 

which with (3) implies Uq = 0 (mod p e ) . Thus, 

^ + 1 = PUq - QVq-l = -QVq-l E Uq9l " QVq-l E A E 1 (™°d p e ) , 
and so, by (ii), we have u = q. 

Lemma 2: Let Q = -1 and £ = P 2 + 4. If p is an odd prime with (D/p) = 1 and e 
is a positive integer, then 

(nY(pe) = n2(pe) = ku(pe) if w(pe) i 0 (mod 2) 

w(pe) =lnl(pe) = n2(pe) = 2u(pe) if u(pe) E 0 (mod 4) 

\nl(pe) = 2n2(pe) = u(pe) if w(pe) = 2 (mod 4). 

Proof: Since § = -1 and p is an odd prime, we have d(pe) = 2. Thus, by (vi) , 
we have 
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!

ku if u = u(pe) i 0 (mod 2) 

2u If u = u(pe) E 0 (mod 4) 

u if u = u(pe) E 2 (mod 4) . 

Since (D/p) = 1, congruence (1) has two distinct solutions, g^ and g2, which 
belong to exponents n\ = ni(pe) and n2 = n2(pe) modulo pe . 

If ni = n2 = n, then, by (4), we have 

1 E (gigz)n B Qn E (-1)" (mod p*) 

and so n = 2/??, where m is a positive integer. Now it can easily be seen that 
g™ E g™ E -1 (mod pe); thus, by (5), it follows that 

^ 1 - Umff2 E ^ ~ ^2 E °  (mod p*) . 
By (3) and (i), it follows that u\m. Hence, 2u\n. On the other hand, by Lemma 
1, u = n and so 2u\u; therefore, by (6), we have u^n^bu If u£0 (mod 2) or 
u = n=2ulfu = 0 (mod 4), since in the third case the relation 2u\u cannot 
be satisfied. 

Now let n\ > n2. In this case, we have g-,nz E 1 (mod pe) and 

1 t g^ E (gig2)n> = «"2 = (-if2 (mod p«) . 

Thus, n2 is an odd integer; furthermore, ni\2n2„ By our assumption, it follows 
that rii = 2n2 . Thus, by Lemma 1, u = n1 = 2n2 follows, and, by (6) , we obtain 
u = n1 = 2n2 = zij because u = 2n2 = 2 (mod 4). This completes the proof. 

3. Proofs of Results 

Proof of Theorem 1: If there exists a Lucas primitive root (mod pe), that is, 
if congruence (1) is solvable and rii(pe) = (f)(pe) or n2(pe) = §(pe) 9 then (£>/p) 
= 1 and, by Lemma 1, using the relation ni\§(pe) , we get 

U(pe) = <j)(pe). 

Now assume that u(pe) = §(pe) = pe~l(p - 1). Using (iv) we get u(p) - p - 1 
and using (iii) and (v) we have 

w(p)|(p - 1, p - (D/p)). 

If (D/p) = -1, then u(p) = 2 and so p\P = U2. From this 

OVp) = ((P2 + 4)/p) = (4/p) = 1, 

a contradiction. Thus, (D/p) = 1 and (1) is solvable. 
If p E -1 (mod 4), then u(pe) = 2 (mod 4). By Lemma 2, we have 

w(pe) = n^p*) = 2n2(pe) = (f>(pe), 

which proves that in this case there is exactly one Lucas primitive root (mod 
p e ) . 

If p E 1 (mod 4), then u(pe) - 0 (mod 4). In this case, by Lemma 2, 

u(pe) = nl(pe) = n2(pe) = $(pe), 
which proves that there are exactly two Lucas primitive roots (mod pe) . This 
completes the proof. 

Proof of Theorem 2: If there is exactly one Lucas primitive root mod pe, that 
is, congruence (1) is solvable and rii(pe) = §(pe) , n2(pe) < <S>(pe)s then (D/p) = 
1. By Lemma 2, we have 

u(pe) = nl(pe) = 2n2(pe) = w(pe) = (j)(pe) 

and p E .--!• (mod 4) . 
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If u{pe) = §{pe) and p E -1 (mod 4), then u(pe) ~ 2 (mod 4). Using (6), we 
have u(pe) = u(pe) = $(pe); thus, by Theorem 1, it follows that there exists 
exactly one Lucas primitive root (mod pe). 

Now we assume that there are exactly two Lucas primitive roots (mod pe) . 
Then (D/p) = 1 and, by Lemma 2, we have 

u(pe) = §(pe)/2 if §(pe)/2 E 0 (mod 4) 
or 

u{pe) = <Kpe)/4 if cf)(pe)/4 1 0 (mod 2). 
It follows that u(pe) = cf>(pe)/2 and p E 1 (mod 8) or u(pe) = §(pe) Ik and p E 5 
(mod 8). 

If u(pe) = (j)(pe)/2 and p E 1 (mod 8) or u(pe) = <f>(pe)/4 and p E 5 (mod 8), 
then u(pe) E 0 (mod 4) or u{pe) i 0 (mod 2). By (6), we get u(pe) = §(pe) . 
From this, using Theorem 1, it follows that in this case there are exactly two 
Lucas primitive roots (mod pe). 

Proof of Corollary 1: If g is a Lucas primitive root (mod pe), then 

gHPe)/2 = _! (mod pe); 

thus, by (5), x = g satisfies congruence (2). 
Let n - <j)(pe)/2 and let g be an integer satisfying the congruence 

(7) Ung + Un.l E -1 (mod p&) . 

From this it follows that 

(8) (Ung + Un_^ = Ufa* - Pg - 1) + Ung(PUn + 2Un_1) + (^ + /y^) 

= 1 (mod pe). 

It is well known that 

(9) Un(PUn - 2QUn_x) = U2n and V\ - QU^ = U ^ 

for any integer n > 1. In our case, § = -1 and u(pe) = §(pe) = 2n; therefore, by 
(8) and (9) 

(10) U*(gz - Pg - 1) + tf2n-1 E 1 (mod p*) 

follows. But 

(11) Uln_x = U2n + l - PU2n = f/2„ + 1 E 1 (mod p«), 

since, by the condition u(pe) - (|>(pe) - 2n, as we have seen above, we have 
u(pe) = §(pe) = 2n = u(pe); furthermore, it can easily be seen that p\Un, so, 
by (10) and (11), we get 

g1 - Pg - 1 E 0 (mod pe) . 

Thus, by (5) and (7), we have 

(12) g" E Ung + tfn_! E -1 (mod p*). 

By Lemma 2, using the condition u(pe) = §(pe) and (12), it follows that # be-
longs to the exponent u(pe) = <$>(pe) modulo pe

9 that is, g is a Lucas primitive 
root (mod pe). 

Proof of Corollary 2: If g is a primitive root (mod pe) and ^2 = Pg + 1 (mod 
p e ) , then g(g - P) = 1 (mod pe) . This shows that g - P is a primitive root 
(mod pe). 

Proof of Corollary 3: Using Lemma 2, by our assumptions we have 

u(p) = 2q = p - 1. 

Using Theorem 2, this proves that there exists exactly one Lucas primitive root 
(mod p). 
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