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1. Introduction 

Recently in [1], two different ^-analogues of Î n + l w e r e found. Our object 
here is to interpret these ^-analogues as generating functions. As usual, Tjjl 
will denote the Gaussian polynomial, which is defined by 

( i . i ) 

where 

[:]• 
(a;q)n 

(.q;q)n/(qiq)m(qiq)n-m> if 0 < m < n, 

0, 

n 

otherwise 

(1 - aql) 
\ \ (1 - aq"^) 

We shall also need the following well-known properties of [̂ J: 

(1.2) \n]= \ H 1; |_mj [n - my 

(1.3) \n]=\n~ 1]+qn-m\n~ )]• 

_ In [1], we studied two different q-analogues of ^2n+l denoted by Cn(q) and 
Cn(q), respectively. These were defined by 

(1.4) Cn{q) = £ An3J(q)3 

where 

(1.5) 

and 

(1.6) 

where 

(1.7) Dn(q) = J2B„,m(q) 
m= 0 

i n which BniTn{q) a r e de f ined by 

4 n , j ( < 7 ) 
In - j 

«7 
Si) + ( i + ^?j) 

(~2n - j " 
LJ - i . 

2 n - 2 j + l + ( J
2 j 

^ n W " £n(<7) + ^ n - l ( ^ ) . 

( 1 . 8 ) Bntm(q) >|"n + 77? + l l 
L 2/72 + 1 J ' 

Remark 1: An^{q) de f ined by (1 .5 ) above a r e Dnij(q) i n [ 1 , p . 171] w i t h j 
r e p l a c e d by n - j . This only r e v e r s e s the o rde r of summation i n ( 1 . 4 ) . 

Remark 2: Equat ion (1 .8 ) i s (3 .6 ) i n [ 1 , p . 172] w i t h m r e p l a c e d by n - m and 
(1 .2 ) a p p l i e d . 

*This paper was presented at the 853rd Meeting of the American Mathematical Society, 
University of California at Los Angeles, November 18-19, 1989. 
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_ Several combinatorial interpretations of the polynomials Cn(q), An$m(q), 
Cn(q) , Dn(q), and BnjTri(q), for g = 1, were given in [1]. In this paper, we 
refine our results for the general value of q9 or, in other words, we interpret 
these polynomials as generating functions. In Section 2, we shall state and 
prove our main results. 

2. The Main Results 

In this section, we first state two theorems and three corollaries. The 
proofs then follow. 

Theorem 1: Let P{m9 ft, N) denote the number of partitions of N into m - 1 dis-
tinct parts, where the value of each part is less than or equal to 2ft - 77?, or 
the number of partitions of N into m distinct parts where each part has a value 
which is less than or equal to 2ft - 777 + 1. Then 

r 
(2.1) An>mtq) = Y,P(m, ft, N)qN, 

N= 0 
where 

v = 2nm - 3(2)-

Example: The coefficient of q7 in A$ 2(^) is 4 (see below); also, p(2, 5, 7) = 
4, since the relevant partitions are 7, 6 + 1 , 5 + 2 , and 4 + 3. 

^5,2(<?) = q17 + <716 + 2415 + 2qlhf + 3<?13 + 3<?12 + kq11 + 4<?10 + 4^9 

+ 4g8 + 4<77 + 3g6 + 3q5 + 2qh + 2q3 + q2 + 2 

Corollary 1: 

(2.2) Cn(q) = ^ P(ft, N)qN, 
N= 0 

where 

(2.3) P(ft, /!/) = E ^0*, w» W 
171= 0 

and 
s = max<!2ft77? - 3 ( ' ' ' ) V , 1 < m < n. '\lnm - 3g)} 

Theorem 2: Let $(777, n, N) denote the number of p a r t i t i o n s of N of the form 
IT = 2?! + b2 + • • • + bt, such t h a t 777 < t < 2m + 1: 

2^-x - hi > 2 If 2 < i < m 

b\ < ft + 777 

i f i > m + 1 

Then, 
(2 .4 ) Bntm(q) = £ Q(™> n, N)q», 

N= 0 
where 

u = ft2 + (ft - 777) - (ft - 777)' 

Corollary 2: 
(2 .5 ) Pn(<?) = E «(ft, ilO?*, 

7\7 = 0 where 

(2 .6 ) Q(n, N) = £ SOW. ft-, tf). 
m= 0 
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Corollary 3: 
( 2 . 7 ) Cn(q) = £ R(n, N)q»9 

N= 0 
where 

(2 .8 ) R(n, N) = Q(n5 N) + Q(n - 1, N). 

Proof of Theorem 1: L e t t i n g j = m i n ( 1 . 5 ) , we have 

i„..w - ([2"; *] + [2;_TK"_2"*1)«(*) * [2n
m: ™],2-2—*(*) 

- [ 2 " - ; + 1 ] ^ » * ( [ 2 " - ; + I ] - [ a , - " ] ) ' ( " I ) -
where the last step comes by using (1.3) with n replaced by 2n - m + 1 and not-
ing that 

(m\ 171 + \2 -rn-Since AniTn(q) is a polynomial, the degree of Anjm(q) is the degree of 

In - m + 11 _\ 2 / q^ 2 , which is 2nm- 3( ? j. 

It is easily seen that 

\2n - m + 11 

generates partitions into m - 1 or m distinct parts, where each part has a value 
less than or equal to In - m, and 

(t - ; + 1 - [ 2„ - ^ c ; ' ) 
generates partitions into m distinct parts with the largest part equal to 
In - 777 + 1. Combining these results, we see that A n m(q) generates P(ms n, N) . 
The proof of Corollary 1 is now obvious. 

Proof of Theorem 2: By the definition of the Gaussian polynomial, it is clear 
that 

\n + 7?? + 11 
L 2m + 1 J 

generates partitions into at most 2777+1 parts where each part has a value less 
than or equal to n - 777. Multiplication of iz^+l J by ^mZ = ^1 + 3 + ''" +2-m _1 means 
that we are adding 2777 - 1 to the largest part, 2777 - 3 to the next largest part, 
2m - 5 to the next largest part, etc. Since the largest part is less than or 
equal to n - m + (2777 - 1) = n + m - 1, there are at least m parts where the 
minimal difference of the first 777 parts (with the parts arranged in nonincreas-
ing order) is 2. The 777th and the (777 + l ) t h parts are distinct. Obviously, the 
degree of BnjTn(q) is 

7772 + (2777 + 1 ) ( n + 777 + 1 - 2777 - 1 ) = n2 + (jl - m) - (-W - 777) 2 . 

This completes the proof of Theorem 2. 
Corollaries 2 and 3 are now direct results of Theorem 2. 

3. Conclusions 

In the literature, we find several combinatorial interpretations of the q-
analogues of the Fibonacci numbers. The Catalan numbers and Stirling numbers 
are other good examples. The most obvious question that arises here is: Do the 
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polynomials An>m(q), Cn(q) , BniTn(q), Dn(q), and Cn(q) have combinatorial inter-
pretations other than those presented in this paper? So far, we know one more 
combinatorial interpretation of the polynomials Dn(q)• Before we state it in 
the form of a theorem, we recall the following definitions from [2]. 

Definition 1: Let ir be a partition. Let y.. be the node of ir in the i t h row and 
j t h column of Ferrers1 graph of IT. We say that y. . lies on the diagonal 6 if 
*& - J = 6. 

Definition 2: Let IT be a partition whose Ferrers graph is embedded in the fourth 
quadrant. Each node (i, j) of the fourth quadrant which is not in the Ferrers 
graph of IT is said to possess an anti-hook difference p^ - kj relative to ir, 
where p^ is the number of nodes on the i t h row of the fourth quadrant to the 
left of the node (i, j) that are not in the Ferrers graph of TT and kj is the 
number of nodes in the j t h column of the fourth quadrant that lie above node 
(i, j) and are not in the Ferrers graph of IT . 

Remark: By the Ferrers graph of a partition, in the above definitions, we mean 
its graphical representation. If TT = GL\ -f a2 + • • • + # „ (with a^ > a>i + i> 
1 < i < n - l i s a partition, then the ^th row of the graphical representation 
of this partition contains a^ points (or dots, or nodes). The graphical 
representation of the partition 5 + 3 + 1 of 9, thus, is: 

We now present the other combinatorial interpretation of the polynomials 
Dn(q) in the following form. 

Theorem 3: Let f(n, k) denote the number of partitions of k with the largest 
part < n and the number of parts < n , which have all anti-hook differences on 
the 0 diagonal equal to 0 or 1. Let g(n9 k) denote the number of partitions of 
k with the largest part < n + 1 and the number of parts < n - 1, which have all 
anti-hook differences on the -2 diagonal equal to 1 or 2. For k > 1, let 
h(n, k) =f(n, k) + g(n, k - 1). Then 

0*(<7> = 1 + E &("» k)q*. 
k= 1 

Note: For the proof of Theorem 3, see [2, Th. 2, pts. (1) and (4), p. 11]. We 
remark here that part (3) of Theorem 2 in [2] was incorrectly stated: 

qn2+nd2n-i(q~l) should be replaced by qn2+nd2n (q'1). 
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