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1. Some General Remarks

Consider the function « - [2] - % which is periodic with period 1. 1In the
interval [0, 1] this function is simply = - %.

This function has the property that its integral in the interval [0, 1] is
zero. Let us, then, with the same idea in mind define another function ¢,(x),
such that its derivative is @j(x) = o - %, and such that its integral in the
interval [0, 1] is =zero:

1
f o, (z)dz = 0.
0
Similarly, @é(x) = 9,(x), and
1
f ©3(x)dx = 0.
0
In general, we seek a sequence of functions @n(x), nw=1, 2, 3, ..., such that
¢, (x) = x - %, ¢ (x) = ¢ _,(x) for n > 1,

and 1
J.®n(x)dx =0 for all n = 1.
0

The constant multiples of these functions »n!¢,(x) = B,(x) are called Bernoulli
polynomials after their discoverer [2]. They obey the relation

(1.1) Bi(xz) = nB,_(x), n =1, By(x) = 1.
The first few Bernoulli polynomials are
Bo(x) =1, Bi(x) =2 - 1/2, By(x) = 22 - =z + 1/6,
By(x) = x3 - (3/2)x2 + (1/2)x, By(x) = xz% - 223 + 22 - 1/30, etc.

It is clear from their construction that B, (x) is a polynomial of degree n.
They are defined in the interval 0 < x < 1. Their periodic continuation outside
this interval are called Bernoulli functioms.

The constant terms of the Bermnoulli polynomials form a particularly inter-
esting set of numbers. We set B, = B,(0). It dis obvious from the way the
polynomials B, (x) are constructed that all the B, are rational numbers. It can
be shown that B,,.; = 0 for » 2 1, and is alternately positive and negative for
even 7. The B, are called Bernoulli numbers, and the first few are

By =1, By = -1/2, B, = 1/6, B, = -1/30, By = 1/42,
By = -1/30, By, = 5/66, By, = -691/2730, By, = 7/6, etc.

Bernoulli polynomials and numbers are intimately related to the sum of the
powers of the natural numbers.
Bernoulli polynomials possess the following generating function [5, 3],

(1.2)  tet=(e® - 1)1 = iBn(x)t”/n!,
n=0

from which we find, on replacing x by x + 1 and then subtracting (1.2) from the
resulting expression:
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(1.3) 3 [B,(x + 1) - B(@)]t"/n! = tets.
n=0

Using the Maclaurin expansion on the right-hand side and comparing powers of ¢,
we find

(1.4) Bup(x+ 1) - B,(x) = nx" 1, n=2,3, ... .
From (1.1) and (1.4) there follows

x+1
(1.5) J~ B,(s)ds = x",

x

from which we find [4]

r k+1

(L.6) k"= B,(s)ds
k=0 k=0Jk

B ds = s = 2, ’ s
n(S)S 7+ 1 n 3, 4

fr+1 Bn+1(r + l) - Bn+l

In the next section we will make use of the following property of Bernoulli
polynomials [8]:

1 171
_ _ n-1 mivi.
(1.7) fOBn(s)Bm(s)ds = (-1) Tty 1 Dt

n=1, 2, 3, «o.;3 m=1, 2, 3, ...

Formula (1.7) is only apparently unsymmetrical in m and n. The reader can
convince him- or herself of the symmetry of it by trying the different combina-
tions of even and odd values of m and n.

2. An Expansion for Products of Bernoulli Polynomials

We wish to expand a product of two Bernoulli polynomials in series of Ber-

noulli polynomials [7]. It will simplify matters if we use the functions o,(x)
defined at the beginning of Section 1. We want, then, an expression of the form
n+m

(2.1) 2, () 2y () =k§_:0ak(bk(x)’

where the 9,'s are, we recall, Bernoulli polynomials divided by n!.
We will make use of the properties

1
(2.2) J; ¢,(s)ds = 0 for n 2 1,

and (1.7), which now appears in the guise

1
(2.3) fo 0,(8)0,(s)ds = (-1)"" b, , n, m=1, 2, ...,

where the b,'s are Bernoulli numbers divided by n!.
Also
(2.4) Do, (x) = 0] = e, -
Using Leibniz's theorem for the derivative of a product [l], we find from
(2.1)
n+m

(2.5)  D°Lou(@)en(@)] = 3 (§)0%0, @D 0, (@) = 3° 4D°% ().
i=o0d K=0

That is,
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n+m n+m-s

_ _ s
(2.6) k';sak@k_s(x) = zf;o Ay 0 () = Z(j>®n_j(x)®m_s+j(x),

with the restrictions that n - j 20 andm- s+ J 20, i.e., J <n, § 28 - m.
Since the sum in (2.5) starts at j = 0 and ends at J = 8, we must write (2.6)
in the form

min(s, n) e n+m-s
2.7) L (G i@e @ = X g 0@,
7 =max(0, s-m) k=0
We now wish to integrate both sides of (2.7) from x = 0 to & = 1 and to
apply properties (2.2) and (2.3). To do so, we must separate from the first
sum in (2.7) the terms corresponding to j = n and to j =8 — m, since in both

of these cases the corresponding dindex is zero and formula (2.3) does not
apply.
This gives
min(s, n -1 s

(2.8) a. =5 (~1)yn-1

8 n+m-—8

( )(—l)j, s <m+mn- 1.
J=max(0,s-m+1) d

If s = m + »n, the first sum in (2.5) will contain only one term and we have

(2.9)  a,,, = (” + m)

n

Similarly, if s = m+ n - 1, then the sum will contain only two terms with non-
zero index, both of which will integrate to zero and we have

(2.10) «a = 0.

n+m-1
Expressing these results in terms of ordinary Bernoulli polynomials, we
find, after dividing a, by s!, the expressions

n+m

(2.11) B, (x)B,(x) = 3 a,B,(x),
k=0

1! min(k,n - 1) —1)J
(2.12) o, = ok gyan1 )

k—(n+m—k)! k<n+m-1,

- . !-'5

J=max(0, k-m+1) (k It My 1 = 1y 25 vous
(2.13) an+m-1 = O,
(2.14) oa,,., = 1.

Equations (2.11)-(2.14) are the desired results. The reader may wish to
look at reference [6] to see alternate ways of expressing these coefficients.

Since Bernoulli numbers of odd index greater than one are zero, we see that
if n and m are of the same parity, then expansion (2.11) will only involve
Bernoulli polynomials of even index. If »n and m are of opposite parity, then

expansion (2.11) will only involve Bernoulli polynomials of odd index.
If we define

(2.15) S,(r) = kz k™,
=1

and make use of (1.6), we can express (2.11) in terms of the S,'s:
n+m+2

(n+ 1) (m+ 1S, (2)Sy(x) = 2 koS, _,(r) = (n+ 1)B, 15,(x)
k=1

n+m+2
-~ (m+ 1)B, 5 () = B 1B, + kZ’o o, By -
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Observe now that in the equation above -B,,1B,4+] cancels z:”:g+2ak8k, since
these expressions are the left— and right-hand sides of (2.11) with & = 0 and »n
and m replaced by » + 1 and m + 1, respectively.

The equation then takes the form

n+m+2
(2.16) (n + 1)(m + 1)5,(2)S,(r) = k‘_,_jz koS, () = (n + 1B, 15,(r)
- (m+ DB, 5. (),

where the uk's must now be written

(m+ 1)!(m + 1)!B, - min(k, 7) (-1)7
(2.17) oy = 7+T+2 k(—l)” T

o (m+m+ 2 - k) j=max(0, k-m) (K = J) 17!

k<n+m+1,

(2.18) o, . =0,
(2.19) O imin = 1s

and we have observed that a; = 0.

Note now that the product of S, (r) and S,(r) will involve Sk(r)'s with odd
index only if »n and m are of the same parity, and Sk(r)'s with even index only
if n and m are of opposite parity.

3. Some Examples

(3.1)  5,(x)5,(r) =-%sq(p) + %sb(p),
(3.2)  51(®)853(r) = 255() + 1530,
(3.3)  Sp(2)53(r) = {556(p) + %Esq(rh
_ 8 1 1
(3.4)  52(1)64(2) = 257() + $55(2) - = 53(r)

(3.5) S3(r)Ss(r)

5 2 1
TESQ(P) +'§S7(P) - T§55(P),

(3.6)  S3(r)S7(x)

7 3 1
57 513(r) + S11(x) —-§59(P) +'I§37(P),

(3.7 5183 55() = T61, + 22 59() + 2757(2) - 2=55().

Especially appealing are the formulas for powers of the S,(n)'s. We obtain,
for instance, the expressions

(3.8) S1(r)2 = S3(r),

(3.9) 5,072 = 255() + 1530,
(3.10) S53(r)2 = £5,(x) +-%35(r),
(3.11) §4(1)2 = £59(x) + 257(0) - fgss(r),

(3.12) S5(r)? =

Wl ;N N

511(r) + 255(r) = £57(x),
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(3.13) §1()° = 255() + 1 53(),
(3.14)  Sy(x)3 = %sg(r) + 15560 + 75 5,(2)

3 5
(3.15) 55()% = 2651109 + 259(r) + 15 57(x)

etc.

Formulas (3.8) through (3.11) have been known for a very long time. For-
mula (3.10) is attributed to Jacobi [9].

To the best of our knowledge, the only special case of (2.11) that is known
is [10]

(3.16) BL*(-’L') - BL'_ = (Bz(.’L') - Bz)z,

and accounts for (3.8).
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