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1. Some General Remarks 

Consider the function x - [x] - % which is periodic with period 1. In the 
interval [0, 1] this function is simply x - %. 

This function has the property that its integral in the interval [0, 1] is 
zero. Let us, then, with the same idea in mind define another function $2(^)9 
such that its derivative is §\(x) = x - %, and such that its integral in the 
interval [0, 1] is zero: 

§7(x)dx = 0. 
Jo 

Similarly, $gO) = $2(x), and 

J §3(x)dx = 0. 
In general, we seek a sequence of functions §n(x), n - 1, 2, 3, . .., such that 

^l(x) = x - %, <^(x) = ^n_l(x) for n > 1, 
and f\ 

I §n(x)dx = 0 for all n > 1. 
Jo 

The constant multiples of these functions nl$n(x) = Bn(x) are called Bernoulli 
polynomials after their discoverer [2]. They obey the relation 

(1.1) B'n{x) = nBn_l(x), n > 1, BQ(x) = 1. 

The first few Bernoulli polynomials are 

B0(x) = 1, BxOc) = x - 111, B2(x) = x1 - x + 1/6, 

£3(aO = x3 - O/Dx1 + (l/2)ar, 2^(a) = ̂  - 2a;3 + ic2 - 1/30, etc. 

It is clear from their construction that Bn(x) is a polynomial of degree n. 
They are defined in the interval 0 < x < 1. Their periodic continuation outside 
this interval are called Bernoulli functions. 

The constant terms of the Bernoulli polynomials form a particularly inter-
esting set of numbers. We set Bn - Bn(0) . It is obvious from the way the 
polynomials Bn(x) are constructed that all the Bn are rational numbers. It can 
be shown that #2n+l = 0 f° r n - 1» and is alternately positive and negative for 
even n. The Bn are called Bernoulli numbers, and the first few are 

BQ = 1, Bl = -1/2, B2 = 1/6, ̂  = -1/30, 56 = 1/42, 

BQ = -1/30, B1Q = 5/66, B1 2 = -691/2730, Blh = 7/6, etc. 

Bernoulli polynomials and numbers are intimately related to the sum of the 
powers of the natural numbers. 

Bernoulli polynomials possess the following generating function [5, 3], 
CXI 

(1.2) tetx{et - l)"1 = 52Bn(x)tn/nl, 
n= 0 

from which we find, on replacing x by x + 1 and then subtracting (1.2) from the 
resulting expression: 
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(1.3) £ [Bn(x + 1) - Bn(x)]tn/nl = te^. 
n= 0 

Using the Maclaurin expansion on the right-hand side and comparing powers of t, 
we find 

(1.4) Bn(x + 1) - Bn(x) = nxn'l9 n = 2, 3, ... . 

From (1.1) and (1.4) there follows 
rx+ 1 

(1.5) Bn(s)ds = a;*, 

from which we find [4] 

r rk + l 
(1.6) L^ n = Z f 5n(s)Js 

Zc=0 k=0Jk 

r+' ( w g n + i ( p + i ) - g n + i 
5 n ( e ) d s = , n = 2 , 3S 4 , . . . . 

Jo w + 1 
In the next section we will make use of the following property of Bernoulli 

polynomials [8]: 

(1.7) J^OO^OOde = (-1)-1 - ^ ^ B n + III, 
n = 1, 2, 3, .. .; m = 1, 2, 3, ... . 

Formula (1-7) is only apparently unsymmetrical in m and n. The reader can 
convince him- or herself of the symmetry of it by trying the different combina-
tions of even and odd values of m and n. 

2. An Expansion for Products of Bernoulli Polynomials 

We wish to expand a product of two Bernoulli polynomials in series of Ber-
noulli polynomials [7]. It will simplify matters if we use the functions $n(#) 
defined at the beginning of Section 1. We want, then, an expression of the form 

n + m 
(2.1) §n{x)§m(x) = Y,ak$k(x), 

k= 0 
where the $n

fs are, we recall, Bernoulli polynomials divided by nl. 
We will make use of the properties 

(2.2) §n(s)ds = 0 for n > 1, 
j o 

and (1.7), which now appears in the guise 

(2.3) j ®n(s)$m(s)ds = (-Dn"16n + OT, n, m - 1 , 2 , ..., 
•J o 

where the bn
}s are Bernoulli numbers divided by n!. 

Also 

(2.4) 0$„(x) = $^ = *n_i-

Using Leibniz's theorem for the derivative of a product [1], we find from 
(2.1) 

(2.5) D8[*n(x)$m(x)] = £ (nbJ$n(tf)Z?s-^0r) = £ afcZ?a*k(s). 
j=0XtJ/ k=0 

That is, 

1991] 99 



A NOTE ON BERNOULLI POLYNOMIALS 

n-t m n + m -s 

(2.6) I>*vfl<*> = E ^ A W = E - K - i W V s + i w . 
k=s k=0 x ^ ; d d 

with the restrictions that n - j > 0 and ??? - s + j > 0, i.e., j < n9 j > s - m. 
Since the sum in (2.5) starts at j = 0 and ends at J = s, we must write (2.6) 
in the form 

min(s, n) n + m-s 

j = max(0, s-m) W k= 0 

We now wish to integrate both sides of (2.7) from x = 0 to x = 1 and to 
apply properties (2.2) and (2.3). To do so, we must separate from the first 
sum in (2.7) the terms corresponding to j = n and to j = s - m, since in both 
of these cases the corresponding index is zero and formula (2.3) does not 
apply. 

This gives 
min(s, n - 1) 

(2.8) ae ~ bn+m_B(-l)»-l E (S.)(-iy, s < m + n - 1. 
j = max(0, s-m + l) ^ ' 

If s - m + n, the first sum in (2.5) will contain only one term and we have 

in + m\ 
(2.9) an + m = ( n )• 

Similarly, ifs = /7? + n - l , then the sum will contain only two terms with non-
zero index, both of which will integrate to zero and we have 

(2.10) an+m_x = 0. 

Expressing these results in terms of ordinary Bernoulli polynomials, we 
find, after dividing as by s!, the expressions 

n + m 
(2.11) Bn(x)Bm(x) = £ 0LkBk(x), 

k= 0 

n\m\Bn + m k • minCfe^-D (_DJ 
(2.12) a, = - n + m (-1)"-! £ 7T ^rrr, fe < n+TTz- 1, 

(2.13) ot̂  + ̂.i = 0, 

(2.14) an+m = 1. 

Equations (2.11)-(2.14) are the desired results. The reader may wish to 
look at reference [6] to see alternate ways of expressing these coefficients. 

Since Bernoulli numbers of odd index greater than one are zero, we see that 
if n and m are of the same parity, then expansion (2.11) will only involve 
Bernoulli polynomials of even index. If n and m are of opposite parity, then 
expansion (2.11) will only involve Bernoulli polynomials of odd index. 

If we define 

(2.15) Sn(v) = f > " , 
k= l 

and make use of (1.6), we can express (2.11) in terms of the Sn
fs: 

n + m+2 
(n + l)(77z + l)Sn(r)SmM = £ kakSk_Av) - (n + 1)5m + lSn(r) 

k= 1 
n + m + 2 

- (m + DBn + lSJr) - Bm + lBn + l + £ a A . 
k= 0 
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Observe now t h a t i n the e q u a t i o n above -Bm+iBn+i c a n c e l s X]^ = n+2a/c^?c5 s i n c e 
t h e s e e x p r e s s i o n s a r e the l e f t - and r i g h t - h a n d s i d e s of (2 .11) wi th x = 0 and n 
and m r e p l a c e d by n + 1 and # 7 + 1 , r e s p e c t i v e l y . 

The e q u a t i o n then t a k e s the form 
n + m + 2 

(2 .16) (n + l)(m + l)Sn(r)Sm(r) = £ kakSk_l(r) - (n + l)Bm+lSn(r) 
k= 2 

- (m + 1)5 .£ ( P ) 5 
v ' n+l mK J 

where the a^!s must now be written 

(n + l)I(m + l)15„ + w + 2.fc *in(k,») (_1)3-

/c < n + m + 1, 

(2.18) an+m + 1 - 0, 

(2.19) % + m + 2 = 1, 

and we have observed that a, = 0. 
Note now that the product of Sn(i>) and Sm{r) will involve Sk(r)'s with odd 

index only if n and m axe of the same parity, and Sk (r) ' s with even index only 
if n and m are of opposite parity. 

3. Some Examples 

(3.1) Sl(r)Sz(r) = fS4(r) + jS2(r), 

(3.2) ^ M S ^ r ) = |s5(r) + \s3{i>), 

(3.3) S2(r)S3(r) = -^56(r) + ^ ^ ( r ) , 

(3.4) 52(r)5^(r) - ̂ S 7(r) + |s5(r) - j^S^r) , 

(3.5) 53(r)55(r) - -j^59(r) +|57(r) - -^55(r), 

(3.6) 53(r)S7(r) = ̂ 5 1 3 (r) + Su(r) - |,S9(iO + j^57(r), 

(3.7) ^ ( r O ^ d O ^ r ) - i s n + lfsgCr) + ^S 7(r) - ^ 5 5 ( r ) . 

Especially appealing are the formulas for powers of the Sk{ri)'s. We obtain, 
for instance, the expressions 

(3.8) S i O ) 2 = S3(r), 

(3.9) S2(r)2 = |s5(r) + ±S3(r), 

(3.10) S3(r)2 = ±S7(r) + ±S5(r), 

(3.11) S\(r)2 = |s9(r) + |s7(2») - -jTjS5(r), 

(3.12) S5(r)2 = J5n(r) + §S9(r) - ̂ 57(p), 
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(3.13) 5 i ( r ) 3 = | s 5 0 ? ) + | s 3 ( r ) , 

(3.14) 5 2 ( r ) 3 = | s 8 ( r ) + ^ S 6 ( r ) + ^ S i ^ r ) , 

(3.15) 5 3 ( r )3 = ^ 5 n ( r ) + § £ 9 ( r ) + j^S7{r), 

Formulas (3.8) through (3.11) have been known for a very long time. For-
mula (3.10) is attributed to Jacobi [9]. 

To the best of our knowledge, the only special case of (2.11) that is known 
is [10] 

(3.16) Bh{x) - Bh = (B2(x) - B2)2, 
and accounts for (3.8). 
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