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The study of identities and congruences involving binomial coefficients has 
a long history, not only because of the intrinsic beauty and apparent simpli-
city of many of the results, but also because applications for these abound in 
many fields, both inside and outside mathematics. The impetus for the present 
study came from work on classifying spaces in algebraic topology [3], where one 
needed to know how the 2-divisibility of \ ^ ) - (•£) depends on n, a, and b. 

The basic question we would like to address is this: For a given prime p, 
and natural numbers a, b, a ^ b > 1, what is the p-divisibility of the differ-
ence 

(a + x\ _ /a\ 
\ b ) \b) 

and how does it depend on the p-divisibility of xl For any integer k, let 
Vp(k) denote the exponent of the highest power of p dividing ks and Vp(k/n) -
VyW) "" Vp (n) ' We wish to consider 

/ " > = • - ( ( * ; • ) • ( ; ) ) • 

where x is any natural number. Now 

Fix) = (a +
b
X) 

is a polynomial in x with F'(0) * 0, so it is elementary that, for Vp(x) large 
(i.e., x near 0 in the p-adic metric), 

f{x) - vp(F(x) - F(0)) = vp(x) + vp(F'(0)). 

In other words, / "stabilizes" for Vp(x) sufficiently large. The aims of this 
note are threefold. First to determine exactly how large is sufficiently 
large, second to examine the behavior of / both in and near this range, and 
third to understand how the behavior of / is related to the divisibilities of 
(a'l)

x) and (fy m These three divisibilities are intimately connected by the fact 
that 

Vp(y ± z) > mln{Vp(y), vv{z)}, 
with equality holding for p = 2 precisely when V2(y) * V2(z) > This creates 
some surprising phenomena when p = 2. The most striking is that while con-
stancy of V2 (?tX) f° r vl(x^ large is necessary in order for f to exhibit sta-
bility, the latter always occurs before, not after, the former. One of our 
main aims is to understand the phenomena underlying this curious fact. Our 
Conclusion summarizes why this occurs. 

Complete results will be given for p = 2, and some partial results will be 
obtained for odd primes, where the situation is much more complicated. 
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1. Preliminaries 

First we look at [a^x) and its p-divisibility. The basic result on divisi-
bility is due to Kuimner [4, pp. 115-16; 1, p. 270]: If a = £ a ^ and b = Y.b-tP1 

are the base p expansions of a and b (here, of course, ai9 b^ e [0, p)), then 
Vp {j^j , the p-divisibility of (g) , is the number of borrows in the base p sub-
traction a - b. A good general reference is [5]. Some related results can be 
found in [2]. Therefore, 

Vp{a b X) = Vp{b) for VP^ l a r§e> 
and we wish to quantify "large." 

Definition 1: M{a9 b9 p) is the smallest integer M such that 

Vp I i ) = vP\h) w n e n e v e r vp(x) - M. 

For any integer n9 let rii be the residue of n modulo p£. From Kummerfs 
theorem, it is clear that M is nothing other than min{£|a£ > b}. Let 

S = {a, a - 1, — , a - b + 1} 

be the set of integers in the "numerator" of (̂) . Let sl5 s2' •••» Sfr D e t n e 

elements of S arranged in order of decreasing p-divisibility, and let d^ = 
Vp(si). So d\ is the highest divisibility occurring in S9 etc. Note that the 
di are not necessarily distinct. Our first lemma relates M to d\. 

Lemma 2: vpl h ) = Vpi-u) whenever vp (x) >M9 where M = min{£|a£ > b} = d\ + 1. 

Proof: Everything was done above, except the equality M = d\ + 1. We show this 
by manipulating the base p expansion of a. Since ~dM ^b9 aM can never be re-
duced to zero by subtracting something in the interval [0, b), so no element of 
S is congruent to 0 mod pM. Hence, d\ < M - 1. To see that d\ > M - 1, note 
that dM-i < b9 and so there is an element of S which is zero mod pM~l. Thus, 
dl > M - 1. D 

We now turn our attention to f(x). 

Definition 3: N(a9 b9 p) is the smallest integer N such that 

f(x) = Vp{x) + vp(FT(0)) whenever Vp(x) > N. 

Since the equality 

(a + x\ (a\ 
vp\ b ) = vAb) 

of Lemma 1 is clearly necessary for this stabilizing of /, one might expect that 
N > M. It is therefore surprising that, on the contrary, we will show that 
exactly the opposite occurs for p = 2, and that, for odd primes, M and N are 
more or less independent. The first step in computing N is to bound it from 
above. That is one purpose of the next section. 

2. A Formula for f and a bound on N(q, b, p) 

We start with the degree b polynomial 

*(*) -FW = (a+
b

x)-Q-
Note that f(x) = Vp(F(x) - F(0)). Let S be as before and S"1 = {l/s\seS}. For 
any set of integers A let o^{A) denote the ith-elementary symmetric function on 
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the elements of A and abbreviate ok(S l) by ok. Then expanding F(x) - F(0), we 
obtain 

F(x) - F(0) = ± £ ob_k{S)xK = (?) ^ ok{S~^)xk = x(l)J:okx^K 
U' k = 1 SU/ k = 1 X^7£: = 1 

Clearly, for Vp(x) large, Vp applied to the final sum leaves only Vp{o\) . This 
shows that / stabilizes as claimed, and gives our first formula for it. 

Theorem 4: f(x) = vp(x) + ^p(?) + v-p(oi) for vP(x) > N. 

Our main interest is in what determines 21/, and in the curious way that this 
is related to ̂ p(a^) in and near the stable range when p = 2. Now to obtain a 
bound for N from the above, we need only determine how large Vp(x) need be to 
ensure that 

/ b \ 
VP( H°kxk l) = M ^ i ) . 

\k= 1 / 

Theorem 5: N(a9 b9 p) < vp(oi) + d\ + d2 + 1. Proof: We will show that Vp(ak) + vp(x)(k - 1) > yp(o*i ) for k > 2, as long as 
tfp(tf) > UpCo^) + di + d2. 

Note that 

. . • i = 1 ' 

We then have 

vp(ok) + vp(x)(k - 1) > - £ ^ + (fc - l)(vp(oi) + dl + d2) 
i= I k • 

= vp(oi) + (k - 2)vp(ol) + (k - 2)(dl + d2) - E di 
k i==3 

= Vp(oi) + (fc - 2)(z;p(a1) + ^i) + E (̂ 2 ~ ^ ) 
i = 3 

* yp(ai). D 

3. At the Prime 2 

Henceforth, let p = 2 and let y stand for v2. In this section we will sim-
plify our formula for / in the stable range, show that N = d2 + 1, and give a 
formula for N that is easily computed from a and b. This formula shows that N 
is almost determined by bo 

We begin by obtaining more information about the behavior of V \ ^j . 

Lemma 6: The following facts express how the relationship between v (^^x) and 
V [%) changes as v(x) varies in relation to d2, d\9 and Mi 

a. di > d2, 

b. v(^ * xy= v(x) + v(?} - di when d2 < v{x) < M - 1 = dx, 

c. yf , j > y(^) when v(x) = M - 1 = d\9 

d. y(a + X\ = v Q when t;(x) > M = <2X + 1. 

Notice that Lemma 6 shows that V (aJ/ increases predictably for tf2 < #(#) < d\9 
jumps sharply up when v(x) = d\9 and then drops to constancy for v(x) > d\. 
Later, we will compare this behavior with that of f(x), 

Proof: We note first that d\ > d2, since between any two integers exactly divi-
sible by 23 lies one divisible by 2J+*» For parts (b) and (c), we note that 
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V{a b X) ~ v{b) = v^Sl + x>} ~ v<^s^ + 2 v(si + -#) ~ yOi) -
Since v(x) > d2, we have v(s^ + x) = v(si) for all i > 1, so the sum evaporates. 
Then, if v(x) = d\9 we have v(si + s) > f(si), so the result is positive, while 
if v(x) < d\, then v(s\ + x) = v(x)9 producing the result v(x) - d\, as claimed. 
Part (d), which completes our description of the behavior of v(atx) , is merely 
a restatement of Lemma 2. • 

Now we can also strengthen our theorems about f and N, since we can actual-
ly compute v(oi). 

Corollary 7: f(x) = v(x) + v (g) - d\ for v(x) > N, and N < d2 + 1 < d\ + 1 = M. 

Proof: From Lemma 6, we know that d\ > d2. Hence, v(oi) = -d\ and the result 

follows, n 
This verifies that N < M, i.e., f(x) stabilized before V \ bj becomes con-

stant . 
Next, we complete our determination of N with 

Theorem 8: N = d2 + 1- Moreover f(x) > v{x) + v (£) - d\ whenever v(x) = N - 1 
= d2. 
Proof: In view of Corollary 7, we need only show that 

f{x) > d2 + v(i ) - d\ if v{x) = d2* 

Since 
v{b) > d* + "(?) - dx 

from Lemma 6, this will follow if we also show that 

Recalling that v(x) = d2 < d\, we have 

v(a tX) - v(T) = v(Sl + a:) - i7(Sl) + L (t>(e* + a?) - v(e^) 

= d2 - d\ + X! OO^ + x) - y(ŝ )) 

> d2 - di> 
the last inequality holding, since each term in the sum if nonnegative, and at 
least one [with v(s2) = d2] is positive. D 

We will now provide a formula for N more convenient for calculation. Let 

k = k(b) = [iog2(i)]f 

the greatest integer in log2(b). Recall that, for any integer n, nl denotes 
the residue of n modulo 2l. Let 

k if afc ̂  Z?fc, 

k + 1 if ak < bk. 
Clearly, g is easy to compute from a and bs and it is almost determined by b. 

Lemma 9: N = d2 + 1 = g. 

Proof: We need only show that g - d2 -t I. First we show that g > d2 + 1. Since 
[log2(b)] = k, we have b € [2k, 2k + 1 ) . Since S is a sequence of Z? consecutive 
integers, S must contain exactly one or two multiples of 2k. If only one, it 

g(a, b) 
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is the element of highest two-divisibility d\ in S, so d2 < k; hence d2 + 1 ̂  k 
< g. If there are two, one is an even multiple of 2k , of highest divisibility, 
the other is an odd multiple of 2k. Hence, d2 - k. Thus, we need to show that 
whenever g_= k (rather than k + 1), ̂ has only one multiple of 2k. But g = k 
only when bk < ak . We write b = 2k + bk, a = $2k + ak, with 0 < bk < ak < 2k. 
Then 

(3 - 1)2^ < a - b < $2k < a < (3 + l)2fe, 

so S has only one multiple of 2k. 
To show that g < d2 + 1> note that, since Z? e [2k, 2 k + 1 ) , there must be at 

least two multiples of 2k~l in S. Thus, d2 > k - 1, or d2 + 1 £ k. So we are 
done If g = k. If g = k + I, then we need d2 to be at least k. So we need two 
multiples of 2k in S. We write a and 2? as before, but now ak < bk < 2k, so we 
have _ 

a - 2> = (3 - l)2k + (ak - bk) < (3 - 1)2* < 32* < a, 

and we have exhibited two multiples of 2^ in 5. Q 

4. Conclusions 

Our results for p = 2 provide a complete picture of the relationship among 

„e),„(«n. "•</<*> = » ( m - o ) 
in the stable range. There are three possibilities: 

_e, x .-,1 . la + x\ . . (a + x\ (a\ fix) will equal v{ b J if v[ h J < V^J; 

fix) will equal v(%) if v{£) < V (U J * ) ; 

/(#) will exceed both of the above if they are equal. 

We see that all three possibilities actually occur, in the order stated, as 
vix) increases through the stable range. This trio and order of behaviors is, 
in fact, the only way fix) can possibly achieve the formula 

vix) + vg) - dY 

in a range that srarts earlier (at N = d2 + 1 = g) than the constancy of v \ b
x) 

(at M = dl + 1). 
For odd primes, the situation can be quite different. We illustrate the 

situation in the case of b = 2. Then 

Fix) - FiO) = (a ^ X) ~ (2) = *(* + 2a - l)/2. 

Let .j be a positive integer. 
First, choose a = pj. From Lemma 2, we have M = d̂  + 1 = j + 1, and since 

Vp(oi) = -J and d^ = 0, Theorem 5 says that N < 1. Since 

F(a0 - FiO) = a: (a: + 2pJ - l)/2, 

we have that N is indeed 1. So, as above, N < M and # = [logp(Z?)] + 1. 
Next, choose a = ipj + I)12. Here the situation is radically different. 

Since p is odd, d\ = d2 = 0, but 2a - 1 = p*7, so fp(ai) = J, and Theorem 5 says 
that N < j + 1. From 

F(a?) - FiO) = xix + p^')/2, 

we see that N = j + 1. But M = <£]_ + 1 = 1. 
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There are patterns however, and the reader is invited to discover them0 
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