CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES*

Alwyn F. Horadam
University of New England, Armidale, Australia

Piero Filipponi
Fondazione Ugo Bordoni, Rome, Italy
(Submitted June 1989)

1. Introduction

Many properties of the generalized Fibonacci numbers U_{n} and the generalized Lucas numbers V_{n} (e.g., see [3]-[5], [8]-[10], [12], [14], [15]) have been obtained by altering their recurrence relation and/or the initial conditions. Here we offer a somewhat new matrix approach for developing properties of this nature.

The aim of this paper is to use the $2-b y-2$ matrix M_{k} determined by the Cholesky LR decomposition algorithm to establish a large number of identities involving U_{n} and V_{n}. Some of these identities, most of which we believe to be new, extend the results obtained in [6] and elsewhere.

Particular examples of the use of the matrix M_{k}, including summation of some finite series involving U_{n} and V_{n}, are exhibited. A method for evaluating some infinite series is then presented which is based on the use of a closed form expression for certain functions of the matrix $x M_{k}^{n}$.

2. Generalities

In this section some definitions are given and some results are established which will be used throughout the paper.

2.1. The Numbers U_{n} and the Matrix M

Letting m be a natural number, we define (see [4]) the integers U_{n} (m) (or more simply U_{n} if there is no fear of confusion) by the second-order recurrence relation

$$
\begin{equation*}
U_{n+2}=m U_{n+1}+U_{n} ; \quad U_{0}=0, U_{1}=1 \quad \forall m \tag{2.1}
\end{equation*}
$$

The first few numbers of the sequence $\left\{U_{n}\right\}$ are:

$$
\begin{array}{cccccccc}
U_{0} & U_{1} & U_{2} & U_{3} & U_{4} & U_{5} & U_{6} & \ldots \\
0 & 1 & m & m^{2}+1 & m^{3}+2 m & m^{4}+3 m^{2}+1 & m^{5}+4 m^{3}+3 m & \ldots
\end{array}
$$

We recall [4] that the numbers U_{n} can be expressed in the closed form (Binet form)
(2.2) $\quad U_{n}=\left(\alpha_{m}^{n}-\beta_{m}^{n}\right) / \Delta_{m}$,
where

[^0](2.3) $\left\{\begin{array}{l}\Delta_{m}=\sqrt{m^{2}+4} \\ \alpha_{m}=\left(m+\Delta_{m}\right) / 2 \\ \beta_{m}=\left(m-\Delta_{m}\right) / 2 .\end{array}\right.$

From (2.3) it can be noted that
(2.4) $\quad\left\{\begin{array}{l}\alpha_{m} \beta_{m}=-1 \\ \alpha_{m}+\beta_{m}=m \\ \alpha_{m}-\beta_{m}=\Delta_{m} .\end{array}\right.$

We also recall [4] that

$$
\begin{equation*}
U_{n}=\sum_{j=0}^{[(n-1) / 2]}\binom{n-j-1}{j} m^{n-2 j-1} \tag{2.5}
\end{equation*}
$$

where [•] denotes the greatest integer function. Moreover, as we sometimes require negative-valued subscripts, from (2.2) and (2.4) we deduce that
(2.6) $U_{-n}=(-1)^{n+1} U_{n}$.

From (2.1) it can be noted that the numbers $U_{n}(1)$ are the Fibonacci numbers F_{n} and the numbers $U_{n}(2)$ are the Pell numbers P_{n}.

Analogously, the numbers $V_{n}(m)$ (or more simply V_{n}) can be defined [4] as
(2.7) $\quad V_{n}=\alpha_{m}^{n}-\beta_{m}^{n}=U_{n-1}+U_{n+1}$.

The first few numbers of the sequence $\left\{V_{n}\right\}$ are:

$$
\begin{array}{cccccccc}
V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & V_{5} & V_{6} & \ldots \\
2 & m & m^{2}+2 & m^{3}+3 m & m^{4}+4 m^{2}+2 & m^{5}+5 m^{3}+5 m & m^{6}+6 m^{4}+9 m^{2}+2 & \ldots
\end{array} .
$$

These numbers satisfy the recurrence relation
(2.8) $\quad V_{n+2}=m V_{n+1}+V_{n} ; \quad V_{0}=2, V_{1}=m \quad \forall m$.

From (2.7) and (2.4) we have
(2.9) $V_{-n}=(-1)^{n} V_{n}$,
and it is apparent that the numbers $V_{n}(1)$ are the Lucas numbers L_{n} while the numbers $V_{n}(2)$ are the Pell-Lucas numbers Q_{n} [11].

Definitions (2.1) and (2.8) can be extended to an arbitrary generating parameter, leading in particular to the double-ended complex sequences $\left\{U_{n}(Z)\right\}_{-\infty}^{\infty}$ and $\left\{V_{n}(z)\right\}_{-\infty}^{\infty}$. Later we shall make use of the numbers $U_{n}(z)$.

Let us now consider the 2 -by- 2 symmetric matrix

$$
M=\left[\begin{array}{ll}
m & 1 \tag{2.10}\\
1 & 0
\end{array}\right]
$$

which is governed by the parameter m and of which the eigenvalues are α_{m} and β_{m}. For n a nonnegative integer, it can be proved by induction [6] that

$$
M^{n}=\left[\begin{array}{ll}
U_{n+1} & U_{n} \tag{2.11}\\
U_{n} & U_{n-1}
\end{array}\right]
$$

Also, the matrix M can obviously be extended to the case where the parameter m is arbitrary (e.g., complex).

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES

2.2 A Cholesky Decomposition of the Matrix M : The Matrix M_{k}

Let us put
(2.12)

$$
M_{1}=M=\left[\begin{array}{ll}
m & 1 \\
1 & 0
\end{array}\right]
$$

and decompose M_{1} as
(2.13) $M_{1}=T_{1} T_{1}^{\prime}=\left[\begin{array}{ll}a_{1} & 0 \\ c_{1} & b_{1}\end{array}\right]\left[\begin{array}{ll}a_{1} & c_{1} \\ 0 & b_{1}\end{array}\right]$,
where T_{1} is a lower triangular matrix and the superscript (') denotes transposition, so that T_{1}^{\prime} is an upper triangular matrix. The values of the entries α_{1}, b_{1}, and c_{1} of T_{1} can be readily obtained by applying the usual matrix multiplication rule on the right-hand side of the matrix equation (2.13). In fact, the system

$$
\left\{\begin{array}{l}
a_{1}^{2}=m \tag{2.14}\\
\alpha_{1} c_{1}=1 \\
b_{1}^{2}+c_{1}^{2}=0
\end{array}\right.
$$

can be written, whose solution is

$$
\left\{\begin{array}{l}
a_{1}= \pm \sqrt{m} \tag{2.15}\\
c_{1}=1 / a_{1} \\
b_{1}= \pm i c_{1}
\end{array}\right.
$$

where $i=\sqrt{-1}$.
Any of these four solutions leads to a Cholesky $L R$ decomposition [17] of the symmetric matrix M_{1}.

On the other hand, it is known [7] that a lower triangular matrix and an upper triangular matrix do not commute, so that the reverse product $T_{1}^{\prime} T_{1}$ leads to the symmetric matrix M_{2} which is similar to but different from M_{1}. If we take $b_{1}=+i c_{1}[c f .(2.15)]$, we have

$$
M_{2}=\frac{1}{m}\left[\begin{array}{cc}
m^{2}+1 & i \tag{2.16}\\
i & -1
\end{array}\right]
$$

while, if we take $b_{1}=-i c_{1}$, the off diagonal entries of M_{2} become negative.
In turn, M_{2} can be decomposed in a similar way, thus getting

$$
M_{2}=T_{2} T_{2}^{\prime}=\left[\begin{array}{ll}
a_{2} & 0 \\
c_{2} & b_{2}
\end{array}\right]\left[\begin{array}{ll}
a_{2} & c_{2} \\
0 & b_{2}
\end{array}\right]
$$

where

$$
\left\{\begin{array}{l}
a_{2}= \pm \sqrt{\left(m^{2}+1\right) / m} \\
c_{2}=1 / a_{2} \\
b_{2}= \pm i c_{2}
\end{array}\right.
$$

The reverse product $T_{2}^{\prime} T_{2}$ leads to a matrix M_{3} with sign of the off diagonal entries depending on whether $b_{2}=+i c_{2}$ or $-i c_{2}$ has been considered.

If we repeat such a procedure ad infinitum, we obtain the set $\left\{M_{k}\right\}_{1}^{\infty}$ of 2-by-2 symmetric matrices

$$
M_{k}=\frac{1}{U_{k}}\left[\begin{array}{cc}
U_{k+1} & i^{k-1} \tag{2.17}\\
i^{k-1} & -U_{k-1}
\end{array}\right] \quad(k \geq 1) .
$$

Because of the ambiguity of signs that arises in the Cholesky factorization, (2.17) is not the only possible result of k applications of the LR algorithm to M. However, the only other possible result differs from that shown in (2.17) only in the sign of the off diagonal entries. From here on, we will consider only the sequence $\left\{M_{k}\right\}$ given by equation (2.17).

Since the matrices M_{k} are similar, their eigenvalues coincide. M_{k} tends to a diagonal matrix containing these eigenalues (namely, α_{m} and β_{m}) as k tends to infinity.

To establish the general validity of (2.17), consider the Cholesky decomposition

$$
M_{k}=\frac{1}{U_{k} U_{k+1}}\left[\begin{array}{cc}
U_{k+1} & 0 \\
i^{k-1} & i U_{k}
\end{array}\right]\left[\begin{array}{cc}
U_{k+1} & i^{k-1} \\
0 & i U_{k}
\end{array}\right]
$$

where Simson's formula

$$
\text { (2.18) } U_{k+1} U_{k-1}-U_{k}^{2}=(-1)^{k}
$$

has been invrked. Simson's formula may be `quite readily established by using the Binet form (2.2) for U_{n} and the properties (2:4) of α_{m} and β_{m}. On the other hand, from (2.11) and (2.10), it is seen that

$$
U_{k+1} U_{k-1}-U_{k}^{2}=\operatorname{det}\left(M^{k}\right)=(\operatorname{det} M)^{k}=(-1)^{k}
$$

Reversing the order of multiplication, we get

$$
\frac{1}{U_{k} U_{k+1}}\left[\begin{array}{ll}
U_{k+1} & i^{k-1} \\
0 & i U_{k}
\end{array}\right]\left[\begin{array}{cc}
U_{k+1} & 0 \\
i^{k-1} & i U_{k}
\end{array}\right]=\frac{1}{U_{k+1}}\left[\begin{array}{cc}
U_{k+2} & i^{k} \\
i^{k} & -U_{k}
\end{array}\right] \underset{[b y(2.17)]}{=M_{k+1}}
$$

[by (2.18)]
Thus, if the matrix for M_{k} is valid, then so is the matrix for M_{k+1}.
For convenience, M_{k} may be called the Cholesky algorithm matrix of Fibonacci type of order k.

Furthermore, if we apply the Cholesky algorithm to M^{n} [see (2.11)] ather than to M, we obtain

$$
\left(M^{n}\right)_{k}=\frac{1}{U_{k}}\left[\begin{array}{cc}
U_{k+n} & i^{k-1} U_{n} \tag{2.19}\\
i^{k-1} U_{n} & (-1)^{n} U_{k-n}
\end{array}\right]=\frac{1}{U_{k}}\left[\begin{array}{cc}
U_{n+k} & i^{k-1} U_{n} \\
i^{k-1} U_{n} & (-1)^{k-1} U_{n-k}
\end{array}\right] .
$$

Observe that

$$
(2.20) \quad\left(M^{n}\right)_{k}=\left(M_{k}\right)^{n}=M_{k}^{n} .
$$

Validation of this statement may be achieved through an inductive argument. Assume (2.20) is true for some value of n, say N. Thus,
(2.21) $\left(M_{k}\right)^{N}=\left(M^{N}\right)_{k}$.

Then,

$$
\left(M_{k}\right)^{N+1}=M_{k}\left(M_{k}\right)^{N}=M_{k}\left(M^{N}\right)_{k}=\left(M^{N+1}\right)_{k}
$$

$$
[\text { by }(2.21)]
$$

after a good deal of calculation, so that if (2.20) is true for N, it is also true for $N+1$. In the calculations, it is necessary to derive certain identities among the U_{n} by using (2.2) and (2.4).

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES

2.3 Functions of the Matrix $x M_{k}^{n}$

From the theory of functions of matrices [7], it is known that if f is a function defined on the spectrum of a 2 -by-2 matrix $A=\left[\alpha_{i j}\right]$ with distinct eigenvalues λ_{1} and λ_{2}, then
(2.22) $f(A)=X=\left[x_{i j}\right]=c_{0} I+c_{1} A$,
where I is the 2 -by-2 identity matrix and the coefficients c_{0} and c_{1} are given by the solution of the system

$$
\left\{\begin{array}{l}
c_{0}+c_{1} \lambda_{1}=f\left(\lambda_{1}\right) \tag{2.23}\\
c_{0}+c_{1} \lambda_{2}=f\left(\lambda_{2}\right) .
\end{array}\right.
$$

Solving (2.23) and using (2.22), after some manipulations we obtain
(2.24) $x_{11}=\left[\left(\alpha_{11}-\lambda_{1}\right) f\left(\lambda_{2}\right)-\left(\alpha_{11}-\lambda_{2}\right) f\left(\lambda_{1}\right)\right] /\left(\lambda_{2}-\lambda_{1}\right)$
(2.25) $x_{12}=a_{12}\left[f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)\right] /\left(\lambda_{2}-\lambda_{1}\right)$
(2.26) $x_{21}=a_{21}\left[f\left(\lambda_{2}\right)-f\left(\lambda_{1}\right)\right] /\left(\lambda_{2}-\lambda_{1}\right)$
(2.27) $x_{22}=\left[\left(\alpha_{22}-\lambda_{1}\right) f\left(\lambda_{2}\right)-\left(\alpha_{22}-\lambda_{2}\right) f\left(\lambda_{1}\right)\right] /\left(\lambda_{2}-\lambda_{1}\right)$.

For x an arbitrary quantity, let us consider the matrix $x M_{k}^{n}$ having eigenvalues

$$
\left\{\begin{array}{l}
\lambda_{1}=x \alpha_{m}^{n} \tag{2.28}\\
\lambda_{2}=x \beta_{m}^{n}
\end{array}\right.
$$

and let us find closed form expressions for the entries $y_{i j}$ of

$$
Y=\left[y_{i j}\right]=f\left(x M_{k}^{n}\right) .
$$

by (2.24)-(2.27), after some tedious manipulations involving the use of certain identities easily derivable from (2.2) and (2.3), we get

$$
\begin{align*}
& \text { (2.29) } \quad y_{11}=\left[\alpha_{m}^{k} f\left(x \alpha_{m}^{n}\right)-\beta_{m}^{k} f\left(x \beta_{m}^{n}\right)\right] /\left(\Delta_{m} U_{k}\right) \tag{2.29}\\
& (2.30) \quad y_{12}=y_{21}=i^{k-1}\left[f\left(x \alpha_{m}^{n}\right)-f\left(x \beta_{m}^{n}\right)\right] /\left(\Delta_{m} U_{k}\right)
\end{align*}
$$

(2.31) $y_{22}=\left[\alpha_{m}^{k} f\left(x \beta_{m}^{n}\right)-\beta_{m}^{k} f\left(x \alpha_{m}^{n}\right)\right] /\left(\Delta_{m} U_{k}\right)$.

As an illustrative example, let f be the inverse function. Then, from (2.29)-(2.31) we obtain

$$
\left.\begin{array}{rl}
\left(x M_{k}^{n}\right)^{-1} & =\frac{(-1)^{n}}{x U_{k}}\left[\begin{array}{cc}
(-1)^{k-1} U_{n-k} & -i^{k-1} U_{n} \\
-i^{k-1} U_{n} & U_{n+k}
\end{array}\right] \\
& =\frac{1}{x} M_{k}^{-n} \quad[\text { using (2.19) } \tag{2.33}
\end{array}\right]
$$

3. Some Applications of the Matrix M_{k}

In this and later sections some identities involving U_{n} and V_{n} are worked out as illustrations of the use of our Cholesky algorithm matrix of Fibonacci type M_{k}.
Example 1: From (2.19) we can write
(3.1)

$$
M_{k}^{k}=\frac{1}{U_{k}}\left[\begin{array}{cc}
U_{2 k} & i^{k-1} U_{k} \\
i^{k-1} U_{k} & 0
\end{array}\right]=\left[\begin{array}{cc}
V_{k} & i^{k-1} \\
i^{k-1} & 0
\end{array}\right]=R_{k}=\left[r_{i j}\right]\left(=\left[r_{i j}^{(1)}\right]\right)
$$

whence
(3.2) $\quad M_{k}^{n k}=R_{k}^{n}=\left[r_{i j}^{(n)}\right]$.

Thus, $r_{11}=V_{k}, r_{12}=r_{21}=i^{k-1}, \quad r_{22}=0$. Take $r_{11}^{(0)}=1$. By induction on n, with the aid of Pascal's formula for binomial coefficients, it can be proved that

$$
\left\{\begin{array}{l}
r_{11}^{(n)}=\sum_{j=0}^{[n / 2]}(-1)^{j(k-1)}\binom{n-j}{j} V_{k}^{n-2 j} \tag{3.3}\\
r_{12}^{(n)}=r_{21}^{(n)}=i^{k-1} r_{11}^{(n-1)} \\
r_{22}^{(n)}=(-1)^{k-1_{r}}{ }_{11}^{(n-2)} \quad(n \geq 2)
\end{array}\right.
$$

On the other hand, the matrix $M_{k}^{n k}$ can be expressed also [cf. (2.19)] as

$$
M_{k}^{n k}=\frac{1}{U_{k}}\left[\begin{array}{cc}
U_{k(n+1)} & i^{k-1} U_{n k} \tag{3.4}\\
i^{k-1} U_{n k} & (-1)^{k-1} U_{k(n-1)}
\end{array}\right]
$$

Equating the upper left entries on the right-hand sides of (3.2) and (3.4), by (3.3) we obtain the identity
(3.5) $\quad U_{k(n+1)} / U_{k}=\sum_{j=0}^{[n / 2]}(-1)^{j(k-1)}\binom{n-j}{j} V_{k}^{n-2 j}$,
i.e., $U_{k} \mid U_{k(n+1)}$, as we would expect.

Furthermore, from (3.1) we can write

$$
\left[(-i)^{k-1} M_{k}^{k}\right]^{n}=\left[\begin{array}{cc}
(-i)^{k-1} V_{k} & 1 \tag{3.6}\\
1 & 0
\end{array}\right]^{n}=Z_{k}^{n}=\left[z_{i j}^{(n)}\right]
$$

where $Z_{k}=\left[z_{i j}\right]$ is an extended M matrix depending on the complex parameter (3.7) $\quad z=(-i)^{k-1} V_{k}(m)$ 。

From (2.11) we have
(3.8) $\quad z_{12}^{(n)}=U_{n}(z)$,
and by equating $z_{12}^{(n)}$ and the upper right entry of $\left[(-i)^{k-1} M_{k}^{k}\right]^{n}$ obtained by (3.4) we can write
(3.9)

$$
\begin{aligned}
(-i)^{n(k-1)} i^{k-1} U_{n k}(m) / U_{k}(m) & =(-1)^{n(k-1)} i^{(n+1)(k-1)} U_{n k}(m) / U_{k}(m) \\
& =U_{n}(z)
\end{aligned}
$$

From (2.5) and (3.7) it can be verified that
(3.10) $\quad U_{n}(z)= \begin{cases}U_{n}\left(V_{k}(m)\right) & (k \text { odd, } n \text { odd }) \\ (-1)^{(k-1) / 2} U_{n}\left(V_{k}(m)\right) & (k \text { odd, } n \text { even }) .\end{cases}$

Therefore, from (3.9) and (3.10) we obtain the noteworthy identity
(3.11) $\quad U_{n k}(m) / U_{k}(m)=U_{n}\left(V_{k}(m)\right) \quad(k$ odd)
which connects numbers defined by (2.1) having different generating parameters.

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES

For instance,

$$
\begin{aligned}
\left(m^{3}+3 m\right)^{2}+1 & =m^{6}+6 m^{4}+9 m^{2}+1 \\
& =\left(m^{8}+7 m^{6}+15 m^{4}+10 m^{2}+1\right) /\left(m^{2}+1\right) \\
& =U_{3}\left(V_{3}(m)\right)
\end{aligned}
$$

which simultaneously verifies (3.5) and (3.11).
Example 2: Following [2], from (2.19) we can write either

$$
M_{k}^{r} M_{k}^{s}=\frac{1}{U_{k}^{2}}\left[\begin{array}{cc}
U_{r+k} U_{s+k}-(-1)^{k} U_{r} U_{s} & i^{k-1}\left[U_{r+k} U_{s}-(-1)^{k} U_{r} U_{s-k}\right] \tag{3.12}\\
i^{k-1}\left[U_{s+k} U_{r}-(-1)^{k} U_{s} U_{r-k}\right] & U_{r-k} U_{s-k}-(-1)^{k} U_{r} U_{s}
\end{array}\right]
$$

or
(3.13)

$$
M_{k}^{r+s}=\frac{1}{U_{k}}\left[\begin{array}{cc}
U_{r+s+k} & i^{k-1} U_{r+s} \\
i^{k-1} U_{r+s} & (-1)^{k-1} U_{r+s-k}
\end{array}\right]
$$

By equating the upper right entries on the right-hand sides of (3.12) and (3.13) we obtain
(3.14) $U_{k} U_{r+s}=U_{r+k} U_{s}-(-1)^{k} U_{r} U_{s-k}$
$=U_{s+k} U_{r}-(-1)^{k} U_{s} U_{r-k}$ also.

4. Evaluation of Some Finite Series

In this section the sums of certain finite series involving U_{n} and V_{n} are found on the basis of some properties of the Fibonacci-type Cholesky algorithm matrix M_{k}.

It is readily seen from (2.17) and (2.19), with the aid of (2.1), that (4.1) $\quad M_{k}^{2}=m M_{k}+I$,
whence
(4.2) $\quad M_{k}^{-1}=M_{k}-m I$.

Moreover, using the identity
(4.3) $V_{n} U_{p}-U_{n+p}=(-1)^{p-1} U_{n-p}$,
which can be easily proved using (2.2) and (2.7), we can verify that
(4.4) $\quad\left(x M_{k}^{n}-I\right)^{-1}=\frac{x M_{k}^{n}-\left(V_{n} x-1\right) I}{(-1)^{n-1} x^{2}+V_{n} x-1}$
where x is an arbitrary quantity subject by (2.28) to the restrictions
(4.5) $\quad x \neq\left\{\begin{array}{l}1 / \alpha_{m}^{n} \\ 1 / \beta_{m}^{n} .\end{array}\right.$
A) From (4.1) we can write

$$
\left(M_{k}^{2}-I\right)^{n}=\left(m M_{k}\right)^{n}
$$

and, therefore,

$$
\sum_{j=0}^{n}(-1)^{n}\binom{n}{j} M_{k}^{2 j}=m^{n} \boldsymbol{M}_{k}^{n}
$$

whence, by (2.19), we obtain a set of identities which can be summarized by
(4.6) $\quad \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} U_{2 j+s}=m^{n} U_{n+s}$,
where n is a nonnegative integer and s an arbitrary integer. Replacing s by $s \pm 1$ in (4.6) and combining the results obtained, from (2.7) we have
(4.7) $\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} V_{2 j+s}=m^{n} V_{n+s}$.

Furthermore, following [13], from (4.1) we can write
(4.8) $\quad\left(m M_{k}+I\right)^{n} M_{k}^{s}=M_{k}^{2 n+s}$.

Equating appropriate entries on both sides of (4.8), with the aid of (2.19), we obtain

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j} m^{j} U_{j+s}=U_{2 n+s} \tag{4.9}
\end{equation*}
$$

whence, replacing s by $s \pm 1$ as earlier, we get
(4.10) $\sum_{j=0}^{n}\binom{n}{j} m^{j} V_{j+s}=V_{2 n+s}$ 。
B) From (4.2) we can write

$$
\left(M_{k}-m I\right)^{n}=\left(M_{k}^{n}\right)^{-1}
$$

whence, by (2.19) and (2.32), after some manipulations, we obtain a set of identities which can be summarized by

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j} m^{n-j}\binom{n}{j} U_{j+s}=(-1)^{s-1} U_{n-s} \tag{4.11}
\end{equation*}
$$

C) Finally, let us consider the identity
(4.12) $\quad\left(x A^{n}-\dot{I}\right) \sum_{j=0}^{h} x^{j} A^{n j}=x^{h+1} A^{n(h+1)}-I$,
which holds for any square matrix \bar{A}. From (4.12) and (4.4) we can write, for the Cholesky algorithm matrix M_{k} of Fibonacci type,

$$
\text { (4.13) } \begin{aligned}
\sum_{j=0}^{h} x^{j} M_{k}^{n j} & =\left(x M_{k}^{n}-I\right)^{-1}\left(x^{h+1} M_{k}^{n(h+1)}-I\right) \\
& =\frac{x M_{k}^{n}-\left(V_{n} x-1\right) I}{(-1)^{n-1} x^{2}+V_{n} x-1}\left(x^{h+1} M_{k}^{n(h+1)}-I\right) \\
& =\frac{x^{h+2} M_{k}^{n(h+2)}-x M_{k}^{n}-x^{h+1}\left(V_{n} x-1\right) M_{k}^{n(h+1)}+\left(V_{n} x-1\right) I}{(-1)^{n-1} x^{2}+V_{n} x-1}
\end{aligned}
$$

After some manipulations involving the use of (4.3), from (4.13) and (2.19) we obtain a set of identities which can be summarized as
(4.14) $\sum_{j=0}^{h} x^{j} U_{n j+s}=\frac{(-1)^{n-1} x^{h+2} U_{n h+s}+x^{h+1} U_{n(h+1)+s}-(-1)^{s} x U_{n-s}-U_{s}}{(-1)^{n-1} x^{2}+V_{n} x-1}$,
where n is a nonnegative integer and s is an arbitrary integer. Replacing s by $s \pm 1$ in (4.14), by (2.7) we can derive
(4.15) $\sum_{j=0}^{h} x^{j} V_{n j+s}=\frac{(-1)^{n-1} x^{h+2} V_{n h+s}+x^{h+1} V_{n}(h+1)+s+(-1)^{s} x V_{n-s}-V_{s}}{(-1)^{n-1} x^{2}+V_{n} x-1}$.

We point out that (4.14) and (4.15) obivously hold under the restrictions (4.5) 。

5. Evaluation of Some Infinite Series

In this section a method for finding the sums of certain infinite series involving U_{n} and V_{n} is shown which is based on the use of functions of the matrix $x M_{k}^{n}$ (see Section 2.3).

Under certain restrictions, some sums can be worked out by using the results established in Section 4 above. For example, if
(5.1) $-1 / \alpha_{m}^{n}<x<1 / \alpha_{m}^{n}$,
we can take the limit of both sides of (4.14) and (4.15) as h tends to infinity thus getting

$$
\begin{equation*}
\sum_{j=0}^{\infty} x^{j} U_{n j+s}=\frac{(-1)^{s-1} x U_{n-s}-U_{s}}{(-1)^{n-1} x^{2}+V_{n} x-1} \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=0}^{\infty} x^{j} V_{n j+s}=\frac{(-1)^{s} x V_{n-s}-V_{s}}{(-1)^{n-1} x^{2}+V_{n} x-1} \tag{5.3}
\end{equation*}
$$

5.1 Use of Certain Functions of $x M_{k}^{n}$

Following [6], we consider the power series expansion of $\exp \left(x M_{k}^{n}\right)$ [7],
(5.4) $Y=\exp \left(x M_{k}^{n}\right)=\sum_{j=0}^{\infty} \frac{x^{j} M_{k}^{j n}}{j!}$
and the closed form expressions of the entries $y_{i j}$ of Y derivable from (2.29)(2.31) by letting f be the exponential function. Equating $y_{i j}$ and the corresponding entry of Y on the right-hand side of (5.4), from (2.19) we obtain the identities
(5.5) $\sum_{j=0}^{\infty} \frac{x^{j} U_{j n+k}}{j!}=\left[\alpha_{m}^{k} \exp \left(x \alpha_{m}^{n}\right)-\beta_{m}^{k} \exp \left(x \beta_{m}^{n}\right)\right] / \Delta_{m}$,
(5.6) $\sum_{j=0}^{\infty} \frac{x^{j} U_{j n}}{j!}=\left[\exp \left(x \alpha_{m}^{n}\right)-\exp \left(x \beta_{m}^{n}\right)\right] / \Delta_{m}$,
(5.7) $\sum_{j=0}^{\infty} \frac{x^{j} \dot{U}_{j n}-k}{j!}=(-1)^{k-1}\left[\alpha_{m}^{k} \exp \left(x \beta_{m}^{n}\right)-\beta_{m}^{k} \exp \left(x \alpha_{m}^{n}\right)\right] / \Delta_{m}$,
which, by using the identity $(-1)^{k-1} \alpha_{m}^{-k}=-\beta_{m}^{k}$ [see (2.4)], can be summarized as
(5.8) $\sum_{j=0}^{\infty} \frac{x^{j} U_{j n+s}}{j!}=\left[\alpha_{m}^{s} \exp \left(x \alpha_{m}^{n}\right)-\beta_{m}^{s} \exp \left(x \beta_{m}^{n}\right)\right] / \Delta_{m}$,
where n is a nonnegative integer and s is an arbitrary integer.
From (5.8), (2.7), and (2.3) we can readily derive

$$
\begin{align*}
\sum_{j=0}^{\infty} \frac{x^{j} V_{j n+s}}{j!} & =\left[\alpha_{m}^{s-1} \exp \left(x \alpha_{m}^{n}\right)\left(1+\alpha_{m}^{2}\right)-\beta_{m}^{s-1} \exp \left(x \beta_{m}^{n}\right)\left(1+\beta_{m}^{2}\right)\right] / \Delta_{m} \tag{5.9}\\
& =\alpha_{m}^{s-1} \exp \left(x \alpha_{m}^{n}\right)\left(\Delta_{m}+m\right) / 2-\beta_{m}^{s-1} \exp \left(x \beta_{m}^{n}\right)\left(\Delta_{m}-m\right) / 2 \\
& =\alpha_{m}^{s} \exp \left(x \alpha_{m}^{n}\right)+\beta_{m}^{s} \exp \left(x \beta_{m}^{n}\right)
\end{align*}
$$

By considering power series expansions [1], [16], [7] of other functions of the matrix $x M_{k}^{n}$, the above presented technique allows us to evaluate a very
large amount of infinite series involving numbers U_{n} and V_{n}. We confine ourselves to showing an example derived from the expansion of $\tan ^{-1} y$ (see [1] and [7, p. 113].

Under the restriction
(5.10) $-1 / \alpha_{m}^{n} \leq x \leq 1 / \alpha_{m}^{n}$,
we have

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{(-1)^{j+1} x^{2 j-1} U_{n(2 j-1)+s}}{2 j-1}=\left[\alpha_{m}^{s} \tan ^{-1}\left(x \alpha_{m}^{n}\right)-\beta_{m}^{s} \tan ^{-1}\left(x \beta_{m}^{n}\right)\right] / \Delta_{m} \tag{5.11}
\end{equation*}
$$

6. Conclusion

The identities established in this paper represent only a small sample of the possibilities available to us. We believe that the Cholesky decomposition matrix M_{k} is a useful tool for discovering many more identities. Further investigations into the properties of matrices of this type are warranted.

Acknowledgment

The authors wish to thank the referee for several suggestions that helped to improve the presentation of this paper.

References

1. M. Abramowitz \& I. Stegun. Handbook of Mathematical Functions. New York: Dover, 1972.
2. S. L. Basin \& V. E. Hoggatt, Jr. "A Primer on the Fibonacci Sequence: Part II." Fibonacci Quarterly 1.2 (1963):47-52.
3. G. E. Bergum \& V. E. Hoggatt, Jr. "An Application of the Characteristic of the Generalized Fibonacci Sequence." Fibonacci quarterly 15.3 (1977): 215-20.
4. M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." Fibonacci Quarterly 13.4 (1975):345-49.
5. J. H. Clarke \& A. G. Shannon. "Some Generalized Lucas Sequences." Fibonacci Quarterly 23.2 (1985):120-25.
6. P. Filipponi \& A. F. Horadam. "A Matrix Approach to Certain Identities." Fibonacci Quarterly 26.2 (1988):115-26.
7. F. R. Gantmacher. The Theory of Matrices. New York: Chelsea, 1960.
8. V. E. Hoggatt, Jr., \& M. Bicknell-Johnson. "Generalized Lucas Sequences." Fibonacci Quarterly 15.2 (1977):131-39.
9. A. F. Horadam. "A Generalized Fibonacci Sequence." Amer. Math. Monthly 68.5 (1961):455-59.
10. A. F. Horadam. "Generating Functions for Powers of Certain Generalized Sequences of Numbers." Duke Math. J. 32 (1965):437-59.
11. A. F. Horadam \& Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." Fibonacci Quarterly 23.1 (1985):7-20.
12. E. Lucas. Théorie des nombres. Paris: Blanchard, 1961.
13. Bro. J. M. Mahon \& A. F. Horadam. "Matrix and Other Summation Techniques for Pell Polynomials." Fibonacci Quarterly 24.4 (1986):290-308.
14. S. Pethe \& A. F. Horadam. "Generalized Gaussian Fibonacci Numbers." BuZl. of the Australian Math. Soc. 33.1 (1986):37-48.
15. A. G. Shannon. "Fibonacci Analogs of the Classical Polynomials." Math. Magazine 48 (1975):123-30.
16. M. R. Siegel. Manuale di Matematica. Milan: ETAS Libri, S.p.A., 1974.
17. J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford: Clarendon Press, 1965.
1991]

[^0]: *Work carried out in the framework of the agreement between the Italian PT Administration and the Fondazione Ugo Bordoni.

