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1. Introduction 

Many properties of the generalized Fibonacci numbers Un and the generalized 
Lucas numbers Vn (e.g. , see [3]-[5], [8]-[10], [12], [14]', [15]) have been 
obtained by altering their recurrence relation and/or the initial conditions. 
Here we offer a somewhat new matrix approach for developing properties of this 
nature. 

The aim of this paper is to use the 2-by-2 matrix Mk determined by the 
Cholesky LR decomposition algorithm to establish a large number of identities 
involving Un and Vn. Some of these identities, most of which we believe to be 
new, extend the results obtained in [6] and elsewhere. 

Particular examples of the use of the matrix M^, including summation of 
some finite series involving Un and Vn , are exhibited, A method for evaluating 
some infinite series is then presented which is based on the use of a closed 
form expression for certain functions of the matrix xM%* 

2. Generalities 

In this section some definitions are given and some results are established 
which will be used throughout the paper, 

•2.1. .The Numbers Un and the Matrix M 

Letting m be a natural number, we define (see [4]) the integers Un(rn) (or 
more simply Un if there is no fear of confusion) by the second-order recurrence 
relation 

(2.1) Un + 2 = mUn + l + Un; U0 = 0, Ux = 1 \f m* 

The first few numbers of the sequence {Un} ares 

u0 ul u2 u3 uh u5 u6 

0 1 m m2+l m3+2m w 4 + 3 w 2 + l m5+^m3+3m . . . . 

We recall [4] that the numbers Un can be expressed in the closed form (Binet 
form) 

(2.2) Un - (a- - 3^)/Am5 

where 
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Jrrfl- + 4 
(2 .3 ) { am = (m + Am)/2 

(m - A j / 2 . 
From (2 .3) i t can be no ted t h a t 

am + 3m = m 

We a l s o r e c a l l [4] t h a t 

[ ( n - l ) / 2 ] 

= 0 l ^ 
( 2 . 5 ) tf„ 

l - D / 2 ] , „ _ A _ l v 

where [°] denotes the greatest integer function. Moreover, as we sometimes 
require negative-valued subscripts, from (2.2) and (2.4) we deduce that 

(2.6) U.n - (-l)n+1£/n. 

From (2.1) it can be noted that the numbers Un(l) are the Fibonacci numbers 
Fn and the numbers Un{2) are the Pell numbers Pn. 

Analogously, the numbers Vn(rn) (or more simply Vn) can be defined [4] as 

(2 .7 ) vn = an
m - e* = y„_! + y n + 1 . 

The first few numbers of the sequence {Vn} are: 

F, Vo V* V, V* V& V0 . 
2 m m2+2 m3+2>m mk+hm2+2 m5 + 5m3 + 5m m& + 6m1* + 9m2 + 2 . . . . 

These numbers s a t i s f y the recurrence r e l a t i o n 
(2 .8 ) Vn + 2 = mVn+1 + Vn; V0 = 2 , 7j = m Mm. 

From (2 .7 ) and (2 .4 ) we have 
(2.9) V-n = (-l)"7n) 

and it is apparent that the numbers Vn(l) are the Lucas numbers Ln while the 
numbers Vn{2) are the Pell-Lucas numbers Qn [11]. 

Definitions (2.1) and (2.8) can be extended to an arbitrary generating par-
ameter, leading in particular to the double-ended complex sequences {£/n(s) }~oo 
and {Vn(z)}2co. Later we shall make use of the numbers Un(z)0 

Let us now consider the 2-by-2 symmetric matrix 

(2.10) M 

which is governed by the parameter m and of which the eigenvalues are ctn 
3m. For n a nonnegative integer, it can be proved by induction [6] that 

and 

(2.11) Mn Un+1 

Also, the matrix M can obviously be extended to the case where the parameter 77? 
is arbitrary (e.g., complex). 
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2.2 A Cholesky Decomposit ion of t h e Matrix M: T h e Matrix Mfc 

Let us put 

(2 .12) Mi = M = 
[1 0 

and decompose Mj as 

(2.13) Mi = TXT{ 
a± 0 al cl 

0 b, 

where 2\ is a lower triangular matrix and the superscript (') denotes transpo-
sition, so that T^ is an upper triangular matrix. The values of the entries 

b±, and o^ of 2^ can be readily obtained by applying the usual matrix mul-
tiplication rule on the right-hand side of the matrix equation (2.13), 
fact, the system 

In 

(2.14) 

A + '1 0 

can be written, whose solution is 

(2.15) 

where i = 

tic, 

-1. 

Any of these four solutions leads to a Cholesky LR decomposition [17] of the 
symmetric matrix Mi. 

On the other hand, it is known [7] that a lower triangular matrix and an 
upper triangular matrix do not commute, so that the reverse product T^T^ leads 
to the symmetric matrix M2 which is similar to but different from M1. If we 
take bl = +ic± [cf. (2.15)], we have 

(2.16) M2 = -
Z 772 

777Z + 1 

-1 

while, if we take b\ = -ici, the off diagonal entries of M2 become negative. 
In turn, M2 can be decomposed in a similar way, thus getting 

Mn T2T>2 

0 

where [y2 

2 = ±/(77z2 + l)/m 

2 = lla2 
2 = ±ic2. 

The reverse product T2T2 leads to a matrix M3 with sign of the off diagonal 
entries depending on whether b2 = +ic2 or -ic2 has been considered. 

If we repeat such a procedure ad infinitum, we obtain the set {Af/Ĵ  of 
2-by-2 symmetric matrices 
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(2.17) Mk 

Uk+l 
(fe * 1 ) . 

-U k-l 

Because of the ambiguity of signs that arises in the Cholesky factoriza-
tion, (2.17) is not the only possible result of k applications of the LR 
algorithm to M. However, the only other possible result differs from that 
shown in (2.17) only in the sign of the off diagonal entries. From here on, we 
will consider only the sequence {Mk} given by equation (2.17). 

Since the matrices Mk are similar, their eigenvalues coincide. Mk tends to 
a diagonal matrix containing these eigenvalues (namely, a 
to infinity. 

To establish the general validity of (2.17) 
sition 

" uk+1 

and 3m') a s ^ tends 

consider the Cholesky decompo-

M» Uz.U; kuk+l 

Uk+l 

, - f c - l 

0 

0 iuk 

where Simson ''s formula 

(2.18) Vk+lVk_x - Ul = (-1)* 

has been invoked. Simsonfs formula may be"quite readily established by using 
the Binet form (2.2) for Un and the properties (2; 4) of am and $m. On the 
other hand, from (2.11) and (2.10), it is seen that 

Ul = det(Afk) = (det M)k = (-1)*. 

Reversing the order of multiplication, we get 

Uk+lUk-

ukuk + 1 

Uk+l 

0 

,'k-l 

iUv 

Uk+l 0 

iuk 
Uk + l 

Uk + 2 

-Up 
[by (2.17)] 

[by (2.18)] 

Thus, if the matrix for Mk is valid, then so is the matrix for Mk + \. 
For convenience, Mk may be called the Cholesky algorithm matrix of Fibo-

nacci type of order k. 
Furthermore, if we apply the Cholesky algorithm to Mn [see (2.11)] ather 

than to M, we obtain 

(2.19) (Mn), 
1 

Uk + n 

ik'lu„ 

i k - -lun 

(-Dnuk-„ Uk 
u. n + k 

,-k-l 

,-k-l u„ (-i)K-lun 

u„ 
k-lr 

Observe t h a t 
( 2 . 2 0 ) (Mn)k = \Mk)n = Mn

r 

Validation of this statement may be achieved through an inductive argument. 
Assume (2.20) is true for some value of n, say N. Thus, 

(2.21) (Mk)N = (MN)k. 

Then, 
(Mkf+l =Mk(Mk)N = Mk(M% = (MN+l)k 

[by (2.21)] 

after a good deal of calculation, so that if (2.20) is true for N, it is also 
true for N + 1. In the calculations, it is necessary to derive certain iden-
tities among the Un by using (2.2) and (2.4). 
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2.3 Functions of the Matrix xMf 

From the theory of functions of matrices [7], it is known that if / is a 
function defined on the spectrum of a 2~by-2 matrix A = [a^j] with distinct 
eigenvalues X]_ and A2s then 

(2.22) f(A) = X - [Xij] = c0I + QlA9 

where J is the 2-by-2 identity matrix and the coefficients cQ and o^ are given 
by the solution of the system 

(2.23) ^ 

1̂ 0 + C1A2 = /(A2^-
Solving (2.23) and using (2.22), after some manipulations we obtain 

(2.24) arn = [(an - A1)/(A2) - (a n - X2)/(X1)]/(X2 - Ax) 

(2.25) xl2 = a12[/(X2) - /(A1)]/(A2 - Ax) 

(2.26) x21 = a21[/(A2) - f(A1)]/(A2 - Ax) 

(2.27) x22 = t(a22 - AX)/(A2) - (a22 - A2)f(A1)]/(A2 - Ax). 

For x an arbitrary quantity, let us consider the matrix xUy. having eigen-
values 

'Ax = xan
m 

?13 
Of 

(2.28) 
^A2 = x$\ 

and let us find closed form expressions for the entries y^ 

I = [yid ] = fix*?). 
by (2.24)-(2.27), after some tedious manipulations involving the use of certain 
identities easily derivable from (2.2) and (2.3), we get 

(2.29) 2/n = [alf(xal) - $f(xZ%)]/(LmUk) 
(2.30) ylz = yzl 

,-k-l lf(xan
m) - f(x$nJ]/(AmUk) 

(2.31) z/22 = [a*/(atf£) - ^f(xan
m)]/(AmUk). 

As an illustrative example, let f be the inverse function. 
(2.29)-(2.31) we obtain 

Then, from 

(2.32) (xMl)-

(2.33) 

xUv 

{-l)k~lUn.k -ik-lUn 

rk-lj Jn + k 

±M'kn [using (2.19) and (2.6)]. 

3. Some Applications of the Matrix Affc 

In this and later sections some identities involving Un and Vn are worked 
out as illustrations of the use of our Cholesky algorithm matrix of Fibonacci 
type Mk. 

Example 1: From (2.19) we can write 

(3.1) Ml u, Ik 
, - f c - l Vv 

rk-lj 

vk 

rk-l 

, - f c - l 

Rk - [r,,] (- [rth)> • V Ĵ 
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whence 

(3.2) M rik Rl [p<n)]. 
L v J 

r f c - l ,(o) Thus, P1X = Vk, r12 = r21 = iK L, r2z = 0. Take r\\J = 1 . By induction on n, 
with the aid of Pascal fs formula for binomial coefficients, it can be proved 
that 

[nil] 

(3.3) 

*ff- .E M)J'a"1}(n '. J ) C 
» = ̂ n ) = ,^-1^-D 
12 

(n) 
•22 

•21 

(-D 

11 

fe-1 (n-2) 
P l l (n > 2). 

*rc/c On the other hand, the matrix Mk can be expressed also [cf. (2.19)] as 

(3.4) Mf=± u-k(n + l) rk-ij 
nk 

,'k-l Unk (-l)*"1^^..!)-

Equating the upper left entries on the right-hand sides of (3.2) and (3.4),by 
(3.3) we obtain the identity 

(3.5) UHn + 1)/Uk = [E21 (-i)'-<*-»(» - 3)v»-V, 
j = 0 \ J / 

i.e., Uk\Uk^n+iy9
 a s w e would expect. 

Furthermore, from (3.1) we can write 

(3.6) [{-i)k-1Mhn 
i-i)k~lVk 

l*{&, 

where Zk = [s--] is an extended M matrix depending on the complex parameter 

(3.7) z = (-i)k'lVk(m). 

From (2.11) we have 

(3.8) 3<*>- Un(z)9 

and by equating z ^ a n d ttie upper right entry of [(-i) f e - 1 M ?] n obtained by (3.4) 
we can write 

(3.9) (-i)n(k-l)ik-lUnk(m)/Uk(m) = (-i)*(fc-l>£<n + l).^-^UnH (m)/Uk(m) 

= tfn(a). 
From (2.5) and (3.7) it can be verified that 

Un(Vk(m)) (k odd, n odd) 

(_1)(fe-l)/2^(7fe(777)) (̂  o d d j n even). 

Therefore, from (3.9) and (3.10) we obtain the noteworthy identity 

(3.11) Unk(m)/Uk(m) = Un(Vk(m)) (fc odd) 

which connects numbers defined by (2.1) having different generating parameters. 

(3.10) Un(z) -
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For ins tance, 

(m3 + 3m) 2 + 1 = m& + 6mh + 9m2 + 1 = (m8 + 7w6 + I5mh + 10m2 + 1) / (m2 + 1) 

= J/3(^W) = U3{m)/U3(m) 

which simultaneously v e r i f i e s (3.5) and (3 .11) . 

Example 2: Following [2 ] , from (2.19) we can wri te e i the r 

ur+kus+k- (-i)kurus ik-l[ur+kus - (-i)kurus-k] 
(3.12) M*Ms

k=± 
'k-l [us + kur- (-i)kusur„k] ur.kus.k- {-iyuru8 

(3.13) Ml + s=j-k 
lk~lu„ 

+ k i^Uy. 

(-l)k~1U 
r+s-k J 

By equating the upper r igh t en t r i e s on the r ight-hand sides of (3.12) and (3.13) 
we obtain 

(3.14) UkUr + 8 = Ur + kUs - (-l)kUrUs_k 

= Ue + kUr - (-l)kU8Ur-k a l so . 

4. Evaluation of Some Finite Series 

In t h i s sect ion the sums of ce r t a in f i n i t e s e r i e s involving Un and Vn are 
found on the basis of some proper t ies of the Fibonacci-type Cholesky algorithm 
matrix Mk. 

I t i s readi ly seen from (2.17) and (2 .19) , with the aid of (2 .1 ) , that 

(4.1) Ml = mMk + I , 
whence 

(4.2) M^ 

Moreover, using the identity 

(4.3) VnUp - Un + p = (-ljP-^n.p, 

which can be easily proved using (2.2) and (2.7), we can verify that 

Mk - ml. 

(4.4) (xM? - I)~l 
xMv (Vnx - 1)1 

k *' (-l)n~1x2 + Vnx - 1 

where x is an arbitrary quantity subject by (2.28) to the restrictions 

(4.5) x * 

A) From (4.1) we can wri te 

C«| - I)" = (mMk)n 

and, therefore , 

£(-D-(5)*f^-»-*?. 
j - o w ' 

whence, by (2.19), we obtain a set of identities which can be summarized by 
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(4.6) £ (-l)^HW2i+ s = mnUn + B, 
j = 0 x^ ' 

where n is a nonnegative integer and s an arbitrary integer. Replacing s by 
s ± 1 in (4.6) and combining the results obtained, from (2.7) we have 

(4.7) ± (-ir-'^Yzj + s = m»Vn + s . 

Furthermore, following [13], from (4.1) we can write 

(4.8) (mMk + I)nM* = M f + S. 

Equating appropriate entries on both sides of (4.8), with the aid of (2.19), we 
obtain 

j + s ^2n + s s 

whence, replacing s by S i 1 as earlier, we get 

(4.io) ioQyvJ+s - v2n+s. 
B) From (4.2) we can write 

(Mk - ml)n = (#£)-!, 

whence, by (2.19) and (2.32), after some manipulations, we obtain a set of 
identities which can be summarized by 

(4.11) £ t-iymn-H")uj + a = (-l)s"li/n_s. 

C) Finally, let us consider the identity 

(4 .12) (xAn - 1) X > J ' ^ - xh+lAn{h + l) - J, 
j - o 

which ho lds for any square m a t r i x A. From (4 .12) and (4 .4 ) we can w r i t e , fo r 
the Cholesky a l g o r i t h m m a t r i x Mk of F ibonacc i t y p e , 

(4.13) J2x'MkJ = (xMk ~ I)-Hxh + 1M%(h + l) - I) 

(-l)n-lx2 + VnX - 1 k 

_ xh+2Ml{h+2) - xM% - xh+l(Vnx - l)M£{h+l) + (Vnx - I)J 

( - l ) * " 1 ^ 2 + Vnx - 1 

After some manipulations involving the use of (4.3), from (4.13) and (2.19) we 
obtain a set of identities which can be summarized as 

(4.14) T,^U -
3 ?0 n° + s (-1)""1*2 + Vnx - 1 

where n is a nonnegative integer and s is an arbitrary integer. Replacing s by 
s ± 1 in (4.14), by (2.7) we can derive 

(4.15) 2LxVni+e 
j-o "J + S (-I)""1** .+ 7„ar - 1 

We point out that (4.14) and (4.15) obivously hold under the restrictions 
(4.5). 
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5. Evaluation of Some Infinite Series 

In this section a method for finding the sums of certain infinite series 
involving Un and Vn is shown which is based on the use of functions of the 
matrix x.M^ (see Section 2.3). 

Under certain restrictions, some sums can be worked out by using the re-
sults established in Section 4 above. For example, if 

(5.1) -l/a« < x < l/<, 

we can take the limit of both sides of (4.14) and (4.15) as h tends to infinity 
thus getting 

00 i (-l)s-lxUn.s - Us 
(5.2) X>'*7nj. + a -"o "" '" (-l)n~lxz + Vnx -

{-l)sxVn.s - Vs 

(5.4) Y= e x p ( ^ ) - £ ^ 

(5.3) J > X - + a {.l)n-lx2 + VnX _ i 

5.1 Use of Certain Functions of xMjJ 

Following [6], we consider the power series expansion of exp(xM )̂ [7], 

x'Min 

j - o 
and the closed form expressions of the entries y^ • of Y derivable from (2.29)-
(2.31) by letting / be the exponential function. Equating y^ and the corre-
sponding entry of J on the right-hand side of (5.4), from (2.19) we obtain the 
identities 

(5.5) £ f" + * - [a* exp(xc4) - B* exp(^)]/Aw, 
3 - 0 J ' 

00 xc'U-
(5.6) £ —jf- = [exP0m£) - exp(xB^)]/AOT, 

j = o «/ • 

IT (5.7) £ ?, = t - D ^ ' l a * e x p ( ^ ) - f$k
m exp(xan

m)]/Am, 
j'-o 

which, by using the identity (-l)fc am = -&„ [see (2.4)], can be summarized as 

(5.8) t * U^ + S - K exp(xa-) - B« expOO]/AOT, 

where n is a nonnegative integer and s is an arbitrary integer. 
From (5.8), (2.7), and (2.3) we can readily derive 

(5.9) £ ff + a = [ a ^ e x p C O d + a*) - B ^ e x p O O d + B£)]/AOT 
j - o J' 

= a^^expfra^tA, + 777)/2 - B^expCatfS) (Aw - ra)/2 
= a* exp(xa^) + Bm exp(xB^). 

By considering power series expansions [1], [16], [7] of other functions of 
the matrix xM%9 the above presented technique allows us to evaluate a very 
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large amount of infinite series involving numbers Un and Vn . We confine our-
selves to showing an example derived from the expansion of tan~ly (see [1] and 
[7, p. 113]. 

Under the restriction 

(5.10) -l/< < x < l/a«, 

we have 

(5.1D £ ("1)3 * ! U"{1i-l) + s = [asmtan-l(^a"m) - (̂  tan"! (*($!£) ]/Am. 
J = 1 

6. Conclusion 

The identities established in this paper represent only a small sample of 
the possibilities available to us. We believe that the Cholesky decomposition 
matrix Mk is a useful tool for discovering many more identities. Further 
investigations into the properties of matrices of this type are warranted. 
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