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The binary number system lends itself to unrestricted ordered partitions, 
as indicated in Table 1. 

TABLE 1. The Binary Case 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Binary 
Representation 

1 
10 
11 
100 
101 
110 
111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
10000 

k 

1 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
5 

Associated 
Partition of k 

1 
2 
11 
3 
21 
12 
111 
4 
31 
22 
211 
13 
121 
112 
1111 

8 

Note that the partitions of k = 4, ranging from 4 to 1111, are in one-to-one 
correspondence with the integers from 8 to 15, for a total of 8 partitions. 
Similarly, there are 16 partitions of 5, 32 of 6, and generally, 2 k _ 1 

partitions of k. These are in one-to one correspondence with the binary 
representations of length k. 

It is well known (Zeckendorf [1]) that the Fibonacci numbers 

Fl = 1, F2 = 1, F3 = 2, Ft, = 3, F5 = 5, F6 = 8, F7 = 13, ... 

serve as a basis for another zero-one number system, depending on unique sums 
of nonconsecutive Fibonacci numbers. These sums are often called Zeckendorf 
representations (see Table 2) . The partitions of k that appear in this scheme 
are those in which only the last term can equal 1; that is, 

k = Vi + i>2 + ••• + ?j * where r^ > 2 for i < j and rj > 1. 
Table 2 suggests that, for any k* the number of partitions in which 1 is 

allowed only in the last place is the Fibonacci number F% (e.g., 34 - 21 = 13 
partitions of 7, ranging from 7 to 2221). This is nothing new, since the 
number of zero-one sequences of length k beginning with 1 and having no two 
consecutive l?s is well known to be F^. It is less well known that these zero-
one sequences correspond to partitions. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 

21 
22 
23 
24 
25 

32 
33 
34 

TABLE 2, 

Zeckendorf 
Representation 

1 
2 
3 

3 + 1 
5 

5 + 1 
5 + 2 
8 

21 
21 + 1 
21 + 2 
21 + 3 
2 1 + 3 + 1 

2 1 + 8 + 3 
2 1 + 8 + 3 + 1 

34 

. The Zeckendorf 

Zero-One 
Representation 

1 
10 
100 
101 
1000 
1001 
1010 
10000 

1000000 
1000001 
1000010 
1000100 
10O0101 

1010100 
1010101 
10000000 

Case 

k 

1 
2 
3 
3 
4 
4 
4 
5 

7 
7 
7 
7 
7 

7 
7 
8 

Associated 
Partition of k 

1 
2 
3 
21 
4 
31 
22 
5 

7 
61 
52 
43 
421 

223 
2221 

8 

Here is a summary of the observations from Tables 1 and 2. The first-order 
recurrence sequence 1, 2, 4, 8, ... serves as a basis for unrestricted parti-
tions, and the second-order recurrence sequence 1, 2, 3, 5, 8, ... serves as a 
basis for somewhat restricted partitions. 

The purpose of this article is to extend these results to higher-order 
sequences, their zero-one number systems, and associated partitions. To this 
end, and for the remainder of the article, let m be an arbitrary fixed integer 
greater than 2. 

Define a sequence {s^} inductively as follows: 

Si = 1 for i = 1, 2, ...,77?, 

Si = si-i + Si-m for i = m + 1, m + 2, ... . 

Theorem 1: Every positive integer n is uniquely a sum 
si + si + ''' + si * where i t - iu > m whenever t > u. 

Proof: The first m positive integers are one-term sums. Suppose, for h> m + 1, 
that the statement of the theorem holds for all n < h - 1. Let ii be the great-
est i for which s^ < h. If h - s^ = 0, then the required sum is six itself. 

Otherwise, h - Six is, by the induction hypothesis, uniquely a sum si + ... 
+ si of the required sort, so that 

(1) 
Suppose 

h = 

M " 
h > 

SH 
~ i>2 

Sh 

+ 

< 

+ 

^2 

m -

s i i 

+ 

1. 

> 

... + 8iy 

Then 

Hx
 + si Ul - 772+1 b i l + 1> 

contrary to our choice of i\ as the greatest i for which h > Si* 
Therefore, the sum in (1) has it - iu - m whenever t > u, and this sum is 

clearly unique with respect to this property. By the principle of mathematical 
induction, the proof of the theorem is finished. 
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Theorem 1 shows that the sequence {s^} serves as a basis for a "skip m - % 
number system" analogous to the Zeckendorf, or Fibonacci, number system. The 
latter could be called the "skip 1 number system." 

Examples: In the skip 1 system: 

31 = 21 + 8 + 2 = 1010010 
32 = 21 + 8 + 3 = 1010100 
33 = 2 1 + 8 + 3 + 1 = 1010101 
34 = 34 = 1000000 

In the skip 2 system: 

57 = 41 + 13 + 3 = 1001000100 
58 = 41 + 13 + 4 = 1001001000 
59 = 41 + 13 + 4 + 1 = 1001001001 
60 = 60 = 10000000000 

We turn now to partitions. For a quick glimpse of what is coming, notice 
that the zero-one representations for 57, 58, and 59, just above, lend themselves 
naturally to the partitions 343, 334, and 3331 of the integer 10. 

In general, in the m - 1 system, for a given positive integer k9 the digit 
one occurs at and only at places ils i2, •••» ty, where k = Si + Si + ... + 
Si , and each pair of ones are separated by at least m - 1 zeros; therefore, to 
each k there is a unique ordered y-tuple of integers v^ defined by 

(rl = ix , if V ~ 1, 
(2) \vu = iu - iu+i for u = l9 2, . . . , v - l , ±fv>l and s^ ^ m, 

< m - 1. 

We summarize these observations in Theorem 2. 

Theorem 2: Let k be a positive integer, let Sk = {sk9 sk + 1, ..., s^+1 - 1}, 
and let Pk be the set of partitions Pj , P2» ...> ^y of k that satisfy py > 1 
and p^ > m for i = 1, 2, ..., 777 - 1. Then equations (2) define a one-to-one 
correspondence between Sk and Pk9 so that the number p(k) of partitions in Pk 
is sfc_m_!. 

Now for any positive integer k, and for j = 1, 2, ..., w , let p(&, j) be 
the number of partitions p^, P2, •••» py °f ^ f° r which py = j and v^ >m for 
1 = 1, 2, . .., y - 1. As in Theorem 2, let p(/c) be the number of partitions of 
k for which vv > 1 and v^ > m for i = 1, 2, ..., y - 1. Let (̂/c) be the number 
of partitions of k for which p. > /?? for aZ-Z- indices i = 1, 2, ..., v - 1, y. 

PX = i:, if v ~ 1, 
p
w = ^u " ^u+i for 

pu = ^u " ^w+i for 
w = 1, 
u = 1, 

2, 
2, 

y -
v -

- 1, if v > 1 and s.£. 
- 1 and py = iv , 

if ?; > 1 and s--

1 If k = j < m9 
Lemma 1: 

p(k, j) 
[0 if k < m9 j < m, and k * j . 

Proof: For any given fc < m, the partition of /c is the number k by itself, so 
that p(k9 k) = 1. Clearly, p(k9 j) = 0 for k * j since, in this case, no par-
tition of the form described is possible. 

Lemma 2: Suppose i < j < m. Then p(k9 j) = p(k - 1, j) + p(k - m9 j) for fe = 
m + 1, m + 2, . . . . 
Proof: Assume k > m + 1. Each of the p(/c - 1, j) partitions rl9 r2» •••»

 rv-l> <7 
of k - I yields a partition vx + 1, P2, ...» ^ - I » J of /c. Moreover, P X + 1 > 
m + 1, so that every partition of k having first term > m + 1 corresponds in 
this manner to a partition of k - 1. 

Each of the p(^ - tf?, j) partitions P2, P3, . . . 9 j of k - m yields a parti-
tion m9 P2, P3, ..., j of A:. Moreover, every partition of k having first term 
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m corresponds in this manner to a partition of k - m. 
Since p(k9 j) counts partitions having first term > m9 a proof that 

p(k» j) = p{k - 1, j) + p(k - m, j) 
is finished. 

Theorem 3: Suppose k is a positive integer. The number (̂fc) of partitions 
3?1, z^' •••» rv °f ^ having r^ > m for i = 1, 2, . .., v is given by the mth-
order linear recurrence q(k) = q (k - 1) + q(k - m) for k = m + l9 m + 2, . .., 
where q(j) = 0 f° r J = ls 2, ..., m - 1, and q(/??) = 1. 

Proof: The assertion follows directly from Lemma 2, since 
m-l 

<?(fc) = p(fc) - ̂ p f c J ) . 
J= 1 
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