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1. Introduction 

A well-known combinatorial formula for the Fibonacci numbers Fn, defined by 
FQ = 0, Fi = 1, Fn = ̂ . } + F„_2 for n > 2, is 

L w / 2 J _ . 

(1) £ r , ^ = Fn+1 for n > 0, 
£= 0 X ^ ; 

which can be shown by induction (see, for example, Knuth [11, Ex. 1.2.8-16]). 
The following proof, however, is easily generalizable to various other recur-
sively defined sequences of integers. 

The Fibonacci numbers {i^? ̂ 3> ... } are the basis elements of the binary 
Fibonacci numeration system (see [11, Ex. 1.2.8-34] or Fraenkel [7]). Every 
integer K in the range 0 < K < Fn+i has a unique binary representation of. n - 1 
bits, kn-ikn-2 ••• &i> such that 

n- 1 

K = E M i + 1 
£= 1 

and such that there are no adjacent l's in this representation of K (see Zeck-
endorf [17]). It follows that, for ft > 1, Fn+i is the number of binary strings 
of length n - 1 having no adjacent lTs. The number of these strings with 
precisely i lTs, 0 < i < [n/2\, is evaluated using the fact that the number of 
possibilities to distribute a indistinguishable objects into b + 1 disjoint 
sets, of which b - 1 should contain at least one element, is (aT1) (see Feller 
[6, Sec. II.5]). In our case, there are n - 1 - i zeros to be partitioned into 
i + 1 runs, of which the i - 1 runs delimited on both sides by lfs should be 
nonempty; the number of these strings is therefore (n~M. 

In a similar way, counting strings of certain types, Philippou and Muwafi 
[15] derived a representation of Fibonacci numbers of order m, with m > 2, as a 
sum of multinomial coefficients; their formula coincides with that presented 
earlier by Miles [13]. 

The properties of the representation of integers in Fibonacci-type numera-
tion systems were used by Kautz [10] for synchronization control. More 
recently, they were investigated in Pihko [16] and exploited in various 
applications, such as the compression of large sparse bit-strings (see Fraenkel 
and Klein [8]), the robust transmission of binary strings in which the length 
is in an unknown range (see Apostolico and Fraenkel [3]), and the evaluation of 
the potential number of phenotypes in a model of biological processing of 
genetic information based on the majority rule (see Agur, Fraenkel, and Klein 
[1]). In the present work, the properties of numeration systems are used to 
generate new combinatorial formulas. In the next section, this is done for the 
sequence based on the recurrence a^ = a^ _ i + ai-m> for some m > 2, which 
appears in certain applications to encoding algorithms for CD-ROM. Section 3 
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deals with other generalizations of Fibonacci numbers, namely, sequences based 
on the recurrences ui = mui-i + ui-l f° r m - 1» or Vi ~ mvi-\ - V^-2 f° r m - 3S 
which are special cases of the sequences investigated by Horadam [9]. For 
certain values of 77? and with appropriate initial values, these two recurrence 
relations generate the subsequences of every kth Fibonacci number, for all k ^ 1. 
For further details on the properties of numeration systemss the reader is 
referred to [7]. 

2. A Generalization of Fibonacci Numbers 

Given a constant integer m > 2, consider the sequence defined by 

A(n} = n - 1 for 1 < n < m + 1, 

4 m ) = 4T-1 + A{n-m for n > ro + 1. 

In particulars Fn = A\} are the standard Fibonacci numbers. It follows from 
[7, Th. 1] that7; for fixed m, the numbers {A(™\ ^ ^ > •••} are the basis 
elements of a binary numeration system with the following property: every 
integer K in the range 0 < K < A^1 has a unique binary representation of m - I 
bitss kn-ikn-2* •«^is such that 

i = 1 
and such that there are at least m - 1 zeros between any two l's in this repre-
sentation of Z. Hence, for n > 1, ̂  + x is the number of binary strings of 
length n - 1 having this property. 

For n = 25 we again get the property that there are no adjacent ones in the 
binary representation, 

An interesting application of the sequence An is to analyze encoding 
methods for certain optical discs. A CD-ROM (compact disc-read only memory) is 
an optical storage medium able to store large amounts of digital data (about 
550 MB or more) . The information, represented by a spiral of almost two bil-
lion tiny pits separated by spaces, is molded onto the surface of the disc. A 
digit 1 is represented by a transition from a pit to a space or from a space to 
a pit, and the length of a pit or space indicates the number of zeros. Due to 
the physical limitations of the optical devices, the lengths of pits and spaces 
are restricted, implying that there are at least two 0!s between any two lfs 
(for details, see, for example, Davies [4]): this is the case m = 3 of our 
sequence above. It follows that if we want to encode a standard ASCII byte 
(256 possibilities), we need at least 14 bits, which corresponds to A^ = 211. 
In fact, there is an additional restriction that no more than 11 consecutive 
zeros are allowed, which disqualifies 6 of the 277 strings, but 14 bits are 
still enough; indeed, the code used for CD-ROM is called EFM (eight to fourteen 
modulation). 

We now derive a combinatorial formula for 4̂n+i« First, note that in+i is 
also the number of binary strings of length n + m - 2, with zeros in its 777 _ — ' 1 
rightmost bits, such that every 1 is immediately followed by w - 1 zeros. Let 
k be the number of lfs in such a string, so that k can take values from 0 to 
1 {n + m - '2)lm\. We now consider the string consisting of elements of two 
types; blocks of the form 10...0 (m - 1 zeros) and single zeros; there are k 
elements of the first type and (n + m - 2) -km of the second, which can be 
arranged in 

n + 7 7 2 - 2 - (772 - l)k\ 
k I 
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ways. Thus, we have the fo l lowing formula , ho ld ing for m > 2 and n > 1: 
L(w+m-2)/mJ, 

(2) E (B + B , - % - < ' B - 1 > * ) - 4 2 1 , 
k=0 

For 777 = 2, (2) reduces to formula (1). Using the example mentioned above for 
EFM codes, setting m = 3 and n = 15, we get: 

Co6) * (?) - (?) - ft0) • (5) - (?) 
= 1 + 14 + 66 + 120 + 70 + 6 = 277 = A^. 

3. Regular Fibonacci Subsequences 

Let Ln be t he n t h Lucas number, de f ined by LQ = 2 , L]_ = 1, Ln = Ln_i + Z/n_2 
for n > 2. The s t a n d a r d e x t e n s i o n to n e g a t i v e i n d i c e s s e t s 

L_n = ( - l ) n L n and F_„ = ( - l ) n + 1 F n fo r n > 1. 
We are interested in the regular subsequences of the Fibonacci sequence 

obtained by scanning the latter in intervals of size k, i.e., the sequences 
{i?^n+j}n = _oo for all constant integers k > 2 and 0 < J < k. The following iden-
tity, which is easily checked and apparently due to Lucas (see Dickson [5, p. 
395]) , shows that all the subsequences with the same interval size k satisfy a 
simple recurrence relation: for all (positive, null, or negative) integers k 
and n, 

(3) Fn = LkFn_k + (-l)fc+lFB_2fc. 

It follows that all regular subsequences of the Fibonacci numbers can be 
generated by a recurrence relation of the type U£ = mui-i ± ui-2> f° r certain 
values of m, and with appropriate initial conditions. We now apply the above 
techniques to obtain combinatorial representations of these number sequences. 

For fixed m ^ 3, define a sequence of integers by 

U^ - 0, U{m) - 1, and U™ = mU^x - U™2 torn > 1. 

The numbers {u[m\ U^\ •••} are the basis elements of an m-ary numeration sys-
tem: every integer K in the range 0 < K < U„ has a representation of n - 1 
'Vz-ary digits," ̂ n_i^n_2...k\, with 0 < k± < m - 1, such that 

i= 1 
this representation is unique if the following property holds: if, for some 
l < i < e 7 < n - l , ki and k-j both assume their maximal value m - 1, then there 
exists an index s satisfying i < s < J, for which k8 < m - 3 (see [7, Th. 4]). 
In particular, for m = 3, we get a ternary system based on the even-indexed 
Fibonacci numbers {1, 3, 8, 21, ... }, and in the representation of any integer 
using this sequence as basis elements, there is at least one zero between any 
two 2fs. 

For general 772, we have that U^ is the number of m-ary strings of length 
n - 1, such that, between any two (m - l)?s, there is at least one of the digits 
0,..., (m - 3). For a given m-ary string A of length n - 1, let 'j^ be the num-
ber of i's in A, 0 < £ < m - 1, thus, 0 < j ^ < n and 

m- 1 

E h = n ~ !• 
i = o 
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To construct an w-ary string satisfying the condition, we first arrange the 
digits 0, ..., (m - 3) in any order, which can be done in 

( & ) 
\ 3 0 » t71 > - - - > dm-If 

ways. Then the dm-\ (jn - l)fs have to be interspersed, with no two of them ad-
jacent. In other words, the Y^ZQQ^ smaller digits, which are now considered 
indistinguishable, are partitioned into Qm-\ + 1 sets, of which at least j m - \ - 1 
should be nonempty; there are 

in - Jm_2 " dm-l) 
V dm-l I 

possibilities for this partition. Finally, the (/77-2)fs can be added anywhere, 
in 

i n - U 

\Jm-2 I -2 
ways. This yields the followinig formula, holding for 77? > 3 and n > 1: 

(4) y in - l - Jm-2 - Cm-l\(n " l \ ( n ~ Jm-2 ~ Q m -1 \ = JJM 
,jm -1 >0 W'o» «7l> ••• > Jw-3 / W'm-2 A Jm-l / n ' • «70» • • " «7/n-l 

j 0 + . .. + j m _ 1 = n - 1 

Using the fact that for integers a and b, (̂ ) = 0 i f 0 < a < Z ? , there is no 
need to impose further restrictions on the indices, but the rightmost binomial 
coefficient in (4) implies that Qm-\ varies in fact in the range 0 < jm-i -
\ (n - 1)/21. The sequence {Un ) corresponds to the sequence (wn(0, 1; m9 1)) 
studied by Horadam [9]? but formula (4) is different from Horadam's identity 
(3.20). 

Remark: Noting that the definition and the multinomial expansion of the multi-
variate Fibonacci polynomials of order k {Hjf'^Xi, ..., xk)} of Philippou and 
Antzoulakos [14] may be trivially extended to Xj£R(j=l,...,k), we readily 
get the following alternative to (4), namely, 

L(n-1)/2J . 

V™ = £ (n " • " ^ ( - l W - 1 - ^ , m > 3, n > 1, 
j = o v J ' 

since {U™} = {H(
n

2\m, -1)} (m > 3, n > 1) . 
From (3), we know that the regular subsequence {^(n-D + j ^n= 0 °^ t n e Fibo-

nacci numbers, for constant even k > 2 and 0 < j < k, is obtained by the same 
recurrence relation as the sequence _ QS with the difference that the 
first two elements (indexed 0 and 1) must be defined as F-K + J and F-j instead of 
0 and 1. Thus, we can express the Fibonacci subsequences with even interval 
size in terms of U^m': 

Theorem 1: For any even constant k > 2 and any constant 0 < j < k9 the follow-
ing identity holds for all n > 1: 

(5) FHn_1)+ . = FjU^ -F_k+XL-1-
Proof: By induction on n. For n = 1, 

Fj = Fdxl - F.k+jx0. 

For n = 2, 

*fc+j = ̂ ^ + (~Dk + 1F_k + j by (3), 
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but s i n c e k i s even, t he r i g h t - h a n d s i d e can be r e w r i t t e n as 

Suppose the i d e n t i t y ho lds for a l l i n t e g e r s < n . Then 

Fkn + j = LkFk(n-l) + j " Fk(n-2) + j 

r3 n + l r -k+jun s 

so the identity holds also for n + 1, and therefore for all n ̂  1. D 

In particular, for J = 0 and k = 2, we get the numbers Fz(n-l) > n = 1» 2, 
..., which are the even-indexed Fibonacci numbers, and correspond by (5) to 

y(LV = u°\. 
n-1 n~ 1 

For ?72 = L 2 = 3, the multinomial coefficient in (4) reduces to \ A ] = 1? and the 
equivalent of (4) can therefore be rewritten as: 

r ( n - l ) / 2 1 n - l - j 2 

>=0 Jo =max(0, J 2 - 1 ) WO + e72/V J 2 / ~ 

, fo r n = 4 , we g e t : 

(S)(J)+ (?)(S) + (^) + (3)(S) * { ? ) ( ! ) + (i)(?) + (3)(?) + (3X2) 

J2 = 0 JO =max(0, j 2 

For example, for n = 4, we get: 

-•1 + 3 + 3 + 1 + 3 + 6 + 3 + 1 = 21 = ̂ 3 ) =. FQ. 

For fixed 777 > 1 , define a sequence of integers by 

F 0
( w ) - 1, V™ = 1, and 7^> = mPffi' + 1 ^ for n > 2 . 

The numbers {7i , F f , ...} are the basis elements of an (m + l)-ary numeration 
system with the following property: every integer K in the range 0 < K < V„ 
has a unique representation of n - 1 !l {m + l)-ary digits/1 A:n_x^n-29 e 8^1'» with 
0 < k-f < m, such that 

i = 1 
and such that, for £ > 1, if &-£ + ]_ assumes its maximal value 777, then k = 0 (see 
[7, Th. 3]). In particular, for 77? = 1, we get the binary numeration system 
based on the Fibonacci sequence and the condition that there are no adjacent 
l ' s . • • • - . , . .. 

For - general 7??, we have that 7„ is the number of (77? + l)-ary strings of 
length n - 1, such that when scanning the string from left to right, every 
appearance of the digit 777, unless it is in the last position, is immediately 
followed by a digit 0. Special treatment of the rightmost digit is avoided by 
noting that VJf1' is also the number of (777 + l)-ary strings of length n> with 0 
in its rightmost position, and where each digit 777 is followed by a digit 0. 
For a given (77? + l)-ary string A of length n, let Qi be the number of £?s in A r 
0 < i < 777, thus 0 < Q i < n and 

m 

E h = n. 
To construct an (777 + l)-ary string satisfying the condition, distribute the 0fs 
in the spaces between the 777fs, such that every 777 is followed by at least one 0» 
In other words, the j 0 zeros have to be partitioned into j m + 1 sets, of which 
at least j m should be nonempty; there are H o \ possibilities for this partition* 

\ 3 m I 
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We now consider the string obtained so far as consisting of J'Q units, where 
each unit is either one of the j m pairs ?l/??0" or one of the remaining J'Q - j m 
single zeros. The digits 1, . .., (m - 1) are then to be distributed in the 
spaces between these units, including the space preceding the first unit, but 
not after the last unit, because the rightmost position must be 0. First the 
digits 1, ..., (/??-!) are arranged in any order, which can be done in 

( . % \ ) 
\Jl» • • • 5 d m-\l 

ways; finally, these 2L,̂  = 1J^ digits, which are considered indistinguishable, 
are partitioned into J'Q sets, which can be done in 

,m-l 
n . - 1 \ 

1 - jm E u - v In - 1 - dm \ 
X n - I / \ n ~ h ~ 3ml 
\ Jo l / 

wayse Summarizing, we get, for m > I and n > 1: 

y / J o V U " 1 " dm ) = 
JQ> 0, j \ 

«7o + " ' + 3m =n ^ 
For m = 1, the multinomial coefficient is [,-0_i)= 1, and we again get (1). For 
m = 2, the sequence {V^l)} is {1, 3, 7, 17, . .. }, and the ternary numeration 
system based on this sequence is the system which yielded the best compression 
results in [8]. The sequence {V^ } corresponds to {wn(l, 1; m, -1)} in [9], 
but again the combinatorial representation (6) is different from Horadam's 
formula (3.20). For m = 2, (6) reduces to: 

£ . £ . .$)(" i»'-V2) - "?'• 
r(n-n/2i "-J2 

j2=0 J0=max(l, j2) 2/X J°  

For example, for n = 3, we get: 

(l)(l) - (o)(i) - (o)(z) - (!)(!) • (?)(!) 
= 1 + 2 + 1 + 1 + 2 = 7 = Vf\ 

Returning to the regular subsequences of the Fibonacci numbers, we still 
need a combinatorial representation of the subsequences with odd interval size 
k, which by (3) satisfy the same recurrence relation as V^ k , but possibly with 
other initial values. The counterpart of Theorem 1 for the odd intervals is: 

Theorem 2: For any odd constant k > 1 and any constant 0 < J < k, the follow-
ing identity holds for all n > 1: 

(7) F
k(n-1) + j " FjV^ + (F_k + j - F3.)nt\-Di + 1V^l 

i = 1 

Proof: By i n d u c t i o n on n. For n = 1, 
F3 - F 3 X l + <-F-k + 3 ~ ^ ) x 0 . 

For n = 2 , 
*W = i^j + ^-fe+J- " * V ^ * + 1) + W-k+J ~ F^ 

-F.V™ + (F_k + j -F6)V[L*\ 
Suppose the identity holds for all integers < n. Then, denoting the constant 
(F.k+j - Fj) by a, 
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Fkn + j - LkFk(n-l) + j + Fk(n-2) + j 

= Lk\Fdv<LJ + *n±\-i)i+lvn« 
L i= 1 £= 1 

i = 1 
But the l a s t term i s 

thus, 
a(-l)"Lfc = a ( - l ) n ( 7 f k ) - 7<L*}) = a [ ( - l ) n 7 ^ } + (-1)W+171

(L*)] ; 

i= 1 
and the identity holds also for n + 1, and therefore for all n, D 

In particular, for J = 2 and k = 3, we get the numbers 

^3(n-l)+2}«-i = U, 5, 21, 89, ...}, 

i.e., every third Fibonacci number, which correspond, by (7), to F„ 3 = V^ . 
For example, using formula (6) with 777 = L3 = 4, we get for n = 3 (writing in 
the multinomial coefficients the values J'Q, ..., j \+ from left to right and 
collecting terms which differ only in the order of the values of j^, J2> J3): 

\o)u,o,o,o,i/ + u)\2,o,o,o,o) + 3u) \o , i ,o ,o , i ) + 3\oAi,1,0,0,0/ 

+ 3\0A0,2,0,0,0/ + 3\0/\0,1,1,0,0/ 

= 1 + 2 + 3 + 6 + 3 + 6 = 21 = 73(4) = FQ. 

4. Concluding Remarks 

Combinatorial representations of several recursively defined sequences of 
integers were generated, using the special properties of the corresponding 
numeration systems. On the other hand, it may sometimes be desirable to eval-
uate directly the number of strings satisfying some constraints. The above 
techniques then suggest to try to define a numeration system accordingly. For 
example, in Agur and Kerszberg [2] a model of biological processing of genetic 
information is proposed, in which a binary string symbolizing a DNA sequence is 
transformed by repeatedly applying some transition function^. For^being the 
majority rule, the number of possible final strings, or phenotypes, is eval-
uated in [1] using the binary numeration system based on the standard Fibonacci 
numbers. Other transition functions could be studied, and if the resulting 
phenotypes can be characterized as satisfying some constraints, the 
corresponding numeration system gives an easy way to evaluate the number of 
these strings. 
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