SUBSETS WITHOUT UNIT SEPARATION AND PRODUCTS OF FIBONACCI NUMBERS

John Konvalina and Yi-Hsin Liu

University of Nebraska at Omaha, Omaha, NE 68182
(Submitted June 1989)

1. Introduction

It is well known that the Fibonacci numbers are intimately related to subsets of $\{1,2,3, \ldots, n\}$ not containing a pair of consecutive integers. More precisely, let F_{n} denote the $n^{\text {th }}$ Fibonacci number determined by the recurrence relation

$$
F_{1}=1, F_{2}=1, F_{n+2}=F_{n+1}+F_{n} \quad(n \geq 1) .
$$

Then the total number of subsets of $\{1,2,3, \ldots, n\}$ not containing a pair of consecutive integers is F_{n+2}. This result can also be expressed in terms of a well-known combinatorial identity. Kaplansky [2] showed that the number of k-subsets of $\{1,2,3, \ldots, n\}$ not containing a pair of consecutive integers is

$$
(n+\underset{k}{1}-k)
$$

Consequently, summing over k we obtain the identity

$$
\begin{equation*}
\sum_{k \geq 0}\left(n+\frac{1}{k}-k\right)=F_{n+2} \tag{1}
\end{equation*}
$$

In this paper we will derive a combinatorial identity expressing the square of a Fibonacci number and the product of two consecutive Fibonacci numbers in terms of the number of subsets of $\{1,2,3, \ldots, n\}$ without unit separation. Two objects are called uniseparate if they contain exactly one object between them. For example, the following pairs of integers are uniseparate: (1, 3), $(2,4),(3,5)$, etc. Konvalina [3] showed that the number of k-subsets of $\{1,2,3, \ldots n\}$ not containing a pair of uniseparate integers is

$$
\begin{cases}\sum_{i=0}^{[k / 2]}(n+1-k-2 i \tag{2}\\ k-2 i & \text { if } n \geq 2(k-1) \\ 0 & \text { if } n<2(k-1)\end{cases}
$$

Let T_{n} denote the total number of subsets of $\{1,2,3, \ldots, n\}$ without unit separation. Then, summing over k, we have

$$
\begin{equation*}
T_{n}=\sum_{k \geq 0} \sum_{i=0}^{[k / 2]}\binom{n+1-k-2 i}{k-2 i} \tag{3}
\end{equation*}
$$

We will prove that if n is even then T_{n} is the square of a Fibonacci number; while, if n is odd T_{n} is the product of two consecutive Fibonacci numbers.

2. Main Result

Theorem: If $n \geq 1$, then

$$
\begin{aligned}
T_{2 n} & =F_{n+2}^{2} \\
T_{2 n+1} & =F_{n+2} F_{n+3} .
\end{aligned}
$$

Proof: The following identities on summing every fourth Fibonacci number are needed in obtaining the result:

$$
\begin{equation*}
\sum_{j=1}^{n} F_{4 j}=F_{2 n+1}^{2}-1 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{n} F_{4 j-2}=F_{2 n}^{2} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{j=1}^{n} F_{4 j-3}=F_{2 n-1} F_{2 n} \tag{6}\\
& \sum_{j=1}^{n} F_{4 j-1}=F_{2 n} F_{2 n+1} \tag{7}
\end{align*}
$$

These identities are easily proved by induction and the following well-known Fibonacci identities (see Hoggatt [1]):

$$
\begin{aligned}
& F_{n+1}^{2}-F_{n-1}^{2}=F_{2 n} \\
& F_{n} F_{n+1}-F_{n-1} F_{n-2}=F_{2 n-1}
\end{aligned}
$$

Now, evaluating T_{n} in (3), we obtain

$$
T_{n}=\sum_{k \geq 0} \sum_{i=0}^{[k / 2]}\binom{n+1-k-2 i}{k-2 i}=\sum_{k=0}^{[(n+2) / 2]} \sum_{i \geq 0}\binom{n+1-k-2 i}{k-2 i}
$$

Now, replacing k by $k+2 i$, since $k-2 i$ contributes zero to the sum, we obtain the key identity

$$
\begin{equation*}
T_{n}=\sum_{i \geq 0} \sum_{k=0}^{m}(n+1-k-4 i) \tag{8}
\end{equation*}
$$

where $m=[(n+2) / 2]-2 i$.
Next, we will apply (1) and the Fibonacci identities (4), (5), (6), and (7) to evaluate (8). First, identity (1) can be expressed as follows:

$$
\begin{equation*}
\sum_{k \geq 0}(n+1-k)=\sum_{k=0}^{[(n+1) / 2]}(n+1-k)=F_{n+2} \tag{9}
\end{equation*}
$$

Replacing n by $n-4 i$, identity (9) becomes

$$
\begin{equation*}
\sum_{k=0}^{p}(n+1-k-4 i)=F_{n+2-4 i} \tag{10}
\end{equation*}
$$

where $p=[(n+1) / 2]-2 i$.
To complete the proof, we will evaluate (8) based on whether $n \equiv 0,1$, 2 , or $3(\bmod 4)$.
Odd Case: If n is odd, then $[(n+2) / 2]=[(n+1) / 2]$, so $m=p$ and, applying (10) to (8), we have a sum involving every fourth Fibonacci number.

$$
\begin{equation*}
T_{n}=\sum_{i \geq 0} F_{n+2-4 i} \tag{11}
\end{equation*}
$$

Case 1. $n \equiv 1(\bmod 4)$
In this case we have $n+2=4 t-1$ for some integer t. Substitute $t=$ $(n+3) / 4$ for n in (7) and apply to (11) to obtain

$$
T_{n}=F_{(n+3) / 2} F_{(n+3) / 2+1}
$$

Since n is odd, replace n by $2 n+1$, and the desired result

$$
T_{2 n+1}=F_{n+2} F_{n+3}
$$

is obtained.
Case 2. $n \equiv 3(\bmod 4)$
In this case we have $n+2=4 t-3$ for some t. Substitute $t=(n+5) / 4$ for n in (6) and apply to (11) to obtain

$$
T=F_{(n+5) / 2-1} F_{(n+5) / 2}
$$

Replace n by $2 n+1$ and the result is the same as in the previous case:

$$
T_{2 n+1}=F_{n+2} F_{n+3}
$$

Even Case: If n is even, $m=p+1$, and applying (10) to (8) we have

$$
\begin{align*}
T_{n} & =\sum_{i \geq 0} \sum_{k=0}^{p+1}\binom{n+1-k-4 i}{k} \tag{12}\\
& =\sum_{i \geq 0} \sum_{k=0}^{p}\binom{n+1-k-4 i}{k}+\sum_{i \geq 0}\binom{n+1-(p+1)-4 i}{p+1} \\
& =\sum_{i \geq 0} F_{n+2-4 i}+\sum_{i \geq 0}\binom{n / 2-2 i}{n / 2-2 i+1}
\end{align*}
$$

Observe that the last summation is zero except when $n / 2-2 i+1=0$. That is, when $i=(n+2) / 4$ or $n+2 \equiv 0(\bmod 4)$. In this case, the last sum is 1 .

Case 3. $n \equiv 2(\bmod 4)$
Here $n+2=4 t$ for some t. Substitute $t=(n+2) / 4$ for n in (4) and apply to (12) to obtain

$$
T_{n}=\left(F_{(n+4) / 2}^{2}-1\right)+1=F_{(n+4) / 2}^{2}
$$

Since n is even, replace n by $2 n$ and the desired result is obtained:

$$
T_{2 n}=F_{n+2}^{2}
$$

Case 4. $n \equiv 0(\bmod 4)$
Here $n+2=4 t-2$ for some t. Substitute $t=(n+4) / 4$ for n in (5) and apply to (12) to obtain
$T_{n}=F_{(n+4) / 2}^{2}$.
Replace n by $2 n$ and the result is the same as in the previous case.
Table 1

n	F_{n}	F_{n}^{2}	$F_{n} F_{n+1}$	T_{n}	n	F_{n}	F_{n}^{2}	$F_{n} F_{n+1}$	T_{n}
1	1	1	1	1	7	13	169	273	40
2	1	1	2	4	8	21	441	714	64
3	2	4	6	6	9	34	1156	1870	104
4	3	9	15	9	10	55	3025	4895	169
5	5	25	40	15	11	89	7921	12816	273
6	8	64	104	25	12	144	20736	33552	441

SUBSETS WITHOUT UNIT SEPARATION AND PRODUCTS OF FIBONACCI NUMBERS

References

1. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Miffiin, 1969.
2. I. Kaplansky. "Solution of the "Probleme des menages." Bull. Amer. Math. Soc. 49 (1943):784-85.
3. J. Konvalina. "On the Number of Combinations without Unit Separation." J. Combin. Theory, Ser. A31 (1981):101-07.
$* * * * *$
