ON MULTI-SETS

Supriya Mohanty
Bowling Green State University, Bowling Green, OH 43403
(Submitted April 1989)
The $n^{\text {th }}$ Fibonacci number F_{n} and the $n^{\text {th }}$ Lucas number L_{n} are defined by

$$
F_{1}=1=F_{2} \text { and } F_{n}^{\prime}=F_{n-1}+F_{n-2} \text { for } n \geq 3
$$

and

$$
L_{1}=1, L_{2}=3, \text { and } L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 3
$$

respectively. Thus, the Fibonacci sequence is $1,1,2,3,5,8,13,21,34$, 55, 89, ..., and the Lucas sequence is $1,3,4,7,11,18,29,47,76, \ldots$. Here we have added two adjacent numbers of a sequence and put the result next in the line.

What happens if we put the result in the middle?
Given the initial sets $T_{1}=\{1\}$ and $T_{2}=\{1,2\}$, we will get the following increasing sequences of T-sets. These sets are multi-sets and the elements are ordered.

$$
\begin{aligned}
T_{3}= & \{1,3,2\}, T_{4}=\{1,4,3,5,2\}, T_{5}=\{1,5,4,7,3,8,5,7,2\}, \\
T_{6}= & \{1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2\}, \\
T_{7}= & \{1,7,6,11,5,14,9,13,4,15,11,18,7,17,10,13,3,14, \\
& 11,19,8,21,13,18,5,17,12,19,7,16,9,11,2\}, \ldots
\end{aligned}
$$

We show in the following that these multi-sets have some nice and interesting properties.
Proposition 1: Let $\left|T_{n}\right|$ denote the cardinality of the multi-set T_{n}. Then $\left|T_{n}\right|=$ $2^{n-2}+1$ for $n \geq 2$.
Proof: Since $\left|T_{n}\right|=2^{n-2}+1$ for $n=2$, we consider the case $n>2$ in the following. We obtain T_{n} from T_{n-1} by inserting a new number in between every pair of consecutive members of T_{n-1} which is their sum. If $\left|T_{n-1}\right|=m$, then there are m - 1 gaps. In each of these gaps a new number will be inserted to form T_{n}. Thus,

$$
\left|T_{n}\right|=m+m-1=2 m-1=2\left|T_{n-1}\right|-1
$$

We have $\left|T_{3}\right|=3,\left|T_{4}\right|=5$, and $\left|T_{5}\right|=9$. Looking at these numbers we conjecture that $\left|T_{n}\right|=2^{n-2}+1$ for $n>2$. Our conjecture is true for $n=3,4$, and 5 . Suppose it is true for $n=k$. Then $\left|T_{k}\right|=2^{k-2}+1$. Since $\left|T_{k+1}\right|=2\left|T_{k}\right|-1$,

$$
\left|T_{k+1}\right|=2\left(2^{k-2}+1\right)-1=2^{k-1}+1=2^{(k+1)-2}+1
$$

Thus, assuming the truth of the conjecture for $n=k$, we proved the truth of the conjecture for $n=k+1$. Hence, by mathematical induction, our conjecture is true for all integers $n \geq 2$.
Proposition 2: The largest number present in the multi-set T_{n} is F_{n+1}. Furthermore, T_{n} contains all the Fibonacci numbers up to F_{n+1}.
Proof: Since we have only F_{2} and F_{3} in T_{2}, they will be separated by $F_{2}+F_{3}=$ F_{4} in T_{3} and we shall have F_{2}, F_{4}, F_{3} in T_{3} with F_{4} as the largest number and F_{3} as the second largest number. Then, in T_{4}, F_{4} and F_{3} will be separated by $F_{4}+F_{3}=F_{5}$ and we shall have F_{4}, F_{5}, F_{3} in T_{4} with F_{5} as the largest number and F_{4}, the second largest. By induction, we shall have F_{n}, F_{n+1} or F_{n+1}, F_{n} as consecutive members in T_{n}. Thus, the largest number present in T_{n} will be F_{n+1}.

Since $T_{1} \subset T_{2} \subset T_{3} \subset \ldots \subset T_{n}, T_{n}$ contains all of the Fibonacci numbers up to F_{n+1}.
Proposition 3: The multi-set $T_{n}, n \geq 3$ contains all of the Lucas numbers up to L_{n-1}.
Proof: The multi-set T_{3} contains two consecutive members 1 and 3 which are L_{1} and L_{2}. Then T_{4} will contain $L_{1}, L_{1}+L_{2}, L_{2}$, i.e., L_{1}, L_{3}, L_{2} as consecutive members. T_{5} will contain $L_{3}, L_{3}+L_{2}, L_{2}$, i.e., L_{3}, L_{4}, L_{2} as consecutive members. Thus, by induction, the highest Lucas number present in T_{n} will be L_{n-1} 。

Since $T_{1} \subset T_{2} \subset \cdots \subset T_{n}, T_{n}$ will contain all Lucas numbers up to L_{n-1} 。
Proposition 4: Any two consecutive members in $T_{n}, n>1$, are relatively prime.
Proof: The proposition is true for $n=2$. Suppose it is true for T_{n-1}, i.e., $(\alpha, b)=1$ for every pair of consecutive members a and b in T_{n-1}. Let x and y be two consecutive members in T_{n}. Then, either $x-y$ and y (if $x>y$) or x and $y-x$ (if $y>x$) are consecutive members in T_{n-1}. By assumption, if $x-y$ and y are consecutive, then $(x-y, y)=1$. Hence, $(x, y)=1$. Similarly, if $(x$, $y-x)=1$, then $(x, y)=1$. By mathematical induction, the proposition holds for all n.
Proposition 5: The second element of T_{n} is n and the last but one element of T_{n} is $2 n$ - 3.
Proof: The result follows by mathematical induction.
Proposition 6: The numbers 1, 2, 3, 4, and 6 appear once and only once in every $T_{n}, n \geq 6$ as follows:
(i) The number 1 appears in the first place and $1, n, n-1$ are consecutive members in T_{n}.
(ii) The number 2 appears in the $\left(2^{n-2}+1\right)^{\text {th }}$ place and $2 n-5,2 n-3,2$ are consecutive members in T_{n}.
(iii) The number 3 appears in the $\left(2^{n-3}+1\right)^{\text {th }}$ place and $3 n-8,3,3 n-7$ are consecutive members in T_{n}.
(iv) The number 4 appears in the $\left(2^{n-4}+1\right)^{\text {th }}$ place and $4 n-15,5,4 n-13$ are consecutive members in T_{n}.
Proof: Follows by induction.
Theorem 1: For $3 \leq m \leq n$, the multiplicity of m in multi-set T_{n} is $\frac{1}{2} \phi(m)$, where ϕ is Euler's function.
$[\phi(n)$ is the number of numbers less than n and relatively prime to n. We clearly have $\phi(P)=P$ - 1 for a prime P. When n is composite with prime factorization $n=\prod_{i=1}^{r} P_{i}^{a_{i}}$, then

$$
\left.\phi(n)=n \prod_{i=1}^{r}\left(1-\frac{1}{P_{i}}\right) \cdot\right]
$$

Proof: To get an m in T_{n}, a pair (a, b) totalling m should appear in T_{n-1} as consecutive members. Since any two consecutive members in T_{n-1} are relatively prime (Proposition 4), the pair (α, b) must be relatively prime. So we need to know the number of pairs (a, b) with $(a, b)=1$ and $a+b=m$. Consider $m=a+b$ with $(a, b)=1$. Then, clearly, $(a, m)=1=(b, m)$. Since there are $\phi(m)$ numbers less than m and relatively prime to m, we can chose " α " in $\phi(m)$ ways. Once " α " is chosen, $b=m-\alpha$ is fixed. Since the pairs (a, b) and (b, a) give the same total, we have $\frac{1}{2} \phi(m)$ pairs (a, b) satisfying $(a, b)=1$ and $(a+b)=m$. Clearly ($1, m-1$) is one of the $\frac{1}{2} \phi(m)$ pairs, and this pair appears for the first time (and for the last as well) as consecutive members in T_{m-1}. This pair will yield an m in T_{m}. Thus, we are guaranteed an appearance of m in T_{m}.

A natural question is: How many times does m occur in T_{m} ? Since m has $\frac{1}{2} \phi(m)$ pairs (α, b), m can appear at most $\frac{1}{2} \phi(m)$ times in T_{m}. We prove below that m occurs exactly $\frac{1}{2} \phi(m)$ times in T_{m}.

Consider a relatively prime pair ($\alpha, m-\alpha$) with $\alpha<m-a, \alpha \neq 1$. Does it belong to T_{n} for some n ? Since $(a, m-\alpha)=1$, the g.c.d. of " α " and " $m-\alpha$ " is 1. Then, by Euclid's g.c.d. algorithm, we have:

$$
\begin{aligned}
& a)^{m-a q_{1}}{ }^{q_{1}} \\
& \gamma_{1} \underset{\gamma_{1} q_{2}}{\alpha}\left(\begin{array}{l}
q_{2} \\
\gamma_{1}
\end{array}\right. \\
& \gamma_{2} \underset{\gamma_{2} q_{3}}{\gamma_{1}}{ }^{q_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& 1=\gamma_{t} \underset{0}{\gamma_{t-1}} \begin{array}{c}
\gamma_{t-1} \\
\gamma_{t-1} \\
\end{array}
\end{aligned}
$$

Thus, whenever $(a, m-a)=1$, we have the last nonzero remainder $\gamma_{t}=1$, with the last quotient γ_{t-1}. It is clear that $\gamma_{i}(i \neq t)>1$.

From the algorithm, we obtain:

$$
\begin{aligned}
m-a-\gamma_{1} & =a q_{1} \\
a-\gamma_{2} & =\gamma_{1} q_{2} \\
\gamma_{1}-\gamma_{3} & =\gamma_{2} q_{3} \\
\vdots & \\
\gamma_{t-2}-\gamma_{t} & =\gamma_{t-1} q_{t} \\
\gamma_{t-1} & =\gamma_{t} \gamma_{t-1}, \text { where } \gamma_{t}=1 \text { and } \gamma_{i}>1 \text { for } 1<i<t .
\end{aligned}
$$

Adding, we obtain:

$$
\begin{array}{ll}
& m-\gamma_{t}=a q_{1}+\gamma_{1} q_{2}+\gamma_{2} q_{3}+\cdots+\gamma_{t-1} q_{t}+\gamma_{t-1} \\
\text { or } \quad & m-1>q_{1}+q_{2}+q_{3}+\cdots+q_{t}+\gamma_{t-1} .
\end{array}
$$

If we start with two consecutive members, $\alpha, m-\alpha$ or $m-\alpha, \alpha$, and proceed backward, we reach the consecutive pair ($1, \gamma_{t-1}$) after $q_{1}+q_{2}+\cdots+q_{t}$ steps.

Conversely, if we start with two consecutive members, $1, \gamma_{t-1}$, we reach a consecutive member, $a, m-a$ or $m-a, a$, after $q_{t}+\ldots+q_{3}+q_{2}+q_{1}$ steps.

Since $1, \gamma_{t-1}$ are consecutive in the $T_{\gamma_{t-1}}$ set, and nowhere else, the pair $(a, m-a)$ appears as consecutive members in $T q_{1}+q_{2}+\cdots+q_{t}+\gamma_{t-1}$.

Since $q_{1}+q_{2}+\cdots+\gamma_{t-1}<m-1$, the pair $(\alpha, m-\alpha)$ or ($m-\alpha, \alpha$) appears as consecutive members in $T_{i}, i<m-1$. Thus, every pair ($\alpha, m-\alpha$) with $(\alpha, m)=1$, excepting ($1, m-1$), appears as consecutive members in some T_{i}, $i<m-1$ and the pair ($1, m-1$) appears as consecutive in T_{m}. Hence, for $3 \leq$ $m \leq n$, the multiplicity of m in multi-set T_{n} is $\frac{1}{2} \phi(m)$. We shall see that, excepting the pair $(1, m-1)$, other pairs appear in T_{i}, where $i<[(m+3) / 2]$.

Theorem 2: Every relatively prime pair ($\alpha, m-\alpha$), $\alpha \neq 1, \alpha<m-\alpha$ appears in T_{i} where $i<[(m+1) / 2]$, we have $i=(m+1) / 2$ in case m is odd.
Proof: We have $m-1=\alpha q_{1}+\gamma_{1} q_{2}+\gamma_{2} q_{3}+\ldots+\gamma_{t-1} q_{t}+\gamma_{t-1}$, where

$$
\alpha>\gamma_{1}>\gamma_{2}>\gamma_{3}>\ldots>\gamma_{t-1}>\gamma_{t}=1,
$$

and each $q_{i} \geq 1$. If $\gamma_{t-1}=s$, then $m-1>s\left(q_{1}+q_{2}+q_{3}+\ldots+q_{t}+1\right)$, so
or

$$
\frac{m-1}{s}>q_{1}+q_{2}+q_{3}+\cdots+q_{t}+1
$$

$$
\frac{m-1}{s}+s-1>q_{1}+q_{2}+q_{3}+\cdots+q_{t}+s
$$

$$
q_{1}+q_{2}+q_{3}+\cdots+q_{t}+s \leq\left[\frac{m-1}{s}+s-1\right]
$$

where $[x]$ stands for the greatest integer $\leq x$. The pair ($\alpha, m-\alpha$) appears in the $\left(q_{1}+q_{2}+\cdots+q_{t}+s\right)^{\text {th }}$ multi-set. Hence, every pair ($\alpha, m-\alpha$) of the required type terminating in 1 and s in the g.c.d. algorithm is present as consecutive members in the multi-set T_{i}, where $i \leq[(m-1) / s+(s-1)]$. For $s=2$,

$$
\left[\frac{m-1}{s}+s-1\right]=\left[\frac{m-1}{2}+2-1\right]=\left[\frac{m+1}{2}\right] .
$$

If m is odd and $s=2$, then

$$
\left[\frac{m-1}{s}+s-1\right]=\frac{m+1}{2}
$$

For $s \neq 2$, the inequality

$$
\frac{m-1}{s}+s-1 \leq \frac{m+1}{2}
$$

holds

$$
\begin{aligned}
& \Leftrightarrow 2\left(m-1+s^{2}-s\right) \leq s m+s \\
& \Leftrightarrow 2 s^{2}-3 s-2 \leq m(s-2) \Leftrightarrow m \geq \frac{2 s^{2}-3 s-2}{s-2}, s \neq 2, \\
& \Leftrightarrow m \geq 2 s+1,
\end{aligned}
$$

which is true because $m-\alpha>\alpha>s \Rightarrow m>2 s$, i.e., $m \geq 2 s+1$. Now, the above inequality yields

$$
\left[\frac{m-1}{s}+s-1\right] \leq\left[\frac{m+1}{2}\right]
$$

Again, when m is odd, $s=(m-1) / 2$ is an integer and

$$
\left[\frac{m-1}{s}+s-1\right]=\left[2+\frac{m-1}{2}\right]=\left[\frac{m+1}{2}\right]=\frac{m+1}{2} .
$$

Thus, the bound $(m+1) / 2$ is attainable when m is odd and $s=(m-1) / 2$. For example, for $m=43$, consider the pairs $(2,41)$ and $(21,22)$. Both appear in T_{22}. In the first case, $s=2$; in the second case, $s=21=(43-1) / 2$. Hence every relatively prime pair ($\alpha, m-\alpha$), $\alpha \neq 1, \alpha<m-\alpha$ appears in T_{i}, where $i \leq[(m+1) / 2]$.

From the above discussion, it is clear that i is much less than $[(m+1) / 2]$ when m is even. For $m=90$, we have:

$$
\begin{aligned}
& (1,89) \text { in } T_{89} ;(7,83) \text { and }(13,77) \text { in } T_{18} ;(23,67) \text { and }(43,47) \text { in } \\
& T_{15} ;(11,79),(29,61),(31,59) \text {, and }(41,49) \text { in } T_{14}(17,73) \text {, } \\
& (19,71), \text { and }(37,53) \text { in } T_{11} \text {. Thus, excepting }(1,89), \text { all other } \\
& \text { pairs appear as consecutive members in } T_{i}, i \leq 18 \text {. This is much less } \\
& \text { than }[(m+1) / 2]=45 \text {. }
\end{aligned}
$$

We discuss below the appearance of certain special pairs as consecutive members in the multi-sets.
(a) The pair ($1, a$) is always relatively prime. This pair appears as consecutive members in T_{α}.
(b) The pair $(\alpha+1, \alpha)$ is always relatively prime whether α is odd or even. This pair appears as consecutive member in T_{a+1}. For example, 4 and 5 appear as consecutive members in $T_{5}, 9$ and 10 in T_{10}.
(c) The pair ($2 m-1,2$) is always relatively prime. This pair appears as consecutive members in $T_{m+1}, \quad[m+1=(2+2 m-1+1) / 2]$. For example, 5 and 2 in $T_{4}, 13$ and 2 in $T_{(2+13+1) / 2}=T_{8}$.
(d) The pair $(\alpha, \alpha+2)$ is relatively prime if α is odd. We need $1+$ $(\alpha-1) / 2$ steps to reach this pair if we start from the consecutive members 1, 2. Therefore, the pair $(\alpha, \alpha+2)$ appears as consecutive members in $T_{[1+(a-1) / 2]+2}=T_{(a+5) / 2}$. For example, the pair 9 and 11 appear as consecutive members in $T_{(9+5) / 2}=T_{7}$ 。

We use the above facts in the examples given in Table 1.
TABLE 1

m	Relatively Prime Pairs for a Total m	The Number of the T-Set Where the Pair Appears	The Number of the T-Set Where m Appears Separating This Pair
20	1, 19	19 by (a)	20
	3, 17	$5+3$ by (b) $=8$	9
	7, 13	$1+7$ by (b) $=8$	9
	9, 11	$1+6$ by (c) $=7$	8
33	1, 19	32 by (a)	33
	2, 31	17 by (c)	18
	4, 29	$7+4$ by (a) $=11$	12
	5, 28	$5+1+3$ by (b) or $5+4$ by (d) $=9$	10
	7, 26	$3+5$ by $(\mathrm{d})=8$ or $3+1+4$ by (c) $=8$	
	8, 25	$3+8$ by (a) $=1$	12
	10, 23	$2+3+3$ by (a) $=8$	9
	13, 20	$1+1+7$ by (b) or $1+1+1+6$ by (a) $=9$	10
	14, 19	$1+2+5$ by (b) or $1+2+1+4$ by (a) $=8$	9
	16. 17	$1+16$ by $(\mathrm{a})=17$	18
40	1, 39	39 by (a)	40
	3, 37	$12+3$ by (a) = 15	16
	7, 33	$4+5$ by $(\mathrm{d})=9$	10
	9, 31	$3+2+4$ by (a) $=9$	10
	11, 29	$2+1+1+4$ by (b) $=8$	
	13, 27	$2+13$ by (a) = 15	16
	17. 23	$1+2+6$ by (b) or $1+2+1+5$ by (a) $=9$	10
	19, 21	$1+9+2$ by (a) or $1+11$ by (c0 = 12	13
42	1, 41	41 by (a)	42
	5, 37	$7+4$ by $(c)=11$	12
	11, 31	$2+7$ by $(\mathrm{a})=9$	10
	13, 29	$2+4+3$ by $(\mathrm{a})=9$	10
	17, 25	$1+2+8$ by (a) $=11$	12
	19, 23	$1+4+4$ by $(\mathrm{b})=9$	10

By Propositions 1 and $2, T_{n}(n \geq 2)$ has $2^{n-2}+1$ members with the highest number F_{n+1}. We have
and

$$
2^{n-2}+1=F_{n+1} \text { for } n=2,3,4
$$

$$
2^{n-2}+1>F_{n+1} \text { for } n>4
$$

So, for $n>4$, the multi-set T_{n} has more elements than the highest number present. Does it contain all numbers 1, 2, 3, 4, ... up to F_{n+1} ? We see that T_{5} omits $6, T_{7}$ omits 20 , and T_{8} omits 28,32 , and 33 . For 6 we have only one relatively prime pair (1, 5). This pair appears as consecutive members in T_{5}. So 6 will appear for the first time in T_{6}. From Table 1 , we see that the relatively prime pair (9, 11) for 20 appears as consecutive members in T_{7} and other pairs appear later. Therefore, 20 will appear for the first time in T_{8}. Again, the relatively prime pairs $(7,26),(10,23)$, and (14, 19) for 33 appear as consecutive members in T_{8} (see Table 1). Therefore, 33 will appear for the first time in T_{9} and will appear thrice. Thus, given an integer m, we can always find the T_{i} where m appears for the first time, and given two integers m and i, we can always say whether m appears in T_{i}. But, for given i, we do not see how we can tell all the numbers which the multi-set T_{i} omits unless we construct T_{i} recursively, and this is a horrible task for large "i."

We conclude this paper with the following problem.
Problem 1: Given a positive integer i, find all numbers m that T_{i} omits without constructing T_{i}.

Reference

1. John Turner. Problem H-429. Fibonacci Quarterly 27.1 (1989):92.

Applications of Fibonacci Numbers

Volume 3

New Publication

Proceedings of 'The Third International Conference on Fibonacci Numbers and Their Applications, Pisa, Italy, July 25-29, 1988.'
edited by G.E. Bergum, A.N. Philippou and A.F. Horadam

This volume contains a selection of papers presented at the Third International Conference on Fibonacci Numbers and Their Applications. The topics covered include number patterns, linear recurrences and the application of the Fibonacci Numbers to probability, statistics, differential equations, cryptography, computer science and elementary number theory. Many of the papers included contain suggestions for other avenues of research.

For those interested in applications of number theory, statistics and probability, and numerical analysis in science and engineering.

$$
1989,392 \mathrm{pp} . \quad \text { ISBN 0-7923-0523-X }
$$

Hardbound Dfl. 195.00/ 65.00/US \$99.00
A.M.S. members are eligible for a 25% discount on this volume providing they order directly from the publisher. However, the bill must be prepaid by credit card, registered money order or check. A letter must also be enclosed saying "I am a member of the American Mathematical Society and am ordering the book for personal use."

P.O. Box 322, 3300 AH Dordrecht, The Netherlands P.O. Box 358, Accord Station, Hingham, MA 02018-0358, U.S.A.

