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1. Introduction 

Let S = {xis x2s ...» xn} be an ordered set of distinct positive integers. 
The nxn matrix [S] = (sij)s where s^- = (xi, Xj) s the greatest common divisor 
of Xi and Xj , is called the greatest common divisor (GCD) matrix on S. The 
study of GCD matrices was initiated in [1], In that paper, the authors 
obtained a structure theorem for GCD matrices and showed that each is positive 
definite, and hence nonsingular* A corollary of these results yielded a proof 
that, if S is factor-closed, then the determinant of Ss det[S]9 is equal to 
<K#i)<K#2) °  B °  $(xn^> where $(#) is Eulerfs totient. The set S is said to be 
factor-closed (FC) if all positive factors of any member of S belong to S. 

In [4], Z. Li used the structure in [1] to compute a formula for the deter-
minant of an arbitrary GCD matrix. 

In this paper, we define a natural analog of the GCD matrix on S. Let 
[[£]] = i^ij) be the n*n matrix with t7-?- = [x<£> Xj]5 the least common multiple 
of Xi and Xj= We shall obtain a structure theorem for [ [£] ] and show that it 
is nonsingular, but never positive definite. As it turns out, the matrix 
factorization of [[5]] emerges from, the structure of the related reciprocal 
GCD matrix l/[S]9 the i, j-entry of which is l/(x^, Xj). Reciprocal GCD 
matrices are addressed in the next section* 

2a Reciprocal GCD Matrices 

Definition 1: Let S = {xi, x2, . ..» xn} be an ordered set of distinct positive 
Integers. The matrix l/[S] is the n*n matrix whose i, j-entry is l/(x^9 Xj) • 
We call l/[S] the reciprocal GCD matrix on S* 

Clearly reciprocal GCD matrices are symmetric. Furthermore, rearrangements 
of the elements of S yield similar matrices. Hence, as in [1] and [2], we may 
always assume Xi < x2 < ... < xn. 

We shall show that each reciprocal GCD matrix can be written as a product 
of A and AT, the transpose of A> for some matrix A with complex number entries. 

In what follows, we let u(n) denote the Moebius function 

( 1 if n = 1 
u(n) = \(-l)p if n = PiP2° •«PP> distinct prime factors 

\ 0 otherwise. 

The lower-case letter l!plf will always denote a positive prime. 

Definition 2: If n Is a positive integer, we denote by gin) the sum 

1 v^ 
gW = - *L,e« y(e). 

n e\n 
We observe that g(n) = f(n)h(n), where f(ri) = l/n and h(n) = L*e\ne® \i(e). 

Since f and h are multiplicative functions, g is multiplicative. Furthermore, 
if p is a prime, h(pm) - 1 - p. Hence, g(pm) = (1 - p)/pm° It follows that 

gin) - I fid - P ) = i # H(-P)-
p | n n p i n 
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Moreover? by the Moebius Inversion Formula (see, e.g., [5]), it is true that 

fin) = 1M = 2] g(e). 
e \n 

These results are summarized in the following lemma. 
Lemma 1: Let n be a positive integer. Then g(n) - 1 if n = 1, and 

gin) = ~ II (i - p) if n > i-
Moreover, 

l/« = Y,9(e)- • 

It is clear that any set of positive integers is contained in an (minimal) 
FC set. We obtain the following structure theorem for reciprocal GCD matrices. 

Theorem 1: Let S = {xi5 x2, . ..» xn} be ordered by X\ < x2 < - -. < xn. Then 
the reciprocal GCD matrix l/[S] is the product of an n x m complex matrix A and 
the m x n matrix AT, where the nonzero entries of A axe of the form Jg(d) for 
some d in an FC set that contains S. 

Proof: Suppose F = {d\, d2> . .-J ̂ ??J is an FC set containing S. Let the complex 
matrix A = (a^j) be defined as follows: 

vgidj) if Jj divides #.£, 

0 otherwise. 

Then 

fc= 1 dk\xt dk\(xif Xj) K•X^> X3} 

dk\xj 
since F is factor-closed. Thus, l/[$] = AAT'. D 

Remark 1: Some of the entries vg(dj) of ̂  in Theorem 1 may be imaginary com-
plex numbers. A real matrix factorization for l/[S] could be obtained by 
defining B = (b^j) via 

!

g(dj) if dj divides xi9 

0 otherwise. 

Then, if C is the incidence matrix corresponding to B9 it is true that l/[$] = 

Corollary 1: Let S be an FC set. Then 

det(l/[£]) = g{xl)g{x1) . . . g(xn). 

Proof: In Theorem 1, take F = S; then i4 and A are lower triangular and upper 
triangular, respectively. So 

det(l/[£]) = det(i) • detC4T) 

= (detU))2 = g(xl)g(x2) ... g(xn). D 

Remark 2: The set F in Theorem 1 may be chosen so that d\ = xi9 d2 = x2 s ...s 
6?n = #w. Hence A - [AisA2]s where Ai is an n*n lower triangular matrix of the 
form 
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Jg(%i) 
/gix^J 

^g(Xn) 

Therefore, rank (A) = n. However, since A has nonreal entries, we cannot con-
clude that AAT is nonsingular. 

Remark 3: Unlike GCD matrices, reciprocal GCD matrices are never positive def-
inite. Recall that the AAT factorization in Theorem 1 is a complex matrix 
product, whereas, in [1], A is real. The fact that a reciprocal GCD matrix is 
not positive definite follows readily from the observation that its leading 
principal 2x2 minor 

1 1 
xYx2 (xY, x2)2 

is negative. 

Remark 4: As in [4], a sum formula for the determinant of an arbitrary recip-
rocal GCD matrix may be obtained from the Cauchy-Binet Formula (see, e.g., [3]) 
and the factorization AA . We omit this formula due to its length. 

3. LCM Matrices 

Definition 3: Let S = {#]_, x2, . • 
integers. The n*n matrix [[S][ 

, xn} be an ordered set of distinct positive 
(tij), where t^ the least com-

mon multiple of x^ and Xj, is called the least common multiple [LCM] matrix on 
S. 

The structure and determinants of LCM matrices come directly from results 
on reciprocal GCD matrices, since 

\_X^ , X j J — . 
l^{) X j ) 

If [[S]] is an LCM matrix, we may factor out x^ from Row i and Xj from Col-
umn j to obtain l/[S], Hence, every LCM matrix results from performing ele-
mentary row and column operations on the corresponding reciprocal GCD matrix. 

The following theorem is a direct consequence of the preceding remarks. 

Theorem 2: Let S = {xl5 x2, ...> xn} be ordered by x^ < x2 < 
A be the n x n matrix in Theorem 1. Then 

[[£]] = D • AAT • D = D •(l/[£]) • D, 

where D is the n x n diagonal matrix diag(#i, x2, ..., xn). D 

Corollary 2: An LCM matrix is not positive definite. • 

Corollary 3: If S is an FC set, then 

d e t [ [ 5 ] ] g(xx) g(xn) = Ft 
i= 1 

$(Xi) n f-v) 
p\xi 

As before, the Cauchy-Binet formula may be used to obtain a sum formula for 
det[[£]], S arbitrary. 

Remark 5: We know from Corollary 3 that det[[£]] * 0 when S is FC. A natural 
question arises: When is det[[5]] zero? For instance, when S = {1, 2, 15, 42}, 
det[[5]] = 0. Furthermore, when is det[[5]] positive? This does not depend 
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entirely upon the parity of n, even in the factor-closed case. For example, 
when S = {1, 2, 4, 8 } , det[[5]] < 0, but when 5 = {1, 2, 3, 6}, det[[5]] > 0. 
In view of these comments, we leave the following as a problem. 

Problem: For which sets S is det[[£]] positive? For which FC sets S is det[[5]] 
positive? For which sets S is det[[5]] = 0? 
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