
A NOTE ON A CLASS OF LUCAS SEQUENCES* 

Piero Filipponi 
Fondazione Ugo Bordoni, Rome, Italy 

(Submitted September 1989) 

1. introduction 

In a short communication that appeared in this jounal [12], Whitford con-
sidered the generalized Fibonacci sequence {Gn} defined as 

(1.1) G„ = (c£ - ed)lU, 
where d is a positive odd integer of the form 4fc + 1 and 

(ad = (1 + /d)/2 
(1-2) { 

(&d = (1 - U)I2. 
The sequence {Gn} can also be defined by the second-order linear recurrence 
relation 

(1.3) Gn + 2 = Gn+1 + ((d - l)/4)Gn; GQ = 0, G1 = 1. 

Monzingo observed [7] that, on the basis of the previous definitions, the 
analogous Lucas sequence {Hn} can be defined either as 

(1.4) Hn+2 - Hn+1 + ((d - l)/4)fl„; H0 = 2, ^ - 1 

or, by means of the Bi.net form 

(1.5) Hn = a* + 3». 

Our principal aim is to extend the results established in [7] by finding 
further properties of the numbers Hn which, throughout this note, will be refer-
red to as Monzingo numbers, 

2. On the Monzingo Numbers Hn(m) 

Letting 

(2.1) (d - l)/4 = m e M 

in (1.3) and (1.4), we have 

(2.2) Gn + 2(m) = Gn + l(m) + mGn(m); GQ(m) = 0, GY{m) = 1 

and the Monzingo numbers 

(2.3) Hn+2(m) = Hn+l(m) + mHn(m); HQ(m) = 2, Hl(m) = 1, 

respectively. Note that both {Gn(m)} and {Hn(m)} are particular cases of the 
more general sequence {Wn(a9 b; p, q)} which has been intensively studied over 
the past years (e.g., see [3], [4], [5], and [6]). More precisely, we have 

(2.4) {Hn(m)} = {Wn(2, 1; 1, -m)}. 

The first few values of En{m) are given in (2.5). 

*Work carried out in the framework of the agreement between the Italian PT Administration and 
the Fondazione Ugo Bordoni. 
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( 2 . 5 ) HQ(m) = 2 
tflOTZ) = 1 
Hz(m) = (d + l ) / 2 = 2/72 + 1 
#3OTZ) = (3d + l ) / 4 = 3m + 1 
^i+O) = ( J 2 + 6d + l ) / 8 = 2m2 + 4/77+1 
#5(77?) = (5d2 + lOd + 1 ) / 1 6 = 5m1 + 5 / 7 7 + 1 . 

U s i n g B i n e t ' s form ( 1 . 5 ) , ( 1 . 2 ) , and t h e b i n o m i a l t h e o r e m , t h e f o l l o w i n g g e n -
e r a l e x p r e s s i o n f o r Hn(jn) i n t e r m s of p o w e r s of d c a n r e a d i l y b e f o u n d t o be 

(2-6) Hn(m)--Hn(^)--^lfQdJ> 

where [•] denotes the greatest integer function. 
From (2.3), it must be noted that #n(l) and the nth Lucas numbers Ln coin-

cide. As a special case, letting 777 = 1 (i.e., d = 5) in (2.6), we obtain 

(2.7) L - ^ [ n £ 2 l ( » W 

Countless identities involving the numbers Hn(m) and Gn(m) can be found 
with the aid of (1.1) and (1.5). A few examples of the various types are 
listed below. 

(2.8) Hn(m)Hn+k(m) = H2n+k(m) + (-m)nHk(m) (cf. [7, (3)]), 

whence Simeon's formula for {Hn(m)} turns out to be 

(2.9) Hn_1(m)Hn+l(m) - H^(m) = (-m)"-1(4m+ 1). 

(2.10) H2n{m) = fl*(m) - 2(-m)", 

(2.11) G2n(m) = Gn{m)Hn(m), 

(4m + l)G2n(m) + H2n(m) 
(2.12) H2n+1(m) 

(2.13) ff2n+1(m) 

2 

g2„ (m) + fl2w (m) 
2 

(-m)a (Han + b(m) - Hb.a(m)) - Ha(n + 1) + b(m) + Hb{m) 
(2.H) E o W ™ > - (-„)<. + 1 - *„<„) 
Observe that (2.14) may involve the use of the negative-subscripted Monzingo 
numbers 

(2.15) E_n(m) = (-m)-nHn(m). 

m " [2/77(2n - 1) + n ] ^ + 1(/77) - 2 / 7 7 2 # n _ ! (/72) 
(2. i6) ^ ^ . E f i j W V j + i W = — r i > 

j = 1 4/?7 + 1 
( { £ „ } , the Monzingo 1st Convolution Sequence) 

n nEn + h(m) - in + l)#n+3(777) + 3 / 7 7 + 1 
( 2 . 1 7 ) i^QHAm) = o ' 

J - 1 J /772 

,o i o ^ V- HJ {m) / l + A/77 + 1 \ , / l - A/77 + 1\ 
(2.18) .Z-7T- = exP( 2 ) + e X H 2 j' 
The usefulness of (2.10)-(2.13) will be explained later. 
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Some properties of the Monzingo numbers can also be found by using appro-
priate matrices. As a minor example, we invite the reader to prove that 

(2.19) Hn(m) = tr Mn, 

where tr A denotes the trace (sum of diagonal entries) of a generic square mat-
rix A and 

(2,20) M 1 m 
1 0 

Letting 

(2.21) m = k(k + 1) (k e IN) 

in (2.3) leads to a simple but rather interesting case. In fact, we have [cf. 
(2.1)] 

(2.22) d = kk2 + kk + 1 = (2k + I) 2, 

so that [cf. (1.2)] 

(2.23) ad = k + 1 and 3d = -k 

are integral and 

(2.24) Hn(k2 + k) = (k + l)n + (-k)n . 

On the basis of (2.24), it can readily be seen that the numbers Hn(k2 + k) can 
be expressed by means of the following first-order linear recurrence relation 

(2.25) En(k2 + k) = (k + l)En_l(k2 + k) + (2k + D ^ - ^ - l ) " ; 

H0(k2 + k) = 2 . 

This suggests an analogous expression for Hn(m) (m arbitrary). In fact, using 
(1.2), (1.5), and (2.1), it can be proved that 

(2.26) Hn(m) = adHn.l(m) - Am + 1 $n
d~l; HQ(m) = 2, 

whence, as a special case, we have 

(2.27) Ln = aLn_! - 53n_1; L0 = 2, 

where a = a5 and 3 = $5-

Now, let us consider a well-known (e.g., see [6], Cor. 7) divisibility pro-
perty of the numbers Wn(2, b; b* q) which, obviously, applies to the Monzingo 
numbers. Namely, we can write 

(2.28) Hr(m)\HH2s + 1)(m) 

whence it follows that 

Proposition 1: If Hn(m) is a prime, then n is either a prime or a power of 2. 

Proposition 1 and (2.24) give an alternative proof of a particular case (a and 
b, consecutive integers) of well-known number-theoretic statements concerning 
the divisors of an ± bn (e.g., see [10], pp. 184ff.). More precisely, we can 
state 

Proposition 2 (n odd): If (k + l)n - kn is a prime, then n is a prime. 

Proposition 3 (n even): If (k + l)n + kn is a prime, then n = 2h (h e M ) . 

It must be noted that, for k = 1, Proposition 2 is the well-known Mersenne!s 
theorem, while Proposition 3 is related to a property concerning Fermat's num-
bers (e.g., see [10], p. 107). We point out that, from the said statements 
concerning the factors of an ± bn

s it follows that, if p is an odd prime and 
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Hp(k2 + k) i s composi te , then i t s prime f a c t o r s a r e of the form 2lp + 1. For 
examples we can r e a d i l y check t h a t , for k = 2 and p = 11 , we have 

# l l ( 6 ) = 175099 = (2 • 1 • 11 + 1 ) 2 ( 2 • 15 • 11 + 1 ) . 
Finally, let us consider the sum 

h 
(2.29) Snah = X > n M 

rn= 0 

and ask ourselves whether it is possible to find a closed form expression for 
(2.29) in terms of powers of ft. A modest attempt in this direction is shown 
below. Taking into account that Hn(0) = 1 \f n > 0, expressions valid for the 
first few values of n can easily be derived from (2.5) and from the calculation 
o f # 6 (777) = 2T?7 3 + 9T?7 2 + 6TT? + 1 : 

(2 .30) Sl>h = ft + 1 Shth = (2ft3 + 9ft2 + 10ft + 3 ) / 3 
52 ' , / , = ft2 + 2ft + 1 5 5 \ = (5ft3 + 15ft2 + 13ft + 3 ) / 3 
£ 3 ' ^ = (3ft2 + 5ft + 2 ) / 2 5 6 j \ = (ft4 + 8ft3 + 16ft2 + lift + 2 ) / 2 . 

3 , Some C o n g r u e n c e a n d Divis ibi l i ty P r o p e r t i e s 
of t h e Monzingo N u m b e r s 

If we r e w r i t e (2 .6 ) as 
in/2] 

(3.1) 2n-lHn(m) = 1 + Z (2)d*> 

i t i s eas i ly seen that 
(3 .2 ) 2n-lEn{m) E 1 (mod d). 
From (2.24), Proposition 1, and the definition of -perfect numbers (e.g., see 
[9], p. 81), it follows that all even perfect numbers are given by 2p~1Hp(2), 
where Hp(2) is prime (p > 3, a prime). Since 777 = 2 implies d = 9, from (3.2) 
we can state 

Proposition 4: Any even perfect number greater than 6 is congruent to 1 modulo 
9. 

By using either [1, (2)] or [2, (1.2)] and taking into account that [cf. 
(1.2)] 

(3.3) < 
\U<d$d = (1 " d)lk = "777, 

we obtain the following expression for Hn(m) in terms of powers of 777 [cf. 
( 2 * 5 ) ] [n/2] 
(3.4) Hn(m) = X! ̂ n 7-̂ J" (n > 1), 
where 

_l_/n - j^ 
JV J 

Rewrite (3.4) as 
[n/2] 

(3.6) #„(777) = 1 + n £ ^ 5 j m J ' (n - *) 
J = 1 

and observe that, if n is a prime, then CnjJ- is integral. It follows that 
(3.7) H (m) E 1 (mod n) if n Is prime. 

(3-5) Cn , =-^-.(n'. A. 
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Note that (3.6) allows us to state that 

(3.8) (i) Hn(m) = 1 (mod m) (n > 1) 

(3.9) (ii) Hn(2k) is odd (n > 1), 

(3.10) (iii) En(2k + 1) = 1 + 
[nil] 

E nCn 
J = I 

L„ (mod 2) . 

(3.10') that is to say, H (2k + 1) is even iff n E 0 (mod 3). 

Curiosity led us to investigate the divisibility of En(m) by some primes 
p > 2. A computer experiment was carried out to determine the necessary and 
sufficient conditions on n for an odd prime p < 47 to be a divisor of En(m) 
(2 < m < 10) . The case m = 1 has been disregarded, since the conditions on n 
for the congruence Ln E 0 (mod p) (p < 47) to hold are well known. For p and m 
varying within the above said intervals, the results can be summarized as 
follows 

(3.11) En(m) E 0 (mod p) iff n = r (mod 2r). 

The values of v are displayed in Table 1, where a blank value denotes that p is 
not a divisor of the Monzingo sequence {En(m)}. 

TABLE 1. Values of r for 3 < p < 47 and 2 < m < 10 
^ V 777 

3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 

2 

2 
3 
-6 
4 

11 
14 
5 
18 
10 
-23 

3 

3 
2 
6 
-8 
-
11 
14 
4 
-21 
-8 

4 

2 
-
4 
6 
3 
-9 
12 
-16 
-
-21 
23 

5 

-
-2 
7 
8 
10 
6 
. 16 
18 
-
-
-

6 

-
-
-2 
8 
3 
11 
7 
-
18 
20 
21 
23 

7 

2 
2 
-3 
6 
9 
10 
-
. 16 
. 21 
. 8 

8 

3 
4 
-7 
2 
5 
4 
14 
15 
18 
10 
-24 

9 

-
3 
5 
-
-2 
12 
-16 
-5 
22 
23 

10 

2 
-
2 
-
-9 
5 
-5 
3 
-
-7 
6 

Let us give an example of use of Table 1 by considering the case m = 6 and 
p = 29. For these two values, the table gives v = 7. It means that Hn(6) E 0 
(mod 29) iff n E 7 (mod 14). 

Of course, the above-mentioned experiment led us to discover also the repe-
tition period Pm,p of the Monzingo sequences reduced modulo p. Some values of 
Pm>p are shown in Table 2. 

TABLE 2. Values of Pn for 3 < p < 47 and 2 < m < 10 

3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 

2 

2 
4 
6 
10 
12 
8 
18 
22 
28 
10 
36 
20 
14 
46 

3 

1 
24 
24 
120 
12 
16 
90 
22 
28 
240 
171 
336 
42 
736 

4 

8 
6 
48 
120 
12 
8 
18 
528 
35 
320 
171 
105 
42 
46 

5 

2 
1 
3 
40 
56 
16 
360 
264 
105 
192 
36 
40 
42 
23 

6 

1 
4 
6 
5 
12 
16 
18 
22 
28 
30 
36 
40 
42 
46 

7 

8 
4 
1 
60 
12 
288 
120 
11 
28 
960 
684 
1680 
33 
736 

8 

2 
24 
16 
10 
56 
16 
60 
176 
28 
30 
36 
20 
77 
2208 

9 

1 
6 
6 
10 
84 
144 
72 
528 
210 
960 
36 
40 
1848 
46 

10 

8 
1 
24 
6 
42 
288 
180 
11 
280 
30 
36 
20 
42 
552 
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3.1 The Numbers Hn (m): A Divisibility Property 

Both the definitions and most of the properties of the numbers HH(m) and 
Gn(m) remain valid if m is an arbitrary (not necessarily integral) quantity. 
Let us define the numbers En (m) as the first derivative of Hn(jri) with respect 
to m 

(3.12) H^\m) = ̂  Hn(m). 

From (3 .12) and ( 3 . 4 ) , we have 

[n/2] 
n In - j (3.13) Hw(m) = E J 

[n/2] 
(,* 7 «? -_}?lmJ-l / H (J - D K n - 2 j ) ! 

n ' j f fn ". f " ^/r^'"1 (w > 1). 
[ w / 2 ] 

J = i 

7 ( D Now i t i s p l a i n t h a t #„ (w) = 0 (mod n) . Moreover - (cf . [ 6 ] , p . 278) , (3 .13) 
l e a d s to the fo l lowing cu te r e s u l t 

(3 .14) - 2 - = ^ - i ( m ) (n > 1 ) . 

4. The Monzingo Pseudoprimes 

Of course, the converse of (3.7) is not always true. Let us define the odd 
composites satisfying (3.7) as Monzingo Pseudoprimes of the mth kind and 
abbreviate them m-M.Psps. Incidentally, we note that the 1-M.Psps. and the 
Fibonacci pseudoprimes defined in [8] and investigated in [2] coincide. 

For ?7? > 1, the /ry-M.Psps. are not as rare as the Fibonacci pseudoprimes. 
Let \im(x) be the m-K. Psp. -counting function (i.e., the number of m -M. Psps. not 
exceeding x) and let Mi(m) be the smallest among them. A computer experiment 
has been carried out to obtain y^QOOO) and Mi(m) for 1 < m < 25. These quan-
tities are shown against m in Tables 3 and 4, respectively. 

TABLE 3. Values of ym(1000) for 
1 < m < 25 

TABLE 4. Values of M l (jn) for 
1 < m < 25 

m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

(im(1000) 

1 
3 
6 
5 
8 
15 
9 
3 
15 
14 
7 
15 
12 

m 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

^m(1000) 

11 
22 
2 
5 
8 
13 
17 
29 
9 
4 
10 
9 

m 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Mx{m) 

705 
341 
9 
25 
15 
9 
49 
231 
9 
25 
33 
9 
49 

m 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Mx{m) 

21 
9 
85 
51 
9 
25 
15 
9 
33 
69 
9 
25 

The reader who would enjoy discovering many more w-M.Psps. can use the sim-
ple computer algorithm described on pages 239-40 of [2], after replacing the 
identities (3.5)-(3-8) in [2] by the identities (2.10)-(2.13) shown in Section 
2 above. 
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I t can be proved t h a t c e r t a i n odd composi tes a r e #?~M.Psps. In t h i s n o t e , 
we r e s t r i c t o u r s e l v e s to demons t ra t ing t h a t , fo r p an odd prime and s an i n t e -
ger g r e a t e r than 1, ps i s a p-M.Psp. 
Theorem 1: Hps(p) = 1 (mod ps). 

Proof: By observing (3.6), it is plain that it suffices to prove that Cp?, j pj 
is integral for 1 < j < (ps - l)/2. More precisely [cf. (3.5)], if (p, j) = 1, 
then Cps}j is an integer; thus, it suffices to prove that the power a with 
which p enters into j! is less than j . This is true for any j and p (odd). In 
fact, it is known (e.g., see [11], p. 21) that 

(4.1) a = E [j/pi], 
i = l 

whence we can write 

a < E «//p̂  = j'/(p - 1) < J. Q.E.D. 
i= 1 

Let us conclude this note by pointing out that the numerical evidence turn-
ing out from the above said computer experiment suggests the following 
Conjecture 1: If p > 5 is a prime and s is an integer greater than 1, then ps 

is a (p - l)-M.Psp., that is 

(4.2) Hps(p - 1) E 1 (mod ps). 

For some values of p, we checked Conjecture 1 by ascertaining that, while the 
addends CpSfj (p - I)J are in general not integral, the sum 

(Ps- D/2 
(4.3) E Cpssj(p - 1)3 

j'= i 

is. For example, let us consider the case p = 7, s = 2 and show that (4.3) is 
integral. The nonintegral addends in (4.3) are those for which g.c.d.(ps - j, 
j) * 1, that is 

«.« *,-&«).'. ',-£&)«"• ' . -a®"1' 
Let us write •* 

(4 .5 ) A l + A 1 + A ^ 4 1 > 3 9 - 3 8 - 3 7 - 2 6 7 + 34 > 31 • 29 • 2 3 ^ 11 • 5 • 4 • 3 6 l , 

_,_ 26 « 23 « 11 - 9 • 3 n7X H = 6^ i 

and reduce the sum of the numerators on the right-hand side of (4.5) modulo 7 

6 - 4 - 3 » 2 - 2 - 6 + 6 « 3 « l - 2 - 4 - 5 « 4 « 3 * l + 5 * 2 - 4 * 2 « 5 * 6 

E 6 + 2 + 6 E 0 (mod 7). 

It follows that Ai + A2 + 4 3 is integral, so that 49 is a 6-M.Psp. 

References 

1. 0. Brugia & P. Filipponi. "Waring Formulae and Certain Combinatorial Iden-
tities." Fond. U. Bordoni Techn. Rept. 3B5986 (1986). 

2. A. Di Porto & P. Filipponi. "More on the Fibonacci Pseudoprimes." Fibonacci 
Quarterly 27. 3 (1989):232-42. 

3. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Num-
bers." Fibonacci Quarterly 3. 3 (1965):161-76. 

262 [Aug. 



A NOTE ON A CLASS OF LUCAS SEQUENCES 

4. A. F. Horadam. "Special Properties of the Sequence Wn(a9 b; p, q) ." Fibo-
nacci Quarterly 5. 5 (1967):424-34. 

5. A. F. Horadam, "Pell Identities." Fibonacci Quarterly 9.3 (1971):245-52, 
263. 

6. Jin-Zai Lee & Jia-Sheng Lee. "Some Properties of the Sequence {Wn(a, b; p, 
q)}." Fibonacci Quarterly 25. 3 (1987):268-78, 283. 

7. M. G. Monzingo. "An Observation Concerning Whitford's fBinetfs Formula 
Generalized.1" A Collection of Manuscripts Related to the Fibonacci 
Sequence, pp. 93-94. Edited by V. E. Hoggatt, Jr., & M. Bicknell-Johnson. 
Santa Clara: The Fibonacci Association, 1980. 

8. J. M. Pollin & I. J. Schoenberg. "On the Matrix Approach to Fibonacci Num-
bers and the Fibonacci Pseudoprimes." Fibonacci Quarterly 18. 3 (1980):261-
68. 

9. P. Ribenboim. The Book of Prime Number Records. New York: Springer-Verlag, 
1988. 

10. H. Riesel. Prime Numbers and Computer Methods for Factorization. Boston: 
Birkauser Inc., 1985. 

11. I. M. Vinogradov. Elements of Number Theory. New York: Dover, 1954. 
12. A. K. Whitford. "Binet's Formula Generalized." Fibonacci Quarterly 15.1 

(1977):21. 

1991] 263 


