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welcomes problems believed to be new or extending old results. Pro-

posers should submit solutions or other information that will assist 
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H - 5 9 Proposed by D.W. Robinson, Brigham Young University, Provo, Utah 

Show that, if m > 2, then the period of the Fibonacci sequence 

0, 1, 1, 2, 3, . . . , F , . . . reduced modulo m is twice the least 
n 

positive integer n such that F . , = (-1) F 1 (mod m). 

H - o 0 Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California 

It is well known that if p, is the least integer such that F , = F 
k K • , n i " P k n 

mod 10 , then p = 60, p2 = 300 and p = 1 . 5 x 1 0 for k > 3. If 
Q(n, k) is the kth digitofthe nth Fibonacci, thenfor fixed k, Q(n, k) 

is periodic, that is q, is the least integer such that Q(n+q, , k) = 0(n, k) 

mod 10. Find an explicit expression for q, . 

H - 6 1 Proposed by P.F. Byrd, San Jose State College, San Jose, California 

Let f . =0 for 0< n<k-Z,.f . . . =1 and n, k k- l ,k 

Show that 

Hence 

f , = 2 f . , for n 1 n, k n-j, k 
j = l 

1 fn, k ^ 1 , 1 , 
z < r — — < 2 + 2k f o r n ^ 

n+1, k 

lim lim n, k 1 
k->°° n - ^ f x l . ~ 1 n + 1 , k 

115 
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See E . P . M i l e s , " G e n e r a l i z e d F i b o n a c c i N u m b e r s and t h e i r A s s o c i a t e d 
M a t r i c e s , " T h e A m e r i c a n M a t h e m a t i c a l Mon th ly , Vol . 67, No. 8. 

H - 6 2 Proposed by H.W. Gould, West Virginia University, Morgantown, West Va. 

F i n d a l l p o l y n o m i a l s f(x) a n d g(x), of the f o r m 

f (x+l ) = 2 a . x , a . a n i n t e g e r 

s 

g(x) = £ b .x , b . a n i n t e g e r 

s u c h t h a t 

2 ] x 2 f 3 ( x + l ) - ( x + l ) 2 g 3 ( x ) [ + 3 J x 2 f 2 ( x + l ) - ( x + l ) 2 g Z ( x ) [ 

+ 2 ( x + l ) j x f ( x + l ) - ( x + l ) g ( x ) | = 0 . 

H - 6 3 Proposed by Stephen Jerbic, San Jose State College, San Jose, California 

L e t 

F F . . . F 
_>, \ 1 j T-/ \ m m-1 m-n+1 ^ ^ 
F ( m , o) = 1 a n d F ( m , n) = _ ~ = o < n <. m , r r , . . . r , n n - 1 1 

be the F i b o n o m i a l c o e f f i c i e n t s , w h e r e F i s t h e n th F i b o n a c c i n u m -
n 

b e r . Show 

2 m - l m - 1 

2 F ( 2 m - l , n ) = n L ^ , m > l . 

n= o i= o 

H - 6 4 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va. 

Show 

F n + 1 = n (1 - Z i c o s ^ ) . 

w h e r e F i s the n th F i b o n a c c i n u m b e r . n 
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A L L T H E S O L U T I O N S 
H - 3 0 Proposed by J. A. H. Hunter, Toronto, Ontario, Canada 

Find al l non- ze ro in tegra l solutions to the two Diophantine equa-
t ions, 

2 2 
(a) x + xy + x - y • = 0 

(b) x - xy - x - y = 0 

Solution by John L. Broivn, Jr., Pennsylvania State University, State College, Pa. 

We f i rs t observe that (x , y ) is a solution of (a), if and only 
(-x } y ) is a solution of (b). Thus we may l imit our cons idera t ions 
to just one of the equations, say (b). 

Equation (b) has the form 

x 2 - (y+l)x - y 2 = 0 

which, consider ing y as a p a r a m e t e r , has solutions 

_ (y+1) ± / ( y + l ) 2 +4yZ 

x - 2 

For x to be an in teger , it is c l ea r ly n e c e s s a r y and sufficient that 
2 2 

(y+1) + 4y be a perfect square , that i s , the re exis ts an in teger z 
such that 

(y+1)2 + 4y2 = z 2 , 

or , 

(y+1)2 + (2y)2 - z 2 

Let us look f i rs t for solutions with y > 0. Note that 2y/d and 
(y+l)/d a r e re la t ive ly p r i m e in tege r s , where d >. 1 is the g r ea t e s t 
common divisor of 2y and y+1, so that, by the well-known theorem 

2 2 2 on solutions of x + y = z , t he re exist two re la t ive ly p r ime posit ive 
in tegers r and s of different par i ty , with r > s, such that e i ther 

2 2 
/ y+1 = d(r - s ) 

(i) 
( 2y = d(2rs) 
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(2) 
i y+1 = d(2rs) 

V 2y = d ( r 2 - s 2 ) . 

For case (1), it follows eas i ly that d = 1, while in case (2), 
d - 2. Hence, solving case (1) is equivalent to finding re la t ive p r ime 
posit ive in tegers r and s of different par i ty satisfying 

(3) 

Now, in case (2), let 

2 
r - r s = 1 . 

r ' = r+s 

Then, recal l ing that d = 2 in case (2), we have 

(4) 
,2 ,2 r ' - s 

v 2 y = 2 r ' s ' , 

which has formal ly the same appearance as case (1) and impl ies 

2 2 
r« - r ' s ' - s ! = 1 . 

Thus, since 

y U c 1 r ' - s ' 
and s = —= , 

r '+s" 

solving case (2) is equivalent to finding odd positive in tegers r ' and s' 
satisfying (3). 

In e i ther case , we see that every solution of (b) with y > 0 is 
generated by an appropr ia te solution of the diophantine equation: 

(*) 2 2 
r - r s - s 

1 

Note that any solution (r, s) of (*) inpos i t ive in tegers has r and 
s re la t ive ly p r ime and r > s. Note that the case (r even, s even) 
cannot occur as a solution of (*). 

Now, if (r, s) is a solution of (*) with posi t ive in tegers r and 
s of different par i ty , then case ( l ) i s indicated with y = r s and e i ther 
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2 2 

x = r or x = - s . Thus, we obtain two solutions (x,y) of (b), namely 
(r , rs ) and (-s , r s ) . 

If (r ' ? s') is a solution of (*) with odd positive in tegers r ' and 
2 2 

s ' , then we have case (2) and y = r ' s ' with both x = r ' and x = - s ' , 
again giving two solutions of (b). 

Thus, every positive solution (r, s) of (*) leads to two solutions 
of equation (b) having posit ive values for y, namely (r , rs ) and 
(-s , r s ) . 

It r ema ins to consider solutions of (b) having y < 0. 
If y < 0, let y = - | y | ; then, from (b), 

(-lyl + i ) ± 7 ( | y | - i ) 2 +4y2 

so that ( ly l - 1) + 4 | y | mus t be a perfect square , or equivalently, 
the re exis ts an integer z such that 

y 
2 i i 2 . 2 

i r + {2\y\r = * 
As before, letting d = the g rea tes t common divisor of | y | - 1 

and 2 | y | , we deduce the exis tence of two re la t ive ly p r ime posit ive 
in tegers r and s of different par i ty , with r > s, such that e i ther 

( i )* 

or 
(2)* 

l y | - i 
2 | y | 

lvl-1 

At 2 2 V 

d(r - s ) 
d(2rs) 
d(2rs) 

I I 2 2 
2 |y I = d(r - s ) 

Clear ly , d = 1 i n c a s e (1)* and d = 2 for case (2)*. Incase (1)*, 
we find that r and s mus t satisfy 

(**) 2 2 
r - s - r s 

• 1 

while in case (2)*, the substi tut ion r ' = r + s, s' = r - s yields (using 
d'= 1 for case (1)* and d = 2 for case (2)*) 

,2 ,2 r - s | y | - i 

Z | y [ = 2 r ' s ' , 
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w h i c h s h o w s t h a t ( r ' , s ' ) i s a l s o a soLution in p o s i t i v e i n t e g e r s of (**). 

Note t h a t a n y s o l u t i o n ( r , s) of (*#) in p o s i t i v e i n t e g e r s h a s r 

a n d s r e l a t i v e l y p r i m e and r > s if we e x c l u d e the s o l u t i o n r = s = 1. 

A l s o the c a s e (r e v e n , s even) c a n n o t o c c u r a s a s o l u t i o n of (**). T h u s , 

e v e r y s o l u t i o n of (**) in p o s i t i v e i n t e g e r s e i t h e r h a s bo th t e r m s odd o r 

r e v e n and s odd. The l a t t e r c a s e g i v e s a s o l u t i o n of (b) w i t h | y | = r s 
2 2 

a n d bo th x = - r and x = s , s o t h a t the two g e n e r a t e d s o l u t i o n s of (b) 
2 2 

a r e ( - r , - r s ) and (s , - r s ) . 
S i m i l a r l y , if ( r 1 , s ' ) i s a s o l u t i o n of (**) w i t h r 1 and s ' bo th 

I I 2 2 
odd and r ' > s ' , t h e n | y | = r ' s ' w i t h x = - r ' and x = s ' . 

T h u s , e v e r y s o l u t i o n of (**) in p o s i t i v e i n t e g e r s ( r , s) ( i nc lud ing 
2 

( 1 , 1)) y i e l d s two s o l u t i o n s of (b) w i th n e g a t i v e y, n a m e l y ( - r , - r s ) 
a n d (s , - r s ) . 

To find the a c t u a l s o l u t i o n s , we r e c a l l t h a t e v e r y s o l u t i o n of 
2 2 

r - r s - s = 1 in p o s i t i v e i n t e g e r s r , s h a s the f o r m r = F ? , , a n d 
s = F ? , for s o m e i n t e g e r k >. 1. (See s o l u t i o n of H - 3 1 ) . The c o r r e s -

p o n d i n g s o l u t i o n s of (b) a r e ( F 2 k + 1 , F . , k F 2 k + 1 ) and ( - F ^ , F 2 k F . , k + 1 ) 
fo r k = 1, 2, 3, . . „ 

2 2 
The o t h e r e q u a t i o n r - r s - s = - 1 m a y be t r a n s f o r m e d to 

2 2 
r ' - r ' s ' - s ' = 1 by the c h a n g e of v a r i a b l e , r ' = r + s , s ' = r ; i t f o l lows 

2 2 
t h a t e v e r y s o l u t i o n of r - r s - s = -1 in p o s i t i v e i n t e g e r s ( r , s) h a s 

the f o r m r = F ? , , s = F ~ , , for s o m e i n t e g e r k >. 1. The c o r r e s -

p o n d i n g s o l u t i o n s of (b) a r e ( - F 2 k , - F 2 k F 2 k _ 1 ) and ( F
2 k - T ~ F 2 k F 2 k - 1 ^ 

for k = 1, 2, 3, . . . 
2 

S u m m a r i z i n g , the s e t of s o l u t i o n s , ( F ? , , , F - , F ? , , ), 
( - F F F ) ( - F - F F ) ( F 2 - F F ) for 
{ *Zk' 2k Zk+1 1 , { 2k ' " 2 k Z k - 1 1 , l * 2 k ~ r r 2 k r 2 k - l ; 

k = 1, 2, 3, . . . , c o n s t i t u t e a l l t he n o n - z e r o i n t e g r a l s o l u t i o n s of 
2 2 

x - x y - x - y = 0, a n d the s e t 
2 2 2 

( " F 2 k + l J F 2 k F 2 k + l ) ? * F 2 k ' F 2 k F 2 k + l ^ ( F 2 k J " F 2 k F 2 k - l ) j 

( " F 2 k - r " F 2 k F 2 k - l ) f ° r k = l . 2. 3. . . . 
? 2 

c o n s t i t u t e a l l n o n - z e r o i n t e g r a l s o l u t i o n s of x^ + x y + x - y = 0 . 
AN O L D P R O B L E M 

H - 4 1 Proposed by Robert A. Laird, New Orleans, La. 

F i n d r a t i o n a l i n t e g e r s , x, and p o s i t i v e i n t e g e r s , m , so t h a t 
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2 2 

N = x - m and M = x + m 
a r e ra t ional s q u a r e s . 

Solution by Joseph Arkin, Spring Valley, New York 

P r o f e s s o r Oystein Ore, Sterl ing P r o f e s s o r of Mathemat ics at 
Yale Universi ty, in his book, Number Theory and Its History, 1st ed. , 
1948, gives the complete solution to this problem on pages 188-193., 

Also solved by Maxey Brooke, Sweeny, Texas 

COMMENTS ON THE HISTORICAL CASE 

Solved by Rober t A. Laird 
A solution to the h i s to r i ca l problem submitted to Fibonacci 

(Leonardo of Pisa) by John of P a l e r m o , an impe r i a l notary of E m p e r o r 
F r e d e r i c k II, about 1220 A. D. (see page 124, Cajor i ' s "His tory of 
Ma thema t i c s " for r e fe rence) . The problem: Find a number x, such 

2 2 
that x + 5 and x - 5 a r e each square n u m b e r s . In other words , 
find the square which i nc rea sed or dec reased by 5, r ema ins a squa re . 
Leonardo solved the problem bya method (not known to me) of building 
squares by the summat ion of odd n u m b e r s . 

Solution to this problem was published in the "Mathemat ics 
T e a c h e r " in December 1952. 

I offer it he r e for your i n t e r e s t and p l ea su re . Let 
x = side of the des i r ed square 
x + b = side of a l a rge r square 
x - a = side of a sma l l e r square 

a and b a r e posi t ive, ra t ional number s 

(1) 

(2) 

Solving (1) and (2) 

(3) 

(x + b) 2 = x 2 + 5 

(x - a) = x - 5 

5 + a 2 
x = —«_ 
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Equating (3) and (4) 

2 2 
5 + a^ 5 - t / 

2a ""^b 

Solving for b in t e r m s of a, we have 

-(5+a2) ± 7a 4 +30a 2 +25 (5) b = — 
2a 

In o rder for b to be a ra t ional number , the rad ica l mus t c l ea r . So 
find value of a that will do th i s . 

We can find a by t r i a l substi tut ion or by factoring. Let ' s take 
factoring: 

a 4 + 30a2 + 25 

(a2 + 13 ) 2 + 4(a2 - 36) 

If a = 36 or a = 6, the rad ica l will c l ea r . For immedia te resul t , 
subst i tute a = 6 in (3) 

5 + a 2 _ 5 + 3 6 _ 41^ 
X " 2a " 12 " 1 2 Q . E . D . 

General ly , find the square which if i nc reased or d e c r e a s e d by m will 
r e m a i n a square (m = posit ive in teger) . Strangely, when m = 6, a 
solution can be found, but not for m = 1, or 2, or 3, or 4. 

FROM BEST SET OF K TO BEST SET OF K+l ? 

H - 4 2 Proposed by J.D.E. Konhauser, State College, Pa. 

A set of nine in tegers having the p rope r ty that no two pa i r s have 
the same sum is the set consis t ing of the nine consecutive Fibonacci 
number s , 1, 2, 3, 5, 8, 13, 21, 34, 55 with total sum 142. Start ing with 1, 
and annexing at each step the sma l l e s t posi t ive in teger which p r o -
duces a set with the s tated p rope r ty yields the set 1, 2, 3, 5, 8, 13, 21, 
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30, 39 with sum 122. Is this the best result? Can a set with lower total 
sum be found ? 

Partial solution by the proposer. 

Partial answer. The set 1, 2, 4, 5, 9, 14, 20, 26, 35 has total sum 

116. For eight numbers the best set appears to be 1, 2, 3, 5, 9, 15, 20, 

25 with sum 80. Annexing the lowest possible integer to extend the set 

to nine members requires annexing 38 which produces a set with sum 

118. It is not clear (to me, at least) how to progress from a best set 

of k integers to a best set for k + 1 integers. 

H - 4 3 (Corrected) Proposed by H.W. Gould, West Virginia University, Morgantoivn, West Va. 

Let 
00 p 

/ . v mn 

n=l 

where F. is the i-th Fibonacci number, find 

lim <̂ (x) 
x —>1 - log (1 -x) 

See special case m = 2 in Revista Matematica Hispano-Americana (2) 

9 (1934) 223-225 problem 115. 

A FAVORABLE RESPONSE 

H - 4 4 Proposed by V.E. Hoggatt, Jr., San Jose State College, San Jose, California 

Let u = q and u. = p, and u . 0 = u n + u , then the u are o ^ 1 r n+2 n+1 n n 
called generalized Fibonacci numbers. 

(1) Show u = pF + qF . x ' n n n-1 

(2) Show that if 

V, n = u + u . . and V0 = u . . - u , , 2n+l n n+1 2n n+1 n-1 

then V are also generalized Fibonacci numbers. 
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Solution by Lucile R. Morton, San Jose State College, San Jose, California 

We p r o v e f o r m u l a (1) by i n d u c t i o n on n . It i s o b v i o u s t h a t 

u x = p = p F L + q F Q a n d u 2 = p + q = P F 2 + qY x . 

Now le t u s a s s u m e f o r m u l a (1) h o l d s for n = k a n d n = k + 1 . T h u s 

a n d 

Add ing we g e t 

u k = p F k + q F f c _ 1 

Uk+1 = p F k + I + q F k 

U k + 1 + U k = P ( Fk+l+ Fk ) +^Fk + F k - l ) • 

Uk+2 = P F k + 2 + < ^ F k + l ' 

w h i c h w a s to be p r o v e d . 

We p r o v e V a r e g e n e r a l i z e d F i b o n a c c i n u m b e r s by s h o w i n g t h e y s a t i s -
n 2 

fy the r e c u r s i o n f o r m u l a V 1 0 = V ,-, + V , w h e r e V~ = 2pq - q a n d 7 2 2 
Vi = P + q » We c a n do t h i s by s h o w i n g 

(3) 

(4) 

F r o m f o r m u l a s (2) 

V = V + V 2n+l 2n 2 n - l 

V = V + V v 2 n + 2 v 2 n + l V 2 n 

a n d 

V 7 + V 7 , = (u 2 , - u 2 . ) + (u 2 , + u 2 ) 2n 2 n - l v n+1 n - 1 ' v n - 1 n ' 

2 2 
n+1 n 2n+l 

V , , , + V 7 - (u 2 + u 2 , . ) + (u 2 , - u 2 . ) 2n+l 2n n n+1 n+1 n - 1 
2 2 , 9 2 

= u - u . + 2u . , n n - 1 n+1 
= (u ,, )(u 9 ) + (u , , )(u , , + u + u , ) n+1 n - 2 ' n+1 n+1 n n - 1 
= u , , ( u 7 + u , + u , 9 ) n+1 n - 2 n - 1 n+2 

2 2 
= (u 9 - u )(u 9 + u ) = u 9 - u n+2 n n+2 n n+2 n 

= V 9 x 9 . Q. E . D. 
2n+2 
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Now let us c a r r y our problem a little fur ther . Let m be a fixed in te-
ger, and let V = u . . Are the re any r e s t r i c t i ons on p and q ? 
° n n+m 3 ^ ^ ' 
Since V and u a r e genera l ized Fibonacci numbers 

n n to 

V ,, = V n F + V , F ,, = (2pq-q 2 )F + (p2 + q 2 ) F ,. n+1 O n 1 n+1 r n ^ n r ^ n+1 

and 

u = u F + u F = (pF + q F )F + (pF + qF (F 
n+m+1 m n m+1 n+1 r m m-1 n ^ m + 1 ^ m n+1' 

Thus we have 

(5) 2pq-q 2 = pF + q F . x ' ^^ ^ r m m-1 

(6) p 2 + q2 = p F , 1 + qF 

Our quest ion becomes : For what in tegra l values p and q do equa-
tions (5) and (6) hold? Obviously p = q = 0 is a solution. Then 
V = u = 0 . Let n n 

x + F ,. y + F 
m+1 , m 

p = and q = « , 
substi tuting into equations (5) and (6) we have 

(7) 2xy - y2 = F 2 ,. - F 2 . = F 0 and x ' y 3 m+1 m-1 2m 

(8) x 2 + y2 - F 2 ,. + F 2 = F ? . N ' J m+1 m 2m+l 

El iminat ing x and simplifying 

5y 4 + 2 (F 9 - 2 F 7 ,. )y2 + F 2 = 0 , 
7 x 2m 2 m + l / ; 2m 

or 
4 2 2 

5y - 2L 0 y + F , = 0 . 
7 Zm; 2m Thus 

y 
, L0 ± / 4 L 2 - 2 0 F 2 

2 2m y 2m 2m 10 

L , ± / L 2 - 5 F 2 
2m v 2m 2m 
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Then 

2 ^ m * ^ " 1 ) 2 1 " L 2 m
± 2 < - 2 ( - D m

± 2 
Y 

2 2 
and we have 5y = L , which has no in tegra l solutions, or 

J m to 

(9) 5yZ = L2 ± 4 = 5 F 2 + 4 ( - l ) m ± 4 . 
J m m 

2 2 2 2 
Now 5y = 5F ± 8 . which has no in tegra l solut ions, or 5v = 5F , 
and y = ± F . Therefore the equations (7) and (8) have the solutions 
x = F ., , y = F and x = - F ., , y = - F for al l m, and x = - F ,. , m+1 J m m+1 J m m+1 
y = F and x = F ., , y = - F for m = 0, - 1 . J m m+1 J m 

Thus 

p = F ,T p = 0 
r m+1 ^ 

or 
q = F q = 0 
^ rn ^ 

a r e solutions of (5) and (6) for al l m, and 
p = 0 p = F ,. 
r r m+1 

or 
q = F q = 0 
m 

a r e solutions of (5) and (6) for m = 0, - 1 . 
Therefore V = u , = F • , when p = F .. and q = F 

n m+n Zmtn m+1 m for al l m, or V = u , = 0 when p = q = 0. n m+n 
If we cons ider nonintegral solutions, from (7) and (8) we had 

y = 

5y 2 = 

L 
= ± and 

L 2 
m 

x = ±
 L m+1 

v/5" 

which gives us 

Thus the solutions of (7) and (8) a r e 

L , -i L L . , 1—» 
m+1 m , m+1 m 

x = 9 y = and x = , y = -
v5~ sfs >/5" 4S 

for al l m . Therefore 
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L 4.1 m + 1 + F 
/p- m+1 m + I 

p = _V 2 =- a 

and 

L 

yr m 

L 4-! 

N / 5 " m + 1 p m + 1 

p = = 7s" 
L 

- _ ^ + F 

q = z — - - — . 

A/so solved by Clifton T. Wbyburn, Douglas Lind, Clyde A. Bridget, Charles R. Wall, 
John L. Brown, Jr., Joseph Arkin, Raymond E. Whitney, John Wessner, W.A. Al-Slalm 
and A. A. Gioia (jointly), Charles Ziegenfus and L, Carlitz. 

ITERATED SUMS OF SQUARES 

H - 4 5 Proposed by R.L. Graham, Bell Telephone Labs., Murray Hill, N.J. 

P r o v e 

n p q r 

I 1 1 1 F ^ = F ^ + 2 - I ( 2 n 2 + 8 n + l l - 3 ( - l ) n ) 

p=0 q=0 r=0 s=0 

w h e r e F i s t he n th F i b o n a c c i n u m b e r . n 

Solution by Charles R. Wall, Texas Christian University, Ft. Worth, Texas 

U s i n g the i d e n t i t i e s 

k 2 k 2 
* F n = * < = T k F k + 1 . 

n=0 n=l 

k k 
V F F - F 2 l + ( ~ l ) 

Z n n+1 " k+1 " "" 2 ' 
n=0 
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we have 

n p q r n p q 

I 2 2 S F J = I 1 2 F F , _ 
s r r+1 

p=0 q=0 r=0 s=0 p=0 q=0 r=0 

- Y ^F F £ l i 1 + (-DP I z ) p+1 p+2 ~ 2 " I ( 
p=0 ^ ' 

= v {F F - E - 2 - Lil! I 
^ ) p+l p+2 2 4 4 ( 

p=0 '- ' 

- F 2 I ( - l ) n n(n+l) 3(n+l) 1 + (-l) r 

n+2 ~ 2 " 2 4" " 4" 8 

= Fn+2 " \ ( 2 n 2 + 8 n + U ' 3<"1)n) • 

Also solved by Douglas Lind, L. Carlitz, and Al-Slalm and A. A. Gioia (jointly). 

XXXXXXXXXXXXXXX 

HAVE YOU SEEN? 

J. Arkin, "An Extension of the Fibonacci Numbers, " American Math-

ematical Monthly, Vol. 72, No. 5, March 1965, pp. 275-279. 

Marvin Wunderlich, "Another Proof of the Infinite Primes Theorem, " 
American Mathematical Monthly, Vol. 72, No. 5, March 1965, p. 305. 
This is an extremely neat proof for the Fibonacci Fanl 

Benjamin B. Sharpe, Problem 561, Mathematics Magazine, Vol. 28, 

No. 2, March 1965, pp. 121-122. 


