REPLY TO EXPLORING FIBONACCI MAGIC SQUARES*

JOHN L. BROWN, JR.
Pennsylvania State University, State College, Pennsylvania

Problem. For \(n \geq 2 \), show that there do not exist any \(n \times n \) magic squares with distinct entries chosen from the set of Fibonacci numbers, \(u_1 = 1, u_2 = 2, u_{n+2} = u_{n+1} + u_n \) for \(n \geq 1 \).

Proof. Trivial for \(n = 2 \).

If an \(n \times n \) magic square existed for some \(n \geq 3 \) with distinct Fibonacci entries, then the requirement that the first three columns add to the same number would yield the equalities:

\[
(*) \quad F_{i_1} + F_{i_2} + \ldots + F_{i_n} = F_{j_1} + F_{j_2} + \ldots + F_{j_n} = F_{k_1} + F_{k_2} + \ldots + F_{k_n}
\]

Since the entries are distinct, we may assume without loss of generality that \(F_{i_1} > F_{i_2} > \ldots > F_{i_n}, F_{j_1} > F_{j_2} > \ldots > F_{j_n} \)

and

\(F_{k_1} > F_{k_2} > \ldots > F_{k_n} \).

Noting that the columns contain no common elements, and by rearrangement if necessary, we assume \(F_{i_1} > F_{j_1} > F_{k_1} \), again without losing generality; thus, \(F_{i_1} \geq F_{k_1} + 2 \).

Now

\[
F_{i_1} + F_{i_2} + \ldots + F_{i_n} > F_{k_1} + 2
\]

while

\[
F_{k_1} + F_{k_2} + \ldots + F_{k_n} \leq \sum_{i=1}^{k_1} F_i = F_{k_1} + 2 - 1
\]

This contradicts the equality postulated in \((*)\), and we conclude no magic squares in distinct Fibonacci numbers are possible.

*The Fibonacci Quarterly, October 1964, Page 216.

xxxxxxxxxxxxxxxxxx

146