CONCERNING LATTICE PATHS AND FIBONACCI NUMBERS

DOUGLAS R. STOCKS, JR.
Arlington State College, Arlington, Texas
R. E. Greenwood [l] has investigated plane lattice paths from $(0,0)$ to (n, n) and has found a relationship between the number of paths in a certain restricted subclass of such paths and the Fibonacci sequence. Considering such paths and using a method of enumeration different from that used by Greenwood, an unusual representation of Fibonacci's sequence is suggested.

The paths considered hereare comprised of steps of three types: (i) horizontal from (x, y) to ($x+1, y$); (ii) vertical from (x, y) to ($x, y+1$); and (iii) diagonal from (x, y) to ($\mathrm{x}+\mathrm{l}, \mathrm{y}+1$).

$$
\begin{aligned}
& \text { - } \mathrm{V}_{5} \\
& \text { - } \mathrm{V}_{4} \\
& \text { - } \mathrm{V}_{3} \\
& \text { - } \mathrm{V}_{2} \\
& \text { - } \mathrm{V}_{1} \\
& \begin{array}{lllll}
\mathrm{H}_{5} & \mathrm{H}_{4} & \mathrm{H}_{3} & \mathrm{H}_{2} & \mathrm{H}_{1}
\end{array}
\end{aligned}
$$

Figure 1

In the interest of simplicity of representation, we will here consider the paths from H_{i} to V_{i}, for each positive integer i. Note that the number of paths from H_{i} to V_{i} is the number of paths from $(0,0)$ to (i, i). However, instead of considering the total number of paths from H_{i} to V_{i} as was done by Greenwood, we will count only the number of paths from H_{i} to V_{i} which do not contain as subpaths any of the paths from H_{j} to V_{j}, for j < i . This number plus the number of paths from H_{i-1} to $\mathrm{V}_{\mathrm{i}-1}$ is the total number of paths from H_{i} to V_{i}. The use of this counting device suggest the

Theorem:
Let

$$
\begin{aligned}
1_{D} & =1 \\
2_{D} & =\left[\frac{D-1}{2}\right], \text { where }[] \text { denotes the greatest integer functior } \\
3_{D} & =3_{D-1}+2_{D-1} \\
4_{D} & =4_{D-2}+3_{D-2} \\
& \cdots \\
(2 n)_{D} & =(2 n)_{D-2}+(2 n-1)_{D-2} \\
(2 n+1)_{D} & =(2 n+1)_{D-1}+(2 n)_{D-1} \\
& \cdots
\end{aligned}
$$

with the restriction that $k_{D}=0$ if $k>D$. For each positive integer D, let

D

$$
f(D)=\sum_{k=1} k_{D}
$$

The sequence $\{f(D) \mid D=1,2,3, \ldots\}$ is the Fibonacci sequence.
The proof is direct and is therefore omitted.
The geometric interpretation of the numbers k_{D} and $f(D)$ mentioned in the theorem is interesting. However, before considering this interpretation it is necessary to define a section of a path. For this purpose we will now consider a path as the point set to which p belongs if and only if for some step ($(x, y),(u, v)$) of the path, p belongs to the line interval whose end points are (x, y) and (u, v). A section of a path is a line interval which is a subset of the path and which is not a subset of any other line interval each of whose points is a point of the path.

The above mentioned geometric interpretation follows: By definition $f(1)=1$. For each positive integer $D \geq 2$, let L_{D} denote the set of paths from H_{D} to V_{D} which do not contain as subpaths any of the pathsfrom H_{j} to V_{j}, for $j<D$. $f(D)$ is the number of paths belonging to the set $L_{D^{\circ}} k_{D}$ is the number of paths in the subset X of L_{D} such that x belongs to X if and only if x contains as subsets exactly k diagonal sections.

Figure 2 portrays the five paths which belong to L_{5}. In Figure 2a appears the one path of L_{5} which contains only one diagonal section $\left(l_{5}=1\right)$. The two paths of L_{5} which contain exactly two diagonal sections appear in Figure $2 \mathrm{~b}\left(2_{5}=2\right)$. In Figure 2 c the two paths of L_{5} which contain exactly three diagonal sections are shown ($3_{5}=2$). It is noted that $4_{5}=5_{5}=0$.

Fig. 2a
$l_{5}=1$

Fig. 2b
$2_{5}=2$

Fig. 2c
$3_{5}=2$

$$
f(5)=1+2+2+0+0=5
$$

Figure 2

REFERENCES

1. R. E. Greenwood, "Lattice Paths and Fibonacci Numbers," The Fibonacci Quarterly, Vol. 2, No. 1, pp. 13-14.
$X X X X X X X X X X X X X X X$

NOTICE TO ALL SUBSCRIBERS! ! !
Please notify the Managing Editor AT ONCE of any address change. The Post Office Department, rather than forwarding magazines mailed third class, sends them directly to the dead-letter office. Unless the addressee specifically requests the Fibonacci Quarterly be forwarded at first class rates to the new address, he will not receive it. (This will usually cost about 30 cents for first-class postage.) If possible, please notify us AT LEAST THREE WEEKS PRIOR to publication dates: February 15, April 15, October 15, and December 15.

