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1. INTRODUCTION

Let a, B be the roots of

(1.1) xz—px+q:0

where p, q are arbitrary integers. Usually, we think of a, B as

being real, though this need not be so.

Write
(1.2) d= (p% - 4q)}/2,
Then
(1.3) a=(p+d)/2, p=(p-d)/2
so that
(1.4) a+PB=p, ap=q, a-Pf=d.

Recently [6] , a certain generalized sequence %wn~§ was defined:

- . . = = = - >
(1.5) gwng = 3wn (a, b;p, q)% P wy=2a, wy=b, w =pw qw__,(n >2)

in which
(1. 6) w_ = Aa" + Bp",
where

. _b-ap _aa-b

(.7) AT BETTE
whence

(1.8) A+B=a, A-B=(2b-pa)d ', AB=ed ?
in which we have written

2 2
(1.9) e=pab-qa -b.
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Sequences like %Wni have been previously introduced by, for
example, Bessel-Hagen [l] and Tagiuri [l 1] , though in the available
literature I cannot find evidence of much progress from the definition
[11] to have discovered a few of the results listed hereunder.

‘ The purpose of [6] was to determine a recurrence relation for
the kth powers of w (k an integer), that is, to obtain an explicit

form for

wk(x) Z wi x™
n=0

Here, we propose to examine some of the fundamental arithmetical
properties of %Wn% . No attempt at all is made toanalyze congruence
or prime number features of %WHE . In selecting propertiesto gener-
alize we have been guided by those properties of the related sequences
(see 2. below) which in the literature and from experience seem most
basic. Naturally, the list could be extended as far as the reader's en-
thusiasm persists.

It is intended that this paper should be the first of a series in-
vestigating aspects of %Wn% . Organization of the material is as fol-
lows: in 2., various special (known) sequences related to wni are
introduced, while in 3, some linear formulas involving %Wn are es-
tablished, and in 4. some non-linear expressions are vobtained. Final-

ly, in 5., some comments onthe degenerate case p'2 = 49 are offered.

2. RELATED SEQUENCES

Particular cases of %an are the sequences ;unz R %vng, ihng ,
v;fni’ alng given by: .

(2.1) w (1, pip, g)=u (p, q)

(2.2) w (2, p;p, a)=v (p q)

(2. 3) W (r, r+s; 1, -1) :hn (r, s)
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2.4 w . - - —
(2.4) A Ll -l =f (=u (1,-1) =h (1,0))

(2.5) wo (2, L1, -1)=1_(=v_(1,-1)=h_(2,-1).

Historical information about these second order recurrence se-
quences may be found in Dickson [3] . Of course, fn is the famous
Fibonacci sequence, gln% is the Lucas sequence, and {u andgv E
are generalizations of these, while hn% discussed in [4]18 a different
generalization ofthem. Chiefproperties of un% , ;Vn , gfni and iln%
may be found in, for instance, Jarden [7] , Lucas [8] and Tagiuri [1 0]
and [11] , those of {fn§ especially being featured in Subba Rao[9]and
Vorob'ev [12] .

Two rather interesting specializations of (2.1) and (2. 2) are the
Fermat sequences %un (3, 2)} :gznﬂ __lz and %Vn 3, 2)2 =2Zn N 1; ,
and the Pell sequences %un (2, —1)§ and %vn(Z, —l)g. (See [1] or [8])..

From (1.6), (1.7) and (2.1) - (2.5) it follows that

n+l n+l
(2. 6) w =& P P
n
(2.7) v = o™+ "
(2. 8) N :(r+s-rﬁl)o‘lf—(r+s—r(11)ﬁ111
n \/5_
n+l Bn-l-l
(2.9) P S
n \/'5‘
_n n
(2.10) 1_=a] +8]
wherein
V5 V5
(2.11) q1:1+ 5,;31=1_5_,
2 2

that is, a ﬁl are the roots of

1’

(2.12) X% - x-1=0.
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Consequently, by (1.4)
(2.13) al+Bl=l, 0.1[31=-1, ay -{31: 5.

To assist the reader, and as a source of ready reference, the full set
of results for the five specializations of %wni will often be written
down, as in (2.6) - (2.10).

Obviously from (1.9), e characterizes the various sequences.

. 2
For %un% s gvni s %hn% s %fnz , iln% we derive e = -q, p~ - 4q,
2 2 .

r -rs-s, 1, 5 respectively.

By (1.6), (1.7) and (2. 6) we have

(2.14) Wn=aun+(b- pa) U ——-bun_l -qau 5,
with, in particular, the known [8] expressions

(2.15) v_=2u_ - pu

n n n-1 - 2q Yn-2 -

(Ultimately, of course, these yield 1 = 2f - f + 2f .)
n n n-1 n-2
Putting n =0 in(2.14)requires the existence of values for neg-
ative subscripts, as yet not defined. Allowing unrestricted values of

n therefore in (1. 6) we obtain

w =Aad+B ﬁ—n
-n
(2.16) ey _b )
=4 aly Yn-1
after simplification using
_ -ntl
(2.17) u_ =4 u o

which follows from (2. 6).
Combining (2.14) and (2.16) we have

"(au_ - bu
n

_ )
(2.18) w_=q " _ n w
n au + (b - pa.Tun_1 n

whence it follows from (2. 2) - (2.5) that

(2.19) v =qnv
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31‘ (u - u ) - su
-1 -1
(2.20) h—n: (_1)11 nru n+ su = % hn
n n-1
(2.21) £ = (-1)"¢

In particular,

21, -1 .
(2.23) w =Aad " +p :Paq b
so that
(2. 24) u_ =0
-1

(2. 25) vii=p

q
(2. 26) h o =s
(2.27) £,=0
(2. 28) 1. o= -1

165

Many of the simplest ;Wni are expressible in terms of %fng.

Besides (2. 4) we have

. _ n-1
(2.29) W (-1, 1; -1, -1) = (-1) fn
(2. 30) Wn( 1, -1; 1, -1)=—fn_3

. _ n-1
(2.31) wn( 1, 1; -1, -1) = (-1) fn-3

More generally,

(2.32) w_(a, b 1, -1) = af , +bf
(2. 33) w_(a, by -1, -1) = (-1)n§af - bf

Notice that
wo(ay, byspys qp) = -w (a5, byipy, q,)

(2. 34K provided
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Some sequences are cyclic. Examples are

(2.35) w (a, b; -1, 1)

for which a, B (= az) are the complex cube roots of 1 and

(2.36) w (a, b; 1, 1)

for which a, B (= az) are the complex cube roots of -1. Sequence
(2.35)is cyclicof order 3 (withterms a, b, -a - b) since a3n = ﬁ3n =1,
while sequence (2.36) is cyclic of order 6 (with terms a, b, -a +b,
-a, -b, a - b) since u3n= ‘33n = -1, so q6n= [36n =1 (n odd in this
case). (Refer (l.6)).

Geometric-type sequences arise when p =0 (so that by (1.5)

w -qwn_l) and q = 0 (so that WS pwn).

ntl
3. LINEAR PROPERTIES
From (1.5) and (1. 6) it follows that
k <g <
(3.1) W ga w 3(1 if -1 S B <1,
— - k . <
w1 g, Yok p if -1 2 a =1,
3.2 (p? + -0
(3.2) Wiz P -dw +pgw, ,=0,
and
(3.3 (p° + 4> =0
-3) PWo42 - (P - a) Watl T4 Wp1 7Y

Repeated use of QWy 1 = "Wy T pw (k=1, ..., n) leads to

the sum of the first n terms

n-1
(3.4 q . W= (p-1) (wy twy e, tw) - w
j=0

whence

—

n-

(3.5 (p-a-1) 2 wy= wog-w -(p - 1) (W - w)
j=0
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while the corresponding results for differences are

n-1
(3:6) a 2, (-1)ij=(p 1) (-w, +w,
=0 +H-12 1w )4 (-)®
T X wn) (-1) w

+pw

+1 1

and n-1 .
(e-a+1) 2 (1w,
(3.7) =0
_ n+l n+l
= (1" w_, Hwy -(ptl) 3(-1) w_ +w0§ .
Replace n by 2n in (3.4), (3.5) (3.6) and (3.7). Write
(3.8) U=WO+W2+...+W2n_2 ,
and
= +
(3.9) P—w1+w3 +W2n_1
Adding and subtracting (3.4), (3.6) give
(3.10) (1 +q)o =pp- (wzn—wo)
and
(3.11) (L+aq)p=potalw, 4 -w_)
for the sum of the even - (odd -) indexed terms of wol- Clearly by

(1.5) additionof (3.10) and (3.11) yieldsthe sum of the first 2n terms
(3.4) as expected. Solve (3.10) and (3.11) so that

(3.12)  {p% - (14a)?} 0 = (L+a)(w,, - wo) - pa (wy, | - W_))

and
(3.13)  {p° - (1+)? P = p (w, - wy) - alHQ)w, | - w_))

Using the alternative expression W, = bun_1 - qau_ . (2.14),

we have
S Watl V1 Yn " 9% Uh
B T W™ |

W =W

n+3

3% " 9%y
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whence
Wntr = Ve Un T 9 VWel) Ypa1
(3.14)
=w_u_-qw
n r

u

n-1 "r-1

on interchanging n and r. Equations (3.14) may also be obtained

from (1.5), (2.1) and (2.14). Of course

Wantr - Wr—j U’n+j -4 Wr-_j-l un+j-1
(3.15) w u -qw a
ntj r-j ntj-1 "r-j-1

1]

also.
Further, from (1.6) and (2. 7) it follows that

Wy +qrw
(3.16) nrr T =y
w T

n

thatis, the expressiononthe left is independentof a, b, n. Interchange

r and n in (3.16) and then set r = 0. Accordingly,

n -—
(3.17) wn+qvw_n—avn.

Observe also from (1. 6) and (2. 6) that

r
(3.18) Watr © % Ynor Yol
. - =

Yso1
w -4 W o s-

n+s

which [10] is an integer provided s divides r.
Two binomial results of interest may be noted. Firstly, from

(1. 6) it follows that

n .
(3.19) LN LU S L G el
j=0

where we have used the fact a2 - pa +q =0, [32 -pB+qg=0.
Starting from (1. 3) and (1. 6), we readily derive

znwn =A(p + )" + B(p - ).
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[n/2]
n -2j 42j
(3.20) 2% w_=a Z ped g%l (l?jj) [n-1]
j=0 2
F2b-pa) 2 (1)) pP AT a2
j0
whence follow the known [1] expressions
) s
n _ n+l n-2j ,2j
(3.21) 2 u = (2j+1) P d
j=0
[n/2] .o
n-1 3 n n-2j ,2j
(3.22) 2 v, = Z (Zj) p d
j=0
/2] :
n 3 n+l j
(3.23) 2 fn_ Z (2j+1) 5
j=0
n-1 _ /2] n j
(3.24) 2 1n = Z (Zj) 5
j=0

Suitable substitutions in the above results lead to the specialcases

for iuni, avnz, %hn%, 3fn§ and %1n§ ; for example, for-%fn},in (3. 4)

o+pP = f2n+1-1,
and in (3.14) with r = n,
n
2 n
7+ f =f = Z () f ,
-1 2 k=0 k! 'n-k
using (3.19).
If we write
(3. 25) Yno_ ,
Wn+1 n
so that, by (1.5),
(3. 26) r ———1——-——-, r L ) eeeesoas ,

n p-qr
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enabling us to. express the limit of the ratio as a continued fraction.

Sometimes, when q = -1, it is notationally convenient to write

a_ = en0 = sinh 7 + cosh
o o o)

(3.27)
Bo - _e—T)o = sinh no - cosh %

where (1. 2)

d
(3.28) coshn =3°, sinhn =2, tanh n =p a’!
’ o 2’ o~ 2’ o o

Zero suffices signify that q = -1.
Combining this hyperbolic notation withthe remarks immediately

preceding (3.27), andproceedingto the limit (refer (3.1)), wezsee that

for p=1, q=-1, thatis, for %hnf (and its specializations%fn}, ilni),
h
n 1 -
R -7 ~—— =€
n+l |

cosh 7]1 - sinh nl

—r
1 + 1
p + L

P‘i—'

(observe that by (2.12) =g is a root of x2 +x - 1 =0 sothat
1

leading to the continued fraction.)

1
&= 1+g’
Furthermore, (3.27) and (3.28), with (1.5), imply

. _ n . n
(3.30) Yo n —(Ao + (-1) B_)sinhn n_ +(A_ - (-1) BO) coshn g .

Hyperbolic expressions for the specialized sequences are then, from
(2.6), (2.7), (2.9), (2.10),

sinh (n + 1) U

Un T cosh (n odd)

(3.31)

cosh (n + 1) N, (n even)

cosh
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v_= 2 sinh n 7 (n even)
(3. 32) n ©
= 2 coshn U (n odd)
with corresponding expressions for fn’ ln respectively, in which 1,

is replaced by m- A hyperbolic expression for hn is given in [5] .

4, NON-LINEAR PROPERTIES

Essentially, the problem in obtaining non-linear formulas (as in
the linear case) is to detect the appropriate coefficients (functions of
p, q) of Wi. Basic non-linear (quadratic) results have already been

recorded in [6] , namely:

(4.1) aw, o + (b-pa) Wotnel - Ve Wn T W1 W1 0

e ‘b 2 2 _

(4.2) a%on (b-pa) Won-1 "% T Wno1 T Watl Wno1 "W, Who2
2 _ n-1

(4.3) Wn+1 wn—l - Wn -4 €

Obviously, from (4.3) with n =0,

(4. 4) e=gq (w1 W

- W

1 0)

which may be compared with (1.9), using (1.5) and (2.23).
An extension of (4. 3) is, by (1. 6) and (2. 6),

(4.5) Wotr Vnor W= e4d u
Putting r = n in (4.5), we have

(4. 6) w? teu ?
n

n-1-2%2

n
Interchange r and n in (4.5), then suppose r = 0. We deduce

_ 2 -n 2
(4.7) w ow_ =a teq u

(n=1 reduces (4.7) to (4. 4).)
Specializations of (4.1) are, on multiplication by 2 and use of
(1.2), (1.4), (2.6), (2.7) and (2.15), the known [8] results
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(4. 8) Zum+n—1 =u vn+un_1 \%
and

2
(4.9) va_m—vm vn+d U1 Yo

Next, by (4.6), we derive, using (2.6), (2.7), (1.2) and (1.4),

(4.10) u, Eu v

and

(4.11) 2 vy = vetdlul )
with

(4.12) Von = VIZ; - an = d2 un?l + an

Again, (4.1) with m = 2n gives an expression for Wi from
which we deduce, by (4.10), (2.6), (2.7) and the recurrence relation

for v, ,

3n
(4.13) ol 2 gt
n-1
and
v
3n _ 2 n
(4.14) ";IT——Vn- 3q

Results (4.10) - (4. 14) occur in Lucas [8] in a slightly adjusted
notation.

Coming now to the sum of the first n terms, we use the first
half of (4.2).

Write

n-1
(4.15) r=D Wt .
=0 7

Then, it follows that

(4.16) (1-q) 7= ag+ (b-pa)p - {qu_l t(b-pa) wy 0}
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whence T may be found from (3.12) and (3.13).
Repeating the first half of (4. 2) leads to

2 2 2

(4.17) Wi~ 9 W

= b W, o4l + (b -pa)g Wl
From (1.6), (1.8) and (2. 6),

n-r
(4.18) Wa-r "ntr+t - Vn Yo+t - 4 eu

whence t =0 gives (4.5).

Replacing wo by u_ in (3.14) and (3.15) (with -j substituted

n
for j) yields

(4.19) u =u u -quk

ntr - Un %r n-1 Yr-1 7 Yn-j Br4j T T 80no5-1 Prd4jel
whence »
R N T i A LIS R S S (NS}
4,20 n-
( ) =q 7 )

uj ur—n+j - ur—n+2j
_ n-j+l a
=4 Y1 Yrontj-1

by repeated application of (4.19) and replacement in the first half of
(4.19)of n by r-nt+j and r by j toobtainanexpressionfor U n+2j
(u0 = 1). Note that (4.20) is the special case of (4.18) for which
w o =u 8o that e = -g {n, r, j in (4. 20) replaced byn - r, n+r +.t,
respectively and (2.17) used).

In particular, it follows from (4.20) with j =1 that

n-1

(4.21) Un-1%r-2 " %p-2 Yr-1 7 4

u

r-n-1

Moreover, (4.21) and W= b u ] -9qau _, give for the se-

quences %wn% and gwl'ii

(4.22) W1"1 W= W w; =qgf(a'"b-a b')(un_1 u._,-u

1)

u
n-2 r-

no i 1
g (a'b - ab') U1
Cubic expressions in w, ~—are generally quite complicated, so we
derive only the sum of the first n cubes. Cube botl sides of(l.5)and

then use (1.5) again. Thus
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(4.23) w’ S . w?

ntl ~ P Wp o9 VWup - 3qun_1 an

n+l
But, from (4. 3),
-1

3 n
=wn+q e w R

(4. 24) w .

n-1 "n "ntl
so that from (4. 23) and (4. 24) it follows that

3 3, .3 3 3 n
(4. 25) wn+1+(3pq—p)wn+q wn_l——3pq ew

Now a calculation involving (1. 6) and the summation of geometric

series leads to

(426)11—l Jwo=—2 tw -®w. - (w -q? )
‘ qu—I— +3§1qW0q‘ quwn-—li'
s patq
Write
n-1
(4.27) w= 2w .
=0 J

Combining (4. 25), (4.26) and (4.27), we find
(4.28)  (1+3pq-p>+q”) @ = 2Rty Py g™ Liw, qPw_ )|
3 1 0 n n-1
l-pq+q
3.3 3 3, .3
+q wo 1"V, + (1+3pg-p7) Wy
Appropriate substitution inthe above formulas of 4. lead to cor-

responding results for the special sequences (2.1) - (2.5). For in-

stance, applying (4. 16) and (4. 28) to %fn } , we have f:%ifzn_l—fi_l % s
1 (.3 3 n-1
w=g £+ 30y vz

respectively.
5. DEGENERATE CASE

Throughout the analysis of the nature of 3Wn§" the hypothesis

that p2 % 4q has been assumed. But suppose now that p'2 = 449. The
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simplest degenerate case occurs when p=2, q=1 (a=f=1) for

which exists the trivial sequence (n =0)

(5.1) Vn(?_, 1y 2, 2, 2, 2, 2, ...

and the sequence of natural numbers (n > 0)

(5.2) un(Z, 1y «+ 1, 2, 3, 4, 5, ... ,

thatis, u = n+l and v, E 2, Fornegative n, (2.19)implies V SV
that is, every element of %un (2, 1)2 is 2, while (2.17) implies

-n
negative integers in order.

u_ = -u o, that is, like elements of %un (2, 1)% are the positive and

Generally, in the degenerate case,

(5.3) a:ﬁ=% .

The mainfeatures of the degenerate case, as they apply to %un E
and %vng are discussed in Carlitz [2], with acknowledgement to
Riordan. Brief comments, as they relate to wot, are made in [6] .
In passing, we note that Carlitz [2] has established the interesting re-

lationship between degenerate

and the Eulerian polynomial Ak(x) which satisfies the differential

equation

A0 = (1 +mx) A_(x) +x(1 - ) g_x A_(x) .

where Ao(x) = Al(x) =1, Az(x) = 1+x, A3(x) =1 +4x + XZ.

‘ Finally, it must be emphasized that %hng and its specializations
‘2fn% and %lnz can have no such degenerate cases, because p2 - 4q

then equals 5 (% 0).
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REQUEST

The Fibonacci Bibliographical Research Center desires that any

reader finding a Fibonacci reference, send a card giving the reference
and a brief description of thé contents. Please forward all such in-
formation to:

Fibonacci Bibliographical Research Center,
Mathematics Department,
San Jose State College,
San Jose, California



