FIBONACCI WORDS

Wai-fong Chuan

Chung-Yuan Christian University, Chung1i, Taiwan 32023, Republic of China
(Submitted March 1990)

1. Introduction

In this paper, the notion of Fibonacci word is introduced and the structure of these words is investigated.

Let \mathscr{A} be a nonempty set and let x and y be two words in the alphabet \mathscr{A}. A Fibonacci sequence of words derived from x and y is a sequence of words w_{1}, w_{2}, ω_{3}, ... with the property that

$$
w_{1}=x, w_{2}=y, w_{n+1}=w_{n} w_{n-1} \text { or } w_{n-1} w_{n}
$$

The pair x and y are called the initial words of the Fibonacci sequence of words; the words $w_{n} w_{n-1}$ and $w_{n-1} w_{n}$ are called the immediate successors of w_{n} and w_{n} is their immediate predecessor. We remark that the Fibonacci sequence of words considered by Knuth [3, p. 85] is the one obtained as above by letting

$$
w_{n+1}=w_{n} w_{n-1} \text { for a11 } n \geq 3
$$

and the one considered by Higgins [1] and Turner [4, 5] is obtained by letting
$w_{n+1}=w_{n-1} w_{n}$ for all $n \geq 3$.
Let $\tilde{\mathscr{S}}$ be the set of all such sequences of words derived from x and y; let \mathscr{S}_{n} be the collection of words which happen to be the $n^{\text {th }}$ term of some members of $\tilde{\mathscr{S}}$. For example,

$$
\left.\mathscr{S}_{1}=\{x\}, \mathscr{S}_{2}=\{y\}, \mathscr{H}_{3}=\{y x, x y\}, \mathscr{L}_{4}=\{y x y, y y x, x y\}\right\}
$$

Denote the union of $\mathscr{S}_{n}(n=1,2, \ldots)$ by \mathscr{S}. Members of \mathscr{S}_{n} (resp. \mathscr{S}) are called the nth Fibonacci words (resp. Fibonacci words). Note that each word has an obvious representation in terms of x and y. Throughout this paper, we consider only such a representation.
Lemma 1: Let w be a Fibonacci word. Then the following statements are true.
(i) If w starts (resp. ends) with an x, then w cannot end (resp. start) with an x.
(ii) If w starts (resp. ends) with a y, then w cannot end (resp. start) with a $y y$.
(iii) There cannot be three or more consecutive occurrences of y and there cannot be two or more consecutive occurrences of x in w.
Proof: The result is proved by mathematical induction.
Let $\mathscr{S}_{n}(x, \cdot)$ [resp. $\left.\mathscr{S}_{n}(\cdot, y)\right]$ denote those $n^{\text {th }}$ Fibonacci words which start with an x (resp. end with a y) and let

$$
\mathscr{S}_{n}(x, y)=\mathscr{S}_{n}(x, \cdot) \cap \mathscr{S}_{n}(\cdot, y)
$$

Define $\mathscr{S}(x, \cdot), \mathscr{S}(\cdot, y)$, etc., in a similar way.

Corollary 2:

$$
\begin{aligned}
\mathscr{S}_{n} & =\mathscr{S}_{n}(x, y) \cup \mathscr{S}_{n}(y, y) \cup \mathscr{S}_{n}(y, x) \quad \text { for all } n ; \\
\mathscr{S} & =\mathscr{S}(x, y) \cup \mathscr{S}(y, y) \cup \mathscr{S}(y, x)
\end{aligned}
$$

Using finite binary sequences, let us label the Fibonacci words as follows:

and, in general, we have

$$
w_{n+2}^{r_{1} r_{2} \ldots r_{n-1} r_{n}}= \begin{cases}w_{n+1}^{r_{1} r_{2} \ldots r_{n-1}} w_{n}^{r_{1} r_{2} \ldots r_{n-2}} & \text { if } r_{n}=0 \tag{1.2}\\ w_{n}^{r_{1} r_{2} \ldots r_{n-2}} w_{n+1}^{r_{1} r_{2} \ldots r_{n-1}} & \text { if } r_{n}=1\end{cases}
$$

 indicate the initial words. For simplicity we write w_{n}^{0} (resp. w_{n}^{1}) if $n>3$ and $r_{1}=r_{2}=\ldots=r_{n-2}=0$ (resp. 1). We sometimes write ω_{1}^{0} and w_{2}^{0} for w_{1} and w_{2}, respectively. Note that
(i) the superscript $r_{1} r_{2} \ldots r_{n-2}$ indicates how the Fibonacci word $w_{n}^{r_{1} r_{2} \ldots r_{n-2}}$ is obtained from x and y;
(ii) the Fibonacci word $w_{n+1}^{r_{1} r_{2} \cdots r_{n-1}}$ is always an immediate predecessor of the Fibonacci word $w_{n+2}^{r_{1} r_{2} \ldots r_{n}}$;
(iii) the same Fibonacci word may have several different labels;
(iv) Knuth's Fibonacci sequence of words is $\left\{w_{n}^{0}\right\}$ while Higgins' and Turner's is $w_{1}, w_{2}, w_{3}^{1}, \ldots, w_{n}^{1}, \ldots$.
Define the reverse operation R by setting $R\left(x_{1} x_{2} \ldots x_{m}\right)=x_{m} \ldots x_{2} x_{1}$, where $x_{1}, \ldots, x_{m} \in\{x, y\}$. A word $w=x_{1} x_{2} \ldots x_{m}$ is said to be symmetric if $R(w)=w$. For example, the words $y x y$ and $x y y x$ are symmetric.

Theorem 3:
(i) If $w \in \mathscr{S}_{n}$, then $R(w) \in \mathscr{S}_{n}$. Moreover, if $n \geq 3$ and $w=w_{n}^{r_{1} r_{2} \ldots r_{n-2}}$ where the r^{\prime} s are 0 or 1 , then $R(w)=w_{n}^{s_{1} s_{2} \ldots s_{n-2}}$ where $s_{j}=1-r_{j}, j=1,2$, ..., $n-2$.
(ii) If v is an immediate predecessor of w, then $R(v)$ is an immediate predecessor of $R(w)$.
Proof: Suppose that the results are true for all positive integers less than n. Let $w=w_{n}^{r_{1} r_{2} \ldots r_{n-2}}$ where $r_{1}, r_{2}, \ldots, r_{n-2} \in\{0,1\}$. If $r_{n-2}=0$, then $w=v u$ where
$v=w_{n-1}^{r_{1} r_{2} \ldots r_{n-3}} \in \mathscr{S}_{n-1}$ is an immediate predecessor of w $u=\omega_{n-2}^{r_{1} r_{2} \ldots r_{n-4} \in \mathscr{S}_{n-2} \text { is an immediate predecessor of } v . ~ . ~ . ~}$
Clearly $R(w)=R(u) R(v)$. By the induction hypothesis,

$$
R(\mathcal{u})=w_{n-2}^{s_{1} s_{2} \cdots s_{n-4} \in \mathscr{S}_{n-2}}
$$

is an immediate predecessor of

$$
R(v)=w_{n-1}^{s_{1} s_{2} \cdots s_{n-3} \in \mathscr{S}_{n-1}, ~}
$$

where $s_{j}=1-r_{j}, j=1,2, \ldots, n-3$. Hence, $R(v)$ is an immediate predecessor of $R(w)$ and

$$
\begin{aligned}
R(w)=R(u) R(v) & =w_{n-2}^{s_{1}} s_{2} \cdots s_{n-4} \omega_{n-1}^{s_{1} s_{2}} \ldots s_{n-3} \\
& =w_{n}^{s_{1} s_{2} \ldots s_{n-3} s_{n-2} \in \mathscr{S}_{n},}
\end{aligned}
$$

where $s_{n-2}=1$. The case $r_{n-2}=1$ is proved similarly.

2. Factorization of w_{n}^{0} into a Product of Symmetric Factors

Let $v_{5}=y, u_{5}=x y y x, v_{6}=y x y, u_{6}=y x y x y$. For $n \geq 7$, put

$$
\begin{aligned}
& u_{n}=R\left(c_{n}\right) v_{n-1} c_{n} \\
& v_{n}=v_{n-2} u_{n-2} v_{n-2}
\end{aligned}
$$

where c_{n} equals $x y$ if n is even and equals $y x$ if n is odd. We sometimes write $u_{n}(x, y)$ and $v_{n}(x, y)$ for u_{n} and v_{n}, respectively. Plainly, all $u_{n}^{\prime} s$ and $v_{n}^{\prime} s$ are symmetric.

Theorem 4: For $n \geq 5$, we have
(i) $w_{n}^{0}=v_{n} u_{n}$;
(ii) $v_{n} c_{n-1}=w_{n-1}^{0}$;
(iii) $u_{n}=c_{n-1} w_{n-2}^{0}$;
(iv) $w_{n}^{1} \stackrel{n}{=} u_{n} v_{n}$.

Proof: Clearly the results are true for $n=5$ and 6 . Suppose $n>6$ and that the results hold for all integers less than n. Then

$$
\begin{aligned}
v_{n} c_{n-1} & =v_{n-2} u_{n-2} v_{n-2} c_{n-1}=w_{n-2}^{0} w_{n-3}^{0}=w_{n-1}^{0} ; \\
u_{n} & =R\left(c_{n}\right)\left(v_{n-1} c_{n}\right)=c_{n-1} w_{n-2}^{0} ; \\
w_{n}^{0} & =w_{n-1}^{0} w_{n-2}^{0}=v_{n} c_{n-1} w_{n-2}^{0}=v_{n} u_{n} .
\end{aligned}
$$

This proves (i)-(iii). Assertion (iv) is a consequence of Theorem 3 and the fact that u_{n} and v_{n} are symmetric.

Let w be a word in the alphabet \mathscr{A}. Designate the length of w by $l(w)$. In the following lemma we compute the length of the words w_{n}^{0}, u_{n}, and v_{n}.
Lemma 5: For $n \geq 3$, we have

$$
\begin{align*}
& l\left(w_{n}^{0}\right)=l\left(w_{n-1}^{0}\right)+l\left(w_{n-2}^{0}\right) ; \tag{i}\\
& l\left(w_{n}^{0}\right)=F_{n-2} l(x)+F_{n-1} l(y)=\sum_{j=1}^{n-2} l\left(w_{j}^{0}(x, y)\right)+l(y) .
\end{align*}
$$

For $n \geq 5$, we have

$$
\begin{align*}
& l\left(u_{n}(x, y)\right)=l\left(w_{n-2}^{0}\right)+l(x)+l(y)=\left(F_{n-4}+1\right) l(x)+\left(F_{n-3}+1\right) l(y) ; \tag{iii}\\
& l\left(v_{n}(x, y)\right)=l\left(w_{n-1}^{0}\right)-l(x)-l(y)=\left(F_{n-3}-1\right) l(x)+\left(F_{n-2}-1\right) l(y) . \tag{iv}
\end{align*}
$$

Proof: Both (i) and (ii) are proved by induction on n and both (iii) and (iv) follow from (i), (ii), and Theorem 4.

3. Cyclic Shift on Fibonacci Words

In this section, our main result states that every $n^{\text {th }}$ Fibonacci word is a cyclic shift of every other $n^{\text {th }}$ Fibonacci word. A cyclic shift operation T_{n} acting on words in the alphabet \mathscr{A} that have lengths n is given by

$$
T_{n}\left(c_{1} c_{2} \ldots c_{n}\right)=c_{2} c_{3} \ldots c_{n} c_{1}
$$

where $c_{1}, c_{2}, \ldots, c_{n} \in \mathscr{A}$.
Theorem 6: Every Fibonacci word in \mathscr{S}_{n} is a cyclic shift of ω_{n}^{0}. More precise$1 y$, for $n \geq 3$, we have

$$
w_{n}^{r_{1} r_{2} \cdots r_{n-2}}=T^{k}\left(w_{n}^{0}\right),
$$

[Feb.
where $T=T_{l\left(\omega_{n}^{0}\right)}$ and

$$
k=\sum_{j=1}^{n-2} l\left(w_{j+1}^{0}\right) r_{j}=\sum_{j=1}^{n-2}\left(F_{j-1} l(x)+F_{j} l(y)\right) r_{j}
$$

Proof: The result is trivial for $n=3$. Suppose that $n>3$ and the result is true for all integers less than n and greater than or equal to 3 .

$$
r_{1}=0:
$$

$$
\begin{aligned}
\omega_{n}^{r_{1} r_{2} \ldots r_{n-2}}(x, y) & =w_{n-1}^{r_{2} r_{3} \ldots r_{n-2}}(y, y x) \\
& =T^{k_{1}}\left(w_{n-1}^{0}(y, y x)\right)=T^{k}\left(w_{n}^{0}(x, y)\right)
\end{aligned}
$$

where

$$
k_{1}=\sum_{j=2}^{n-2} l\left(w_{j}^{0}(y, y x)\right) r_{j}=\sum_{j=2}^{n-2} l\left(w_{j+1}^{0}(x, y)\right) r_{j}=\sum_{j=1}^{n-2} l\left(w_{j+1}^{0}(x, y)\right) r_{j}=k .
$$

$$
r_{1}=1:
$$

$$
\begin{align*}
w_{n}^{r_{1} r_{2} \cdots r_{n-2}}(x, y) & =w_{n-1}^{r_{2} r_{3} \cdots r_{n-2}}(y, x y) \tag{3.1}\\
& =T^{k_{1}}\left(w_{n-1}^{0}(y, x y)\right)=T^{k_{1}}\left(w_{n}^{10} \cdots{ }^{0}(x, y)\right)
\end{align*}
$$

where

$$
k_{1}=\sum_{j=2}^{n-2} l\left(w_{j}^{0}(y, x y)\right) r_{j}=\sum_{j=2}^{n-2} l\left(w_{j+1}^{10 \ldots 0}(x, y)\right) r_{j}=\sum_{j=2}^{n-2} l\left(w_{j+1}^{0}(x, y)\right) r_{j}
$$

By Theorem 4 and (iv) of Lemma 5, we have

$$
\begin{aligned}
& w_{n}^{1}(x, y)=u_{n}(x, y) v_{n}(x, y)=T l\left(v_{n}\right)\left(w_{n}^{0}(x, y)\right) \\
&=T l\left(w_{n-1}^{0}(x, y)\right)-l(x)-\ell(y) \\
&\left(w_{n}^{0}(x, y)\right)
\end{aligned}
$$

With $r_{1}=r_{2}=\cdots=r_{n-2}=1$ in (1), we have

$$
w_{n}^{1}(x, y)=T^{k_{2}}\left(w_{n}^{10 \cdots 0}(x, y)\right)
$$

where
so that:

$$
k_{2}=\sum_{j=2}^{n-2} l\left(w_{j+1}^{0}(x, y)\right)
$$

$$
w^{10 \cdots 0}(x, y)=T^{k_{3}}\left(w_{n}^{0}(x, y)\right)
$$

where

$$
\begin{align*}
k_{3} & =-k_{2}+l\left(w_{n-1}^{0}(x, y)\right)-l(x)-l(y) \tag{3.2}\\
& =-\sum_{j=1}^{n-2} l\left(w_{j}^{0}(x, y)\right)=-l\left(w_{n}^{0}(x, y)\right)+l(y) \\
& =-l\left(w_{n}^{0}(x, y)\right)+l\left(w_{2}^{0}(x, y)\right),
\end{align*}
$$

in view of (ii) of Lemma 5. Combining (3.1) and (3.2), we have the desired result.

In the case that x and y are distinct alphabets, it turns out that \mathscr{S}_{n} consists of all the cyclic shifts of w_{n}^{0}.
Theorem 7: Let x and y be distinct alphabets a and b, respectively. Then a word w in the alphabet $\{a, b\}$ is an $n^{\text {th }}$ Fibonacci word if and only if w is a cyclic shift of ω_{n}^{0}.
Proof: The "only if" part is contained in Theorem 6. The "if" part is a consequence of the following Lemma (about Fibonacci numbers) whose proof is easy and is therefore omitted.

Lemma 8: Let $n \geq 3$. For all $0 \leq r \leq F_{n}-1$, the equation

$$
\sum_{j=1}^{n-2} F_{j+1} r_{j}=r
$$

has at least one solution $r_{1}, r_{2}, \ldots, r_{n-2}$ in $\{0,1\}$.
We remark that this lemma also leads to the known representation theorem which states that every positive integer can be represented as a sum of a finite number of Fibonacci numbers in which each Fibonacci number occurs at most once.

4. The Case x and y Are Alphabets

As in the last theorem of Section 3, let x and y be distinct alphabets a and b, respectively. Let $q_{n}=w_{n}^{l 010 l \ldots} \quad(n=1,2, \ldots)$. In this section, we locate the α^{\prime} s in q_{n} and show that all the shifts of q_{n} (resp. w_{n}^{0}) are distinct and hence that \mathscr{I}_{n} consists of precisely F_{n} Fibonacci words. The main result is based on the following two lemmas.
Lemma 9: Let $n \geq 3$. Then $j F_{n-1}$ (resp. $j F_{n-2}$), $0 \leq j \leq F_{n}-1$, is a complete residue system modulo F_{n}.

Lemma 10: (a) Let n be an odd integer greater than 4.
(i) For $1 \leq j \leq F_{n-4}$, let k be the unique number such that
(4.1) $1 \leq k \leq F_{n-2}$ and $j F_{n-3} \equiv k\left(\bmod F_{n-2}\right)$.

Then there exists a unique r_{j} such that

$$
\begin{equation*}
1 \leq r_{j} \leq F_{n-2} \text { and } k \equiv r_{j} F_{n-1}\left(\bmod F_{n}\right) \tag{4.2}
\end{equation*}
$$

(ii) For $1 \leq i \leq F_{n-3}$, let k be the unique number such that

$$
\begin{equation*}
F_{n-2}+1 \leq k \leq F_{n} \quad \text { and } \quad i F_{n-3} \equiv k-F_{n-2}\left(\bmod F_{n-1}\right) \tag{4.3}
\end{equation*}
$$

Then there exists a unique t_{i} such that
(4.4) $1 \leq t_{i} \leq F_{n-2}$ and $k \equiv t_{i} F_{n-1}\left(\bmod F_{n}\right)$.

Furthermore,
(4.5) $\quad\left\{r_{j}: 1 \leq j \leq F_{n-4}\right\} \cup\left\{t_{i}: 1 \leq i \leq F_{n-3}\right\}=\left\{1,2, \ldots, F_{n-2}\right\}$.
(b) Let n be an even integer greater than 4.
(iii) For $1 \leq j \leq F_{n-3}$, let k be the unique number such that

$$
1 \leq k \leq F_{n-1} \quad \text { and } \quad j F_{n-2} \equiv k\left(\bmod F_{n-1}\right)
$$

Then there exists a unique r_{j} such that

$$
1 \leq r_{j} \leq F_{n-2} \text { and } k \equiv r_{j} F_{n-2}\left(\bmod F_{n}\right)
$$

(iv) For $1 \leq i \leq F_{n-4}$, let k be the unique number such that

$$
F_{n-1}+1 \leq k \leq F_{n} \quad \text { and } \quad i F_{n-4} \equiv k-F_{n-1}\left(\bmod F_{n-2}\right)
$$

Then there exists a unique t_{i} such that

$$
1 \leq t_{i} \leq F_{n-2} \text { and } k \equiv t_{i} F_{n-2} \quad\left(\bmod F_{n}\right)
$$

Furthermore,

$$
\left\{r_{j}: 1 \leq j \leq F_{n-3}\right\} \cup\left\{t_{i}: 1 \leq i \leq F_{n-4}\right\}=\left\{1,2, \ldots, F_{n-2}\right\}
$$

Proof: We prove (a) only.
(i) Let j and k satisfy condition (4.1). We show that (4.2) holds. Write $k=j F_{n-3}-s F_{n-2} \quad$ where s is an integer.

Since

$$
-F_{n-2} \leq-k<j F_{n-3}-k=s F_{n-2} \leq j F_{n-3}-1 \leq F_{n-4} F_{n-3}-1=F_{n-5} F_{n-2}
$$

we see that $0 \leq s \leq F_{n-5}$. Thus,

$$
k=j F_{n-3}-s F_{n-2}=(2 j+s) F_{n-1}-(j+s) F_{n} \equiv r F_{n-1}\left(\bmod F_{n}\right)
$$

where $1 \leq r=2 j+s \leq 2 F_{n-4}+F_{n-5}=F_{n-2}$. This proves (4.2).
(ii) Let i and k satisfy condition (4.3). We show that (4.4) holds. Write

$$
\begin{align*}
k=i F_{n-3}+F_{n-2}-s F_{n-1} & =(2 i-s-1) F_{n-1}-(i-1) F_{n} \tag{4.6}\\
& \equiv t F_{n-1}\left(\bmod F_{n}\right)
\end{align*}
$$

where s is an integer and $t=2 i-s-1$. From (4.6), we have

$$
\begin{aligned}
F_{n-2}+1 \leq k \leq t F_{n-1} & =k+(i-1) F_{n} \leq F_{n}+(i-1) F_{n} \\
& =i F_{n} \leq F_{n-3} F_{n}=F_{n-1} F_{n-2}-1<F_{n-1} F_{n-2}
\end{aligned}
$$

so that $1 \leq t<F_{n-2}$. This proves (4.4).
Now we prove (4.5). It is clear that the sets

$$
A=\left\{r_{j}: 1 \leq j \leq F_{n-4}\right\} \quad \text { and } \quad B=\left\{t_{i}: 1 \leq i \leq F_{n-3}\right\}
$$

are contained in $\left\{1,2, \ldots, F_{n-2}\right\}$. To prove equality in (4.5), we show that A has F_{n-4} elements, B has F_{n-3} elements, and that A and B are disjoint.
(a) If $r_{j_{1}}=r_{j_{2}}$, where j_{1} and j_{2} lie between 1 and F_{n-4}, then $k_{j_{1}} \equiv r_{j_{1}} F_{n-1}=r_{j_{2}} F_{n-1} \equiv k_{j_{2}}\left(\bmod F_{n}\right)$.
Since both $k_{j_{1}}$ and $k_{j_{2}}$ lie between 1 and F_{n-2}, this implies that $k_{j_{1}}=k_{j_{2}}$ and so

$$
j_{1} F_{n-3} \equiv j_{2} F_{n-3}\left(\bmod F_{n-2}\right)
$$

Since F_{n-2} and F_{n-3} are relatively prime, we have $j_{1}=j_{2}$. Hence, all the p's are distinct.
(b) A similar proof shows that all the t^{\prime} 's are distinct.
(c) If $r_{j} \in A, t_{i} \in B$, and $r_{j}=t_{i}$, then $k \equiv k^{\prime}\left(\bmod F_{n}\right)$, where $r_{j} F_{n-1} \equiv k$ and $t_{i} F_{n-1} \equiv \mathcal{K}^{\prime}\left(\bmod F_{n}\right)$, and both k and k^{\prime} lie between 1 and F_{n}. Therefore, we have $k=K^{\prime}$. But this is impossible because $k \geq F_{n-2}+1>K^{\prime}$. Thus, A and B are disjoint.

This proves (4.5), and the proof is complete.
In part (a) of Lemma 10, two injective mappings

$$
\begin{aligned}
& r: j \in\left\{1,2, \ldots, F_{n-4}\right\} \mapsto r_{j} \in\left\{1,2, \ldots, F_{n-2}\right\} \\
& t: i \in\left\{1,2, \ldots, F_{n-3}\right\} \mapsto t_{i} \in\left\{1,2, \ldots, F_{n-2}\right\}
\end{aligned}
$$

are defined by (4.1) and (4.2) and by (4.3) and (4.4), respectively. The disjoint union of their ranges gives the whole of $\left\{1,2, \ldots, F_{n-2}\right\}$. Part (b) of Lemma 10 has an analogous meaning.

Now write $q_{n}=a_{1} a_{2} \ldots a_{F_{n}}$ where $a_{j} \in\{a, b\}$.
Theorem 11: Let n be a positive integer greater than 3 . Let $t=F_{n-1}$ if n is odd and $t=F_{n-2}$ if n is even. Then $\alpha_{k}=\alpha$ if and only if $k \equiv j t\left(m o d F_{n}\right)$ for some $1 \leq j \leq E_{n-2}$.
Proof: The results are clearly true for $n<7$. Now suppose that $n \geq 7$ and n is odd. Then $q_{n}=q_{n-2} q_{n-1}$ where

$$
q_{n-2}=\alpha_{1} a_{2} \ldots a_{F_{n-2}} \text { and } q_{n-1}=a_{F_{n-2}+1} \ldots \alpha_{F_{n}}
$$

FIBONACCI WORDS

By the induction hypothesis, the following statements are true:
(i) For $1 \leq k \leq F_{n-2}$, we have

$$
\begin{aligned}
& \alpha_{k}=a \text { if and only if } k \equiv j F_{n-3}\left(\bmod F_{n-2}\right) \text { for some } 1 \leq j \leq F_{n-4} \\
& \text { (ii) For } F_{n-2}+1 \leq k \leq F_{n} \text {, we have } \\
& \alpha_{k}=\alpha \text { if and only if } k-F_{n-2} \equiv j F_{n-3}\left(\bmod F_{n-1}\right) \text { for some } 1 \leq j \leq F_{n-3}
\end{aligned}
$$ The result now follows from Lemmas 9 and 10 . For even n the proof is similar.

Let $w=c_{1} c_{2} \ldots c_{n}$ where c_{j} equals a or b. We designate by $S(w)$ the sum $(\bmod n)$ of the indices j for which $c_{j}=a$.
Corollary 12: Let n be a positive integer greater than 2 . For odd n, let

$$
s=F_{n-2} \quad \text { and } \quad t=F_{n-1}
$$

for even n, let

$$
s=F_{n-1} \quad \text { and } \quad t=F_{n-2}
$$

Suppose that $1 \leq j \leq F_{n}-1$ and $T^{j s} q_{n}=c_{1} c_{2} \ldots c_{F_{n}}$ where $c_{k} \in\{\alpha \quad b\}$ and $T=$ $T_{F_{n}}$. Then
(i) $c_{k}=a$ if and only if $k \equiv(j+r) t\left(\bmod F_{n}\right)$ for some $1 \leq r \leq F_{n-2}$.
(ii) $S\left(T^{j s} q_{n}\right)-S\left(T^{(j-1) s} q_{n}\right) \equiv 1\left(\bmod F_{n}\right)$, and $S\left(T^{j s} q_{n}\right) \equiv S\left(q_{n}\right)+j\left(\bmod F_{n}\right)$.
(iv)

Proof:
(i) By Theorem 11, we have

$$
\begin{gathered}
c_{k}=a \Leftrightarrow k+j s \equiv r t\left(\bmod F_{n}\right) \text { for some } 1 \leq r \leq F_{n-2} \\
\leftrightarrow k \equiv(j+r) t\left(\bmod F_{n}\right) \text { for some } 1 \leq r \leq F_{n-2} \\
S\left(T^{j s} q_{n}\right)-S\left(T^{(j-1) s} q_{n}\right)
\end{gathered} \begin{gathered}
\equiv \sum_{r=1}^{F_{n-2}}(j+r) t-\sum_{r=1}^{F_{n-2}}(j+r-1) t \\
\equiv F_{n-2} t \equiv 1\left(\bmod F_{n}\right)
\end{gathered}
$$

(ii)

Statement (iii) follows from (ii); statement (iv) is a consequence of (iii) and Lemma 9.
Corollary 13: Let n, s, and t be the same as in Corollary 12.
(i) If $0 \leq j \leq F_{n-2}-1$, then $T^{j s} q_{n}$ starts with an α.
(ii) If $F_{n-2} \leq j \leq 2 F_{n-2}-1$, then $T^{j s} q_{n}$ starts with a $b a$.
(iii) If $2 F_{n-2} \leq j \leq F_{n}-1$, then $T^{j s} q_{n}$ starts with a $b b a$.
(iv) If $F_{n-2} \leq j \leq F_{n-1}-1$, then $T^{j s} q_{n}$ starts with a b and ends with a b.

Proof: Write $T^{j s} q_{n}=c_{1} c_{2} \ldots c_{F_{n}}$ where $c_{k} \in\{a, b\}$. We shall use Lemma 1, (i) of Corollary 12, and the fact that $i \equiv i F_{n-2} t\left(\bmod F_{n}\right)$ where $i=1$, 2, and 3 .
(i) If $0 \leq j \leq F_{n-2}-1$, then $c_{1}=\alpha$ because $j+1 \leq F_{n-2} \leq j+F_{n-2}$.
(ii) If $F_{n-2} \leq j \leq 2 F_{n-2}-1$, then the inequalities $j+1 \leq 2 F_{n-2} \leq j+F_{n-2}$
imply that $c_{2}=a$ and hence $c_{1}=b$, according to Lemma 1 .
(iii) If $2 F_{n-2} \leq j \leq F_{n}-1$, then the inequalities

$$
j+1 \leq F_{n} \leq 3 F_{n-2} \leq j+F_{n-2}
$$

imply that $c_{3}=\alpha$ and $c_{F_{n}}=\alpha$; hence $c_{1}=c_{2}=b$.

$$
\begin{aligned}
& \text { (iv) If } F_{n-2} \leq j \leq F_{n-1}-1 \text {, then } c_{1}=b \text {, by (ii), and since } \\
& F_{n}-1 \equiv-F_{n-2} t \equiv F_{n-1} t \text { and } j+1 \leq F_{n-1} \leq 2 F_{n-2} \leq j+F_{n-2},
\end{aligned}
$$

we have $c_{F_{n}-1}=a$, so that $c_{F_{n}}=b$.
Theorem 14: Let n be a positive integer. Then

$$
\begin{aligned}
& \left|\mathscr{S}_{n}\right|=F_{n} ;\left|\mathscr{S}_{n}(a, b)\right|=F_{n-2}=\left|\mathscr{S}_{n}(b, a)\right| ; \\
& \left|\mathscr{S}_{n}(b, b)\right|=F_{n-3} ;\left|\mathscr{S}_{n}(b, \cdot)\right|=\left|\mathscr{S}_{n}(\cdot, b)\right|=F_{n-1} .
\end{aligned}
$$

Proof: The results follow from Theorem 7 and Corollaries 12 and 13.

5. Two Algorithms

In this section, the initial words are again taken to be alphabets α and b. Two algorithms will be given. Algorithm A constructs the Fibonacci word for which the multiplications involved are preassigned by means of a finite binary sequence as in (3.1) and (3.2). Algorithm B tests whether a given word in the alphabet a and b is a•Fibonacci word or not.

For simplicity, we replace a by 1 and b by 0 in both algorithms so that Fibonacci words are represented by binary sequences.

Since

$$
w=\omega_{n}^{r_{1} r_{2} \ldots r_{n-2}=T^{k_{1}}\left(\omega_{n}^{0}\right), ~ ; ~}
$$

where

$$
k_{1}=\sum_{i=1}^{n-2} F_{i+1} r_{i},
$$

$$
q_{n}= \begin{cases}T^{F_{n}-1}\left(\omega_{n}^{0}\right) & \text { if } n \text { is odd } \\ T^{F_{n-1}-1}\left(\omega_{n}^{0}\right) & \text { if } n \text { is even }\end{cases}
$$

it follows that $w=T^{j s} q_{n}$ where

$$
\begin{aligned}
& s= \begin{cases}F_{n-2} \text { if } n \text { is odd } \\
F_{n-1} \text { if } n \text { is even, }\end{cases} \\
& j \equiv \begin{cases}k F_{n-1}\left(\bmod F_{n}\right) & \text { if } n \text { is odd } \\
k F_{n-1}-1 & \text { if } n \text { is even, }\end{cases}
\end{aligned}
$$

and $k=k_{1}+1$. Thus, the positions of the 1 's in w can be determined by Corollary 12.
Algorithm A: Input a positive integer n and a binary sequence r_{1}, r_{2}, \ldots, r_{n-2}. This algorithm constructs the Fibonacci word $w=w_{n}^{r_{1} r_{2} \ldots r_{n-2}}$.

1) Compute $t=\left\{\begin{array}{ll}F_{n-1} & \text { if } n \text { is odd } \\ F_{n-2} & \text { if } n \text { is even, }\end{array} \quad k=\sum_{i=1}^{n-2} F_{i+1} r_{i}+1\right.$,
and j satisfying

$$
j \equiv \begin{cases}k F_{n-1} & \left(\bmod F_{n}\right) \\ k F_{n-1}-1 & \text { if } n \text { is odd } \\ \text { if } n \text { is even }\end{cases}
$$

and $1 \leq j \leq F_{n}$.

```
    2) For r = 1, 2, ..., F F n-2, let cm}=1\mathrm{ if m 
\leq En; let cm
    3) w = c
    We now turn to the identification of Fibonacci words. First, observe that
n=[(ln}(\sqrt{}{5}(\mp@subsup{F}{n}{}+1/2)))/\operatorname{ln}(\alpha)],\mathrm{ where }\alpha=(1+\sqrt{}{5})/2
```

Algorithm B : Input a positive integer h and a binary sequence $w=c_{1}, c_{2}, \ldots$, c_{h}. This algorithm tests whether or not w is a Fibonacci word.

1) Let $n=[(\ln (\sqrt{5}(h+1 / 2))) / \ln (\alpha)]$.
2) If $h \neq F_{n}$, then $\omega \notin \mathscr{S}$.
3) If $h=F_{n}$, let $t= \begin{cases}F_{n-1} & \text { if } n \text { is odd } \\ F_{n-2} & \text { if } n \text { is even. }\end{cases}$
4) Compute the sum S of all indices i such that $c_{i}=1$ and count the number m of 1 's in ω.
5) If $m \neq F_{n-2}$, then $w \notin \mathscr{S}$.
6) If $m=F_{n-2}$, let j be such that $1 \leq j \leq F_{n}$ and $j \equiv S-F_{n-2}\left(F_{n-2}+1\right) t / 2\left(\bmod F_{n}\right)$.
7) For $r=1,2, \ldots, F_{n-2}$, let k be such that $1 \leq k \leq F_{n}$ and $k \equiv(j+r) t$ $\left(\bmod F_{n}\right)$. If $c_{k} \neq 1$ for some r, then $w \notin \mathscr{S}$; otherwise $w \in \mathscr{S}$.

Note that in step $6, j \equiv S(w)-S\left(q_{n}\right)\left(\bmod F_{n}\right)$ and so either

$$
w=T^{j s}\left(q_{n}\right) \in \mathscr{f}, \text { where } s= \begin{cases}F_{n-2} & \text { if } n \text { is odd } \quad \text { (the latter case } \\ F_{n-1} & \text { if } n \text { is even, } \\ \text { in step 7) }\end{cases}
$$

or $\quad \omega \notin \mathscr{S}$ (the former case in step 7).

Acknowledgment

The author gratefully acknowledges that this research was supported in part by the National Science Council Grant NSC800208M03302.

References

1. P. M. Higgins. "The Naming of Popes and a Fibonacci Sequence in Two Noncommuting Indeterminates." Fibonacci Quarterly 25.1 (1987):57-61.
2. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. New York: Houghton Mifflin Company, 1969.
3. D. E. Knuth. The Art of Computer Programming. Vo1. I. New York: AddisonWesley, 1973.
4. J. C. Turner. "Fibonacci Word Patterns and Binary Sequences." Fibonacci Quarterly 26.3(1988):233-46.
5. J. C. Turner. "The Alpha and the Omega of the Wythoff Pairs." Fibonacci Quarterly 27.1 (1989):76-86.
