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1. Introduction 

In this paper, the notion of Fibonacci word is introduced and the structure 
of these words is investigated. 

Let s$ be a nonempty set and let x and y be two words in the alphabet^. A 
Fibonacci sequence of words derived from x and y is a sequence of words W\9 W29 
W^y . . . with the property that 

wl = x, w2 = y, wn+i = wnwn-i or wn.lwn. 
The pair x and y are called the initial words of the Fibonacci sequence of 
words; the words wnwn-\ and wn-\Wn are called the immediate successors of wn 

and wn is their immediate predecessor. We remark that the Fibonacci sequence 
of words considered by Knuth [3, p. 85] is the one obtained as above by letting 

wn+i = wnwn„i for all n > 3 

and the one considered by Higgins [1] and Turner [4, 5] is obtained by letting 

wn+i = wn-iWn for all n > 3. 

Let SP be the set of all such sequences of words derived from x and y; let 
^n be the collec tion of words which happen to be the nth term of some members 
of 5^ For example, 

^i = {#}> SP2
 = ty^> -^3 = ^yx> xy}> ^ = iyxy* yyx> xyy}-

Denote the union of 5^ (n - 1, 2, ...) by y. Members of SPn (resp. £f) are 
called the nth Fibonacci words (resp. Fibonacci words). Note that each word 
has an obvious representation in terms of x and y . Throughout this paper, we 
consider only such a representation. 

Lemma 1: Let W be a Fibonacci word. Then the following statements are true. 

(i) If w starts (resp. ends) with an x9 then w cannot end (resp. start) with 
an x. 

(ii) If w starts (resp. ends) with a y9 then w cannot end (resp. start) with 
a yy. 

(iii) There cannot be three or more consecutive occurrences of y and there 
cannot be two or more consecutive occurrences of x in w. 

Proof: The result is proved by mathematical induction. 

Let £/*n(x, •) [resp. «5^(«, y) ] denote those nth Fibonacci words which start 
with an x (resp. end with a y) and let 

^n(x, y) = S?n(x, •) n yn(., y). 

Define ^(x9 • ) , S^{ •, y) , etc., in a similar way. 

Corollary 2: 

SPn = .££(*, z/) u yn(z/, y) u 5̂ (2/, a?) for all n; 

9> = SS(X, y) U y(y, y) U #>(y, x) . 

Using finite binary sequences, let us label the Fibonacci words as follows: 
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(1.1) wY = x w2 

and, in general, we have 

yx 

1 / * 
w3 = xy<\ n 

< 

<l 

»i° 
< 

= yxy 

= yyx 

= xyy 

= yxy 

(1.2) ^ • " ' - ^ J "+1 

(w^2-.-n-2 wrir2-"'»-i if rn - 1 

where n > 4, P^, P23 •••> ^ - l € t ° ' !}• W e sometimes write 7j^lP2" 'Pn~2 (x, y) to 
indicate the initial words. For simplicity we write w®n (resp. w\) if n > 3 and 
p 1 ~ p2 = " " ' = rn-2 = 0 (resp. 1). We sometimes write UY and it?2 for W-, and u2, 
respectively. Note that 

(i) the superscript PiP2-oaPn-2 indicates how the Fibonacci word Wn
l z'" n~2 

is obtained frpm x and y; 

(ii) the Fibonacci word z^.^ ' n" is always an immediate predecessor of the 

Fibonacci word w + o " " ' 

(iii) the same Fibonacci word may have several different labels; 

(iv) Knuth's Fibonacci sequence of words is {w^} while Higginsf and Turnerfs 

is wl9 w2, w\, ..., w^9 .... 

Define the reverse operation R by setting R(XiX2' - -xm^ = xm • - *%ix\ -> where 
Xi> . .., xm e {x, y}. A word w = Xix2.. «xm is said to be symmetric if R(w) = w. 
For example, the words yxy and xyyx are symmetric. 

Theorem 3: 
(i) If w e yn, then R(w) e ^ . Moreover, if n > 3 and TJ = W*lTl'' 'rn~2 where 

the pfs are 0 or 1, then R(w) = WS
n
lS2"°Sn~2 where s^ = 1 - v^ , j = 1, 2, 

..., n - 2. 

(ii) If V is an immediate predecessor of u, then i?(i>) is an immediate prede-

cessor of R(w). 

Proof: Suppose that the results are true for all positive integers less than n. 
Let w = w^lT2'-'Tn-1 where P1 S P2, •••> ^-2 e ^ ° » ^ • I f pn-2 = °> t h e n W = vu 
where 

V = ̂ ^l^'-^n-a e y is an immediate predecessor of w 
. n-\ n-1 

and 

u = Wn^z"" M_Lf e ^n-2 i s a n immediate predecessor of y. 

Clearly i?(w) = R(u)R(v). By the induction hypothesis, 

-2 

is an immediate predecessor of 

where s • = 1 - p •, j = 1, 2, ..., n - 3. Hence, R (v) is an immediate prede-
cessor of R(w) and 

R(u) = ̂ ia
2
2-" f l^ e yn_2 
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R{w) = R{u)R{v) = w°nil*-••*«-•> ww-°«-3 

where sn_2 = 1. The case rn_2 = 1 is proved similarly. 

2. Factorization of w£ into a Product of Symmetric Factors 

Let i>5 = y, u5 = xyyx, yg = yxy, wg = yxyxy• For n S 7, put 

where cn equals xy if n is even and equals yx if n is odd. We sometimes write 
un(x9 y) and Vn(x, y) for un and vn, respectively. Plainly, all un

}' s and y„'s 
are symmetric. 

Theorem 4: For n > 5, we have 
(i) wO = Vnun; (ii) ^„cn_1 = ZJO^; 

(iii) wn = c?n_1^.2; (iv) tfl = Mni>n-
Proof: Clearly the results are true for n - 5 and 6. Suppose n > 6 and that 
the results hold for all integers less than n. Then 

y„Cn-! = yn-2Mn-2yrc-2Cn-l = Wn-2Un-3 = "5-15 

"n = R(cn)(vn_lCn) = en_xw°_2; 

This proves (i)-(iii). Assertion (iv) is a consequence of Theorem 3 and the 
fact that un and Vn are symmetric. 

Let w be a word in the alphabet^. Designate the length of w by / (w) . In 
the following lemma we compute the length of the words w„9 un, and Vn. 
Lemma 5: For n > 3, we have 

(i) /(*>0) = /(^.i) + /(w° _2); n_2 

(ii) /(^) = Fn_2l(x) + Fn_1l(y) = £ /(̂ ?(x, z/)) + /Q/). 
For n > 5, we have 

(iii) /(wn(a;, 2/)) = l(w°n_2) + /(ar) + Uy) = (̂ n_4 + l)/(a?) + (Fn_3 + l)/(z/); 

(iv) l(vn(x, y)) = /(^_x) - /Or) - /(y) = (Fn„3 - l)l(x) + (Fn_2 - l)l(y). 
Proof: Both (i) and (ii) are proved by induction on n and both (iii) and (iv) 
follow from (i) , (ii), and Theorem 4. 

3. Cyclic Shift on Fibonacci Words 

In this section, our main result states that every nth Fibonacci word is a 
cyclic shift of every other nth Fibonacci word. A cyclic shift operation Tn 
acting on words in the alphabet si that have lengths n is given by 

Tn(clc2...cn) = c2c3...cncl9 

where c^> c2, ..., cn e si. 

Theorem 6: Every Fibonacci word in ̂  is a cyclic shift of w„. More precise-
ly, for n > 3, we have 
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7(w° ) 

k = nL2/(w9+1)^ ^ { F . ^ K x ) +Fj6(y))rj. 
i = l j = i 

Proof: The result is trivial for n = 3. Suppose that n > 3 and the result is 
true for all integers less than n and greater than or equal to 3. 

r x = 0: 

^n (a, y) = w„li 2 ( # , 2/#) 

= T^iw^.^y, yx)) = T*(w°(a;, y)) 
where 

n - 2 n - 2 n _ 2 
&1 = Z /(w?(j/, 2/tf))r. = Z / ( w 7

0
+ 1 O r , 2/))*V = £ / W + i ( * > 2/))*V = &• 

J = 2 J J j = 2
 J J j=l J + i J 

Px = 1: 

(3.D ^ - ' - M * , y) = w„r1
3-r-2(j/, ̂ ) 

where 

&1 = "]£ Krf.(y, xy))r. = ̂  /(w)° y-0(a, j/))*,- = £ A^+iGn, j/))^. 
J = 2 j = 2 J = 2 

By Theorem 4 and (iv) of Lemma 5, we have 

w\{x> y) = un(x, y)vn(x, y) = Tl(Vn)(w°n(x, y)) 

•x - ±-z - • • • = r n _ 2 

w\{x, y) = TkHwl°---°(x, y)), 
where 

n- 2 
k2 = Z l(Wj+i(x> 2/))> 

J'=2 
so that 

wio-••<>(*, ̂ ) = Tk3(^(x5 y))s 

where 

(3.2) fe3 = -k2 + l(w^_l(x9 y)) - l(x) - Uy) 

= ^IlkwHx, y)) = -l(w°(x, y)) + l{y) 

= -/(w°(a:, z/)) + / ( ^ U , 2/)), 

in view of (ii) of Lemma 5. Combining (3.1) and (3.2), we have the desired 
result. 

In the case that x and y are distinct alphabets, it turns out that 5^ con-
sists of all the cyclic shifts of w^. 

Theorem 7: Let x and y be distinct alphabets a and bs respectively. Then a 
word W in the alphabet {a5 M is an nth Fibonacci word if and only if W is a 
cyclic shift of wj. 

Proof: The "only if" part is contained in Theorem 6. The "if" part is a conse-
quence of the following Lemma (about Fibonacci numbers) whose proof is easy and 
is therefore omitted. 
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Lemma 8: Let n > 3. For all 0 < v < Fn - 1, the equation 
n- 2 

j = i 

has at least one solution p ^ P2, ..., Pn_2 in {0, 1}. 

We remark that this lemma also leads to the known representation theorem 
which states that every positive integer can be represented as a sum of a 
finite number of Fibonacci numbers in which each Fibonacci number occurs at 
most once. 

4. The Case x and y Are Alphabets 

As in the last theorem of Section 3, let x and y be distinct alphabets a 
and b, respectively. Let qn = u^0101'*" (n - 1, 2, . . . ) . In this section, we 
locate the aTs in qn and show that all the shifts of qn (resp. w%) are distinct 
and hence that 5^ consists of precisely Fn Fibonacci words. The main result is 
based on the following two lemmas. 

Lemma 9: Let n > 3. Then jFn_i (resp. jFn.2), 0 < j < Fn - 1, is a complete 
residue system modulo Fn. 

Lemma 10: (a) Let n be an odd integer greater than 4. 

(i) For 1 < j < Fn_L±, let k be the unique number such that 

(4.1) 1 < k < Fn_2 and jFn-3 E k (mod Fn.2). 

Then there exists a unique r- such that 

(4.2) 1 < r^ < Fn_2 and k = rjFn.l (mod Fn) . 

( i i ) For 1 < i < F w _ 3 , l e t fc be t h e u n i q u e number such t h a t 

( 4 . 3 ) Fn.2 + 1 < k < Fn and iFn.3 = fc - Fn.2 (mod i ^ _ i ) . 

Then t h e r e e x i s t s a u n i q u e t± such t h a t 

( 4 . 4 ) 1 < t i < Fn.2 and k = tiFn_1 (mod F n ) . 

F u r t h e r m o r e , 

( 4 . 5 ) {r- : 1 < j < Fn.h} u {tt : 1 < i < F n _ 3 } = { 1 , 2 , . . . , Fn„2}. 

(b) Let n be an even integer greater than 4. 

(iii) For 1 < j < Fn-.3, let k be the unique number such that 

1 < k < Fn_l and jFn.2 = k (mod Fn-i) . 

Then there exists a unique Pj such that 

I < v. < Fn.2 and fe E 1 ^ - 2 (mod F„) . 

(iv) For 1 < i, < Fn-.i+, let k be the unique number such that 

Fn_l + 1 < k < Fn and iFn_h = k - Fn.1 (mod Fn_2) . 

Then there exists a unique £^ such that 

1 < t t < Fn_2 and k = t-iFn-2 (mod Fn) . 

Furthermore, 

{p^ : 1 < j < ̂ . 3 } u { ^ : 1 < i < Fn_h] = {1, 2, ..., Fn_2}. 

Proof: We prove (a) only. 

(i) Let j and k satisfy condition (4.1). We show that (4.2) holds. Write 

k = jFn_3 " sF-n-2 where s is an inteeer. 
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Since 
-Fn_2 < -k < jFn_3 - k = sFn_2 < jF„_3 - 1 < F„_iA-3 " 1 = Fn-5Fn-2> 

we see that 0 < s < Fn„5, Thus5 

k = jFn_3 - sFn_2 = (2j + s)Fn.l - (j + s)Fn = pFn_x (mod Fn) , 

where 1 < r = 2j + s < 2JP„_i+ + Fn_5 = Fn_2. This proves (4.2). 

(ii) Let i and k satisfy condition (4.3). We show that (4.4) holds. Write 

(4.6) k = iFn.3 + Fn_2 - SjPn_! = (2i - s - D ^ - i " (i - D ^ 

E tFn_! (mod F n ) , 

where s is an integer and t - 2i - s - 1. From (4.6), we have 

Fn__2 + 1 < k < tFn_l = fc + ( i - 1)F„ < i^n + ( i - 1)F„ 

= £FW < Fn-?~Fn = Fn-iFn_2 - 1 < F n „ 1 F n _ 2 , 

so that : 1 < t < Fn_2. Th i s p r o v e s ( 4 . 4 ) . 
Now we p rove ( 4 . 5 ) . I t i s c l e a r t h a t t h e s e t s 

A = {v- : 1 < j < Fn_ i +} and 5 = {tt : 1 < i < Fn_3} 

a r e c o n t a i n e d i n { 1 , 2 , . . . , F n _ 2 } . To p rove e q u a l i t y i n ( 4 . 5 ) , we show t h a t A 
has Fn^ht e l e m e n t s , B has Fn„3 e l e m e n t s , and t h a t A and B are d i s j o i n t . 

(a) I f rj = Tj , where j - ^ and j 2 l i e be tween 1 and Fn-i+9 t h e n 

kdl E rJiFn.l = rJ2Fn.l E k J 2 (mod Fn) . 

Since b o t h kjx and kj2 l i e be tween 1 and F n _ 2 ) t h i s i m p l i e s t h a t kjY = kj2 and 
so 

JlFn-S E JlFn-3 ( m o d ^n-2> • 
Since Fn-2 and i^-3 are relatively prime, we have j \ =• J2. Hence, all the rfs 
are distinct. 

(b) A similar proof shows that all the V s are distinct. 

(c) If Vj € Ay t i e B9 and r^ = t^ , then k = kr (mod Fn) , where VjFn-\ = k 
and tj,Fn^i = kr (mod Fn) , and both fc and fcf lie between 1 and Fn . Therefore, 
we have k = kr. But this is impossible because fc ̂  ^n-2 + 1 > ^f- Thus, 4 and 
B are disjoint. 

This proves (4.5), and the proof is complete. 

In part (a) of Lemma 10, two injective mappings 

r: j e {1, 2, ..., Fn_h] ^ 2- e {1, 2, .. ., Fn_2} 

t : i e {1, 2, ..., Fn.3] ^ t i e {1, 2, ..., Fn_2} 

are defined by (4.1) and (4.2) and by (4.3) and (4.4), respectively. The dis-
joint union of their ranges gives the whole of {1, 2, ..., Fn_ 2}. Part (b) of 
Lemma 10 has an analogous meaning. 

Now write qn = ala2> . .aF where a^ e {a, M . 

Theorem 11: Let n be a positive integer greater than 3. Let t = Fn„i if n is 
odd and t = ^ - 2 if n is even. Then ak = a if and only if k = jt (mod Fn) for 
some 1 < j < Fn..2. 

Proof: The results are clearly true for n < 7. Now suppose that n > 1 and n is 
odd. Then qn = qn_2qn_l where 

qn_2 = ala2...aFn_2 and 9 n - 1 = a^_2 + 1 ...a^. 
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By t h e i n d u c t i o n h y p o t h e s i s , t h e f o l l o w i n g s t a t e m e n t s a r e t r u e : 

( i ) For 1 < k < Fn-2> w e have 

ak = a i f and o n l y i f k E j T n _ 3 (mod Fn.-2) f ° r s o m e 1 - J - Fn-i+. 

( i i ) For F n _ 2 + 1 < k < Fn , we have 

ak = a if and only If k - Fn~2 - J^n-3 (mod i^-i) for some 1 < j < Fn-$. 

The result now follows from Lemmas 9 and 10. For even n the proof is similar. 

Let w = c-yC1.'*cn where Cj equals a or b. We designate by S(w) the sum 
(mod ri) of the indices j for which Cj - a . 

Corollary 12: Let n be a positive integer greater than 2. For odd n9 let 

s = Fn _ 2 and £ = Fn _ i; 

for even n, let 

s = Fn_i and t = Fn-2-

Suppose that 1 < j < Fn - 1 and TJsqn = ^ ^ . . . ( ^ where c^ <E {a Z? } and T = 
TF . Then 

(i) ck = a if and only if fc E (j + r)t (mod Fw) for some 1 < r < Fn_2-

(ii) S(T*8qn) - S{T^~l)sqn) E 1 (mod F„), and S(T*8qn) = S(qn) + j (mod F„). 

(iii) ^Js^7n (0 < j < Fn - 1) are Fn distinct shifts of qn. 

(iv) TJ^n (0 < j < Fn - 1) are Fn distinct shifts of qn. 
Proof: 

(i) By Theorem 11, we have 

ck = a **• k + js E vt (mod Fn) for some 1 < r < Fn_2 
** k E (j + p)t (mod F„) for some 1 < r < Fn_2-

Fn-2 Fn-2 
(ii) S(TJsqn) - S{T^~l)sqn) = £ (j + r)t - £ U + * ~ D* 

p = l r = l 

E Fn_2t E 1 (mod Fn). 

Statement (iii) follows from (ii); statement (iv) is a consequence of (iii) and 
Lemma 9. 

Corollary 13: Let n, s, and t be the same as in Corollary 12. 

(i) If 0 < j < Fn_2 ~ 1> then TJs^n starts with an a. 

(ii) If Fn_2 ^ J ^ 2Fn_2 - 1, then TJ'sqn starts with a ba. 

(iii) If 2F„_2 < j < Fn - 1, then T*7'3^ starts with a bba. 

(iv) If FM_2 < J < F„_i - 1, then TJsq starts with a b and ends with a 2?. 

Proof: Write T ' 7 ^ = ^i^2-*-^„ where ck e {a, b]. We shall use Lemma 1, (i) 
of Corollary 12, and the fact that i E iFn_2~k (mod Fn) where i = 1, 2, and 3. 

(i) If 0 < Q < Fn_2 ~ If then cx = a because j + 1 < Fn_2 < J + Fn_2-

(ii) If F„_2 ^ j ^ 2Fn_z ~ 1J then the inequalities 

J + 1 < 2Fn_z < 3 + K-z 

imply that o2 = a and hence e\ = b, according to Lemma 1. 

(iii) If 2Fn_2 ^ J < Fn - I, then the inequalities 
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j + 1 < Fn < 3Fn_2 < j + Fn_2 

imply that c3 = a and cF = a; hence c\ = c2 = b. 

(iv) If Fn_2 < J < Fn_l - 1, then cx = b, by (ii) , and since 

Fn - 1 E -Fn.zt E Fn-1t and J + 1 < Fn _ x < 2Fn_2 < j + Fn_2, 

we have £o _•. = a, so that cP = b. 

Theorem 14: Let ft be a positive integer. Then 

L%| = ̂ ; |S^(a, fc)| = Fn_2 = |yn(6, a) |; 
|yn(i, 6)| = ̂ n-3; l^n(^ - ) | = \^n(°, b)\ = Fn^. 

Proof: The results follow from Theorem 7 and Corollaries 12 and 13. 

5. Two Algorithms 

In this section, the initial words are again taken to be alphabets a and b. 
Two algorithms will be given. Algorithm A constructs the Fibonacci word for 
which the multiplications involved are preassigned by means of a finite binary 
sequence as in (3.1) and (3.2). Algorithm B tests whether a given word in the 
alphabet: a and b is a» Fibonacci word or not. 

For simplicity, we replace a by 1 and b by 0 in both algorithms so that 
Fibonacci words are represented by binary sequences. 

Since 

where 
n- 2 

and ^ ~1 

(TFn ~\w^) if n is odd 

{T*n~l L (w®) if n is even, 

it follows that w = TJ'sqn where 

{Fn_2 if ft is odd 

Fn„i if n is even, 

i kFn-l if ft is odd 

(mod Fn) 
kFn_i - 1 if ft is even, 

and fc = fei + 1. Thus, the positions of the 1f s in w can be determined by Cor-
ollary 12. 
Algorithm A: Input a positive integer ft and a binary sequence 2^, r2, 
p 0. This algorithm constructs the Fibonacci word w 

n - Z °  

!

Fn_x if ft is odd w-2 

Fn_2 if ft is even, 'z-=1 

and j satisfying 
if ft is odd 

(mod Fn) 
if ft is even, 
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2) For r = 1, 2, ..., Fn„z, let cm = 1 if m = (J + r) t (mod Fw) and 1 < m 
< Fn; let <?m = 0 otherwise. 

3) w = cx, c2, . . . , ̂  . 

We now_ turn to the identification of Fibonacci words. First, observe that 
n = [(ln(/5(Fn + l/2)))/ln(a)], where a = (1 + /5)/2. 

Algorithm B: Input a positive integer In and a binary sequence w = C\> c2, • ••> 
c?̂  . This algorithm tests whether or not w is a Fibonacci word. 

1) Let n = [(ln(/5(fe + 1/2)))/ln(a)]. 
2) If h * Fn, then w £ Sf. 
3) If h = F„, let 

f^n-l if n is ° dd 
(Fn_2 if n is even. 

4) Compute the sum S of all indices i such that c^ - 1 and count the num-
ber /?? of 1? s in w, 

5) If m * Fn-2> t h e n ^ $ Sf. 
6) If /7? = Fn„2, let j be such that 1 < j < Fn and 

J = S - Fn_2(Fn_2 + l)t/2 (mod Fn). 
7) For p = 1, 2, . .., Fn_2, let k be such that 1 < k < Fn and k = (j + r)£ 

(mod ^„) . If ck * 1 for some p, then ZJ ̂  9J; otherwise w e î . 

Note that in step 6, j E ^(U) - S(q ) (mod Fw) and so either 

!

F„_o if n is odd , 1 z (the latter case 

TP .<: . in step 7) 
i^n _ ]_ if n is even, 

or u ^ ^ (the former case in step 7). 
Acknowledgment 

The author gratefully acknowledges that this research was supported in part 
by the National Science Council Grant NSC800208M033Q2. 

References 

1. P. M. Higgins. "The Naming of Popes and a Fibonacci Sequence in Two Non-
commuting Indeterminates .ff Fibonacci, Quarterly 25.1 (1987) : 57-61. 

2. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. New York: Houghton Mifflin 
Company, 1969. 

3. D. E. Knuth. The Art of Computer Programming. Vol. -I. New York: Addison-
Wesley, 1973. 

4. J. C. Turner. "Fibonacci Word Patterns and Binary Sequences." Fibonacci 
Quarterly 26. 3 (1988):233-46. 

5. J. C. Turner. "The Alpha and the Omega of the Wythoff Pairs." Fibonacci 
Quarterly 27.1 (1989):76-86. 

76 [Feb. 


