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1. Introduction 

Let X be a finite set with |x| = n. A metric on J is a real valued func-
tion d defined on all pairs of points of X and satisfying the triangle inequal-
ity: 

(1) d{i, j) + dU> k) > d(i, k) 
for all triples (i, j , k) of points of I. We allow d(i9 j) = 0 for some pairs 
(i, j ) ; so we use the term "metric" for denoting what is usually called semi-
metric. We set d(i, j) = d(j, i) for all pairs (i, j) and d(i, i) = 0 for all 
points i of L The pair (X, d) is called a metric space. The j^-metric on Rm 

is defined by: 

d(x, y) = 1 ar - y\Y = £ \xt - y^ |. 
1 <i <m 

A metric space (X, d) is isometrically £^-embeddable if there exist points XQ9 
XI, ,.., a;„ in some space Rm such that 

d(i> j) = \xi - xA-^ for all 0 < i < j < n. 
The family of all metrics d on X which are isometrically £^-embeddable forms a 
cone: C(X) - Cn, called cut cone (or Bamming cone). The cut cone Cn is gen-
erated by the cut metrics ds for subsets S of X, where 

ds(i, j) = 1 if \S n {i, j}| = 1 and ds(i, j) = 0 otherwise. 

Therefore, a metric d on X is isometrically £i-embeddable if and only if d is 
the conic hull of cut metrics: 

d = 2 ^5^5' with A^ > 0. 

The cut metrics J5 correspond, in graph terminology, to the cuts 6(S); we shall 
use the latter terminology here. The study of the &i-embeddable finite metric 
spaces, i.e., of the cut cone Cn, was started in 1960 in [5] and continued, 
e.g., in [1], [3], [6], [8], [9], and [10]. If d is rational valued, then d is 
isometrically j^-embeddable if and only if kd is isometrically embeddable into 
the vertex set of the hypercube of Rm for some integers k, m ([2]). 

Given a vector v = (v^j )i <i < j <n.> the inequality V. x < 0 is called valid 
over the cut cone Cn if it is satisfied by all points of Cn or, in other words, 
by all metrics on n points which are isometrically li~embeddable. The roots of 
inequality v.x < 0 are the cuts 6(5) satisfying equality: V.6(S) = 0. The rank 
of inequality V.x < 0 is the rank of its set of roots. Geometrically, valid 
inequalities correspond to faces of the cone Cn while valid inequalities of 
highest possible rank: 

(") " 1 = n{n - l)/2 - 1 

define facets of Cn . 
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Many e x a m p l e s o f v a l i d i n e q u a l i t i e s o v e r t h e c u t c o n e Cn a r e k n o w n ; f o r 
e x a m p l e , 

(a ) t h e h y p e r m e t r i c i n e q u a l i t i e s ( [ 5 ] , [ 1 1 ] , [ 8 ] ) of t h e form 

Z \bjdd, j) £ 0 , 
1 <i <j<n 

where b\> . . . , bn a r e i n t e g e r s s a t i s f y i n g 
Z h = 1; 

1 <i <n 
including triangle inequality (1) as a special case for b = (1, 1,-1, 0, . .., 0). 

(b) the bicycle odd wheel inequality [4], defined on 2k + 3 points {0, 0f, 
1, 2, ..., Ik + 1} for k > 1 by 

(2) d(0, 0') - Z W(0, i) + d(0f, i)) + Z ^(i, j) < 0, 
1 <i <2k + 1 (i,J)6C 

where (7 denotes the cycle (1, 2, ...,2fc+l). 

(c) the parachute inequality [8], denoted as Par2&+i> defined on the 2k + I 
points {0, 1, 2, ..., fe, lf, 2f, ..., k'} by: 

Z d(i, J) - Z W(0, i) + d(0, £') 
(i, j) e p I <i <k-l 

(3) Par 2k+le( 

+ d(fc, if) + d(k\ i)) - d(fe, kr) < 0, 
where P is the path (fc, k - 1, ..., 2, 1, 1 f, 2f, . .., (fc - 1) ', fc')-

(d) the Fibonacci inequality [10], denoted as Fib2/C5 defined on the 2k 
points {0, 0',' 1, 1', 25 2', ..., (fc - 1), (fe - 1) '} by 

(4) Yih^.d = £ <W» J) " Z W(°» ^ + ^° > *')) 
(i,j)eQ I <i <k-l 

Z W(0', i) + d(0'., £')) £ 0, 
1 <i <£: -2 

where £ is the path (k - 1, fc - 2S . .., 2, 1, 1', 2', . .., (fc - 2) ', (fc - 1) ') -
We call the above inequality (4) the Fibonacci inequality, since its number of 
roots is related to the Fibonacci number fk (fi = f^_ = 1, fk + 2 = fk + 1 + fk^ ' 

See Figures 1-3 for the graphic representation of inequalities (2) and (3) 
on seven points and inequality (4) on six points (a plain line indicates coef-
ficient +1 and a dotted line indicates coefficient -1). 
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Figure 1 
The Bicycle Odd Wĥ .el Inequality 

on 7 Points 

Figure 2 
The Parachute Inequality 

2r 1' /l 2 

\ / 

Figure 3 
The Fibonacci Inequality 

In this note., we consider the Fibonacci and parachute inequalities, their 
number of roots in terms of Fibonacci numbers, their rank, their symmetries, 
and the connections with the bicycle odd wheel inequality (2). 
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2. Parachute and Fibonacci Inequalities: Equality Case 

Given a path A = (1, 2, . . . , ri) 9 a subset 5 of [1, n ] is called alternated 
along path A if 

\S n {i, i + 1}| < 1 for a l l i 
and pseudo-alternated along path A if 

|5 n {£, i + 1}| = 1 for all i 
and 

\S n {j» J + 1}| = 0 or 2 for some j e [1, n - 1]. 

One observes easily that, for n even, the number of pseudo-alternated sub-
sets 5 along path A - (1, . .., ri) for which nodes 1, n belong to 5 is equal to 
n - 1; an easy induction on n shows that the number of alternated subsets of 
[1, n] along path (1, 2, . .., n) is equal to the Fibonacci number fn + 2 (where 
[1, n] denotes the set of integers 1, 2, 3, -->, ri) . 

Call a cut 6(S) symmetric if, for £= 1, 2, ...,&:, i belongs to 5 if and only 
if £' belongs to 5, i.e., the involution 

a = 11 W ) 
I <i <k 

belonging to the symmetric group Sym(2fe + 1 ) leaves 5 invariant. 
We describe below the roots of the parachute inequality. 

Proposition 1: The roots of the parachute inequality Par2k + l a r e t n e cuts 6(5) 
for which 5 is a subset of [1, k] u [lr, kr] of one of the following four types: 

Type 1: nodes k9 kr belong to 5 and 5 is pseudo-alternated along path P. 
Type 2: nodes k, kr do not belong to S and 5 is alternated along path Q. 
Type 3: for k odd, node k belongs to 5, node kT does not belong to S and 

(a) or (b) holds: 

(a) S = {2', 4', ..., (fe - 1) ', k} U T, where T is a subset of {1, 
2, ..., fe - 2} alternated along path {1, 2, ..., k - 2}; 

(b) S = {&, 1 ', (fe - l)'}ufuF, where T is a subset of {2, 3, ..., 
fe - 2} alternated along path (2, 3, ..., k - 2) and 7 is a sub-
set of {2', 3',..., (fc - 2) '} such that 7u {1 ', (fe - 1) ' } is 
pseudo-alternated along path (1', 2f, ..., (k - 1) f ) • 

Type 3;: similar to type 3, exchanging nodes i, if for all i = 1, 2, ..., k. 

There are 2k - 1 roots of type 1, all of them linearly independent and the 
only symmetric root among them is 6({1, 3, ..., k, 1', 3', ..., kr}) for k odd 
and 6({2, 4, ..., fe, 2', 4', . .., fc'}) for fe even. There are fZk roots of type 
2, their rank is (2k{1) ~ 2k + 3 and there are fy symmetric roots among them. 
The roots of type 3, 3' exist only for k odd; there are altogether 2(fk + 
(k - l)fk-i) such roots and there are no symmetric roots among them. 

Proposition 2: (i) The number of roots [including zero, i.e., cut 6(<J>)'] of the 
parachute inequality Par2fc+i is equal to /2fc + ^fk-l + %fk-2 + 2k - I for k 
odd and f^k + 2k - 1 for fe even, while the number of (nonzero) symmetrJ-C roots 
is always the Fibonacci number fk. (ii) The parachute inequality P:ar2Hi i s 

facet inducing for k odd; for k even, it has rank (2/c2_1) + 2' but it is not 
valid. 

Proof of Propositions 1 and 2: Given a subset S of [1, fe] u [1', k']> we set 

s = |5n[l, k - 1]| and s' = |5n[l', (fe - 1) '] | . 

In order to characterize which cuts 6(5) are roots of the parachute inequality 
VsLTzk+i, w e distinguish four cases: 

= 1, . .., n - 1, 

=1, ...,j-l, j + 1 , ...,n-l 
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Case 1: k, kra S 

Then 6(5) is a root of Par2fe+1 if and only if |6(5)np| = 2k - 2, i.e., all 
edges of P but one are edges of S(S), i.e., 5 is pseudo-alternated along path 
P. So there are 2k - 1 such roots, among them only one symmetric root: 

&({k, ..., 3, 1, 1', 3', ..., kf}) for k odd 
and 

6({fc, ..., 4, 25 2f, 4', ..., k'}) for k even. 

Case 2: k, kf<£S 
Then 6(5) is a root of Par2?<+1 if and only if |6(5)np| = 2(s + s') = 2\s\, 

i.e., 5 is alternated along the path (k - 1, ..., 1, 1', ..., (k - 1)') on 2k - 2 
nodes, so there are f2k

 s u c n roots. Among them, the number of symmetric roots 
(including zero) is equal to the number of alternated subsets along path (2, 3, 
..., k - 1), i.e., to fk. 

Case 3: kaS, kr£S 
Then 6(5) i s a roo t of P a r 2 k + l i f and only i f | 6 ( 5 ) n p | = k + 2s . Since 

| 6 ( 5 ) n p | = |6(5) n P a t h ( k , . . . , 1, 1 ') | + | 6(5) n Pa th ( l ' , . . . , k')\, 
with the first term being less than or equal to 2s + 2, we have to distinguish 
two cases. 

Case 3a: | 6(5) n Path(lf, . . . , k f ) | = k - l 

If k is even, then, necessarily, 1 ' G 5, contradicting the fact that 

|6(5) nPath(l, 1', ..., k')| = 2s + 1. 

If k is odd, then 

5n{l', 2 \ ..., k'} = {2', 4', ..., (k - 1)'} 
and 

16 (£) nPath(l', 1, 2, ..., k)\ = 2s + 1, 

i.e., 5 is alternated along path (1, 2, ..., k - 2) ; so there are Ĵ, such roots. 

Case 3b: |6(5)n Path(l', ..., k')\ = k - 2 

If k is even, then, necessarily, 1 f <£ 5, contradicting the fact that 

16(5) nPath(lf, 1, 2, ..., k) | = 2s + 2. 

If k is odd, then, necessarily, lf, (k - l) fe5 and, since 

| 6 (5) nPath(l f, 1, . .., k) | = 2s + 2, 

5 is alternated along path (2, 3, . .., k - 2) , while 5 is pseudo-alternated 
along path (1', ..., k'); so there are (k - l)/k-l such roots. 

Case 4: Identical to Case 3, exchanging nodes i, i 1 for i = 1, ..., k. 

Hence, the total number of roots is: 

2k - 1 + f2k + 2fk + 2(k - 1 ) ^ _ ! 

= 2k - 1 + f2k + 2 k ^ _ ! + 2 j V 2 for k odd 
and 

2k - 1 + f2k for k even, 
while the number of nonzero symmetric roots is fk, stating Proposition 2(i). 

We now prove Proposition 2(ii). It was proven in [8] that Par2?i+i is facet 
inducing for k odd and that it is not valid for k even. We now consider Par2^+1 

for k even; the set of its roots is Pi U P2 , where P^ denotes the set of roots 
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of type i (Proposition 1), for i = 1, 2. To facilitate the computation of the 
rank of the set of roots, we use the following notion of intersection vector: 
for a subset S of [1, k] u[l', kf], define the vector u(S) of {0, l}k(2k+l) b y 

^(^ij = 1 if i, J € 5 and Tf(S)tj = 0 otherwise 

for all £, J (not necessarily distinct) in [1, /c]u[lf, fc']. Given a family of 
subsets (5a: aGi) of [1, fc]u[l', fcf]> the family of cut vectors (6(5a): ae^) 
is linearly independent if and only if the family of intersection vectors 
(fr('Sa): a^A) is linearly independent (see [8]). 

First, we check that all roots in i?x = {S(Sa)i a e A} are linearly indepen-
dent. For this, we take a linear combination of their intersection vectors: 

Z ^a^(Sa) = 0. 
a<=A 

To verify that Xa - 0 for all a, observe that, for each root 6(Sa) of i?i, one 
can find a pair (i, j) such that {i, j} Q Sa 9 while {i, j} ^ S^ for the other 
roots S(Sb) of i?x [for instance, take the pair (k - 1, k) for the root 6({fe, 
fc - 1, fc - 3, ..., 2, 1', 3', ..., fc'})]. 

Next, we check that the rank of the family Rz is 

( 2 \ ~ l ) - 2 k + 3. 

For this, observe first that the subfamily R^_ of R^ consisting of all possible 
singletons and pairs of [1, k - 1]U [1', (k - 1) '] has full rank equal to 

Ik - 2 + [2k ~ 2) - (2k - 3) = p 2 ~ *) - (2fc - 3) 

(easy if one considers the intersection vectors) . Then, note that, for every 
cut 6(S) of i?2* nodes k, kF do not belong to S and S is alternated along Q, 
implying that 

Xkk = Xk'kr = Xkk' = Xki ~ Xk' i = Xi, i+l = °  

for i t [I, k - 1] U [1 ', (k - 1) ']> where # = TT(5) for 5(5) e i?2. Therefore, we 
deduce that the rank of i?2 is less than or equal to 

(2*2+1) " (6k -A) = ( 2 V ) - ^ " 3 > -

Finally, we verify that the family i?j U R' is linearly independent, thus 
stating that the rank of face Par2fe+1 for k even is 

2k-i + {2k~l) - <2*-3) = ( 2 W 2 -
Again, we take a linear combination of the intersection vectors 

EAa^(5J + Zvsv(T0) = 0, 
where the first sum is over the intersection vectors corresponding to cuts in 
i?l and the second one corresponds to cuts in Rr

z. It is enough to show that 
Xa = 0 for all a. For this, for the roots &(Sa) of i?j having {i, i + 1}C Sa 
for some i9 by looking at the coordinate (iy i + 1) in the above linear combi-
nation we obviously obtain that Xa = 0. For remaining roots 6(Sa) of i?l5 look-
ing at coordinate (k, i) with ieSa also yields Aa = 0. H 

Given a vector z; = (^j )x <£ <t7-<n and two points, say 1 and n, the vector 
obtained from V by collapsing points 1 and n into the single point 1 is the 
vector v' = (^•) 1^ < J -^_ 1 defined by 

v\i = y H + vin f o r 2 < i < n - 1 and tff. = v.. f o r 2 < i < j < n - l . 
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The Fibonacci inequality Fib2k c a n D e obtained precisely by collapsing 
points k, kf into a single point 0f in the parachute inequality Par2£+1. Using 
this observation, the roots of Fib2^ correspond to the roots of Par2fc+i of 
types 1 and 2. So, Fib2£ and Par2fc + 1, for k even, have the same rank, but 
FiD2fe i s valid while Par2fc+1 is not. Observe also that Fib2fe coincides (up to 
renumerotation of the points) with the inequality obtained by collapsing in the 
bicycle odd wheel inequality (2) point 0 and one point of cycle C. From the 
above two facts follows the next result. 

Proposition 3: The Fibonacci inequality FIb2^ is valid over the cut cone for 
any k > 3 and its rank is 

Its roots are the cuts 6(S - {ks kf} + {0f}) for S of type 1 and 6(5) for S of 
type 2. So, Fib2^ has 2k - 1 + f2j< roots and fk nonzero symmetric roots. 

3. Symmetries of the Parachute Inequality 

The following two operations on facets of the cut cone Cn are given in [8]: 
(a) permutation—given a vector V = (̂ ij)i <£ < f <n an<^ a permutation a of Sym(n) , 
set v°j = ^a(i)o(j) f° r 1 - ^ < J - nl then, inequality V°»x < 0 is said to be 
permutation equivalent to v.x < 0. (b) switching— given vector v and a root 
6(S) of inequality V.x < Q, set v?- = -V^ if \S n {<£, j}\ = 1 and vfj = V--
otherwise; then, inequality Vs.x < 0 is said to be switching equivalent to 
V.x < 0. If inequality V.x < 0 is valid (resp. facet Inducing) over the cut 
cone Cn9 then both inequalities V° .x < 0, Vs. x < 0 are valid (resp. facet 
inducing) over Cn. In [7] it is sh'own that permutation and switching (by any 
cut) are the only symmetries of the cut polytope. The automorphism group 
Aut(y) of inequality V.x < 0 is the group {o e Sym(n) : V° = v} and its group 
PS(i?) of double symmetries is the group {oe Sym(n) : V° = Vs for some root 6(5) 
of v.x < 0}; so kut(v) C PS(y) and PS(y) is the group of permutations which act 
simultaneously as switchings. So any facet yields many equivalent ones by 
switching and permutation. For instance, facet Par 7 yields precisely 7560 
equivalent facets of Cj. 

The example of facet Pary presents a lot of beautiful symmetries that we 
describe in more detail. The automorphism group of Par7 is the subgroup of 
Sym(7) generated by the involution a = (11 f) (22f)(33 ! ) , so it is isomorphic to 
Sym(2). The group PS(Par7) of double symmetries of Par7 is the dihedral group 
D7. 

Facet Par7 has 21 roots (so it is a simplicial facet) partitioned into 3 
classes: 

Ra = {6(^)1 ie[0, 6]}, Rb = {6(2^): ie[09 6]}, 

and Rc = { 6 ( ^ ) : ie[0, 6]}, 

where ai for i = 0, 1, . .., 6 denote, respectively, the sets 

<fr, {2}, {2f}, {1, 3, 2'}, {1', 3 \ 2}, {2, 1'}, {2f
9 I}, 

b^ for i = 0, 1, ..., 6 denote, respectively, the sets 

{2, 2'}, {lf}, {1}, {2, 3, lf, 3'}, {2f, 3', 1, 3}, {2, 3'}, {2', 3}, 

and c^ for i = 0, 1, ..., 6 denote, respectively, the sets 

{1, 3, 1', 3'}, {1', 3}, {1, 3'}, {1', 3f, 3}, {1, 3, 3f}, 

{1, 2, 3'}, {!', 2', 3}. 
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Each class Ra, R^9 Rc is the union of four orbits of Aut(Pary) (one of size 1 
for the symmetric root and three of size 2). Denote by Fa = Pary, Fb, Fc the 
facets obtained by switching Par7 by the symmetrical roots a§9 b§9 CQ9 respec-
tively. The facets Fa , Fh 9 FQ axe not permutation equivalent; however, they 
have the same automorphism group: {id9 a}. 

We consider the following involutions: 

TTJ = (03) (13')(1'2'), TT2 = a^a, TT3 = (02) (1 '3 ') (32 ') , 

TT̂  = a i r 3 a , TT5 = ( 0 1 ) ( 2 1 ' ) ( 2 ' 3 ' ) » TT6 = a i r 5 a . 

Then, it turns out that, for ie [1, 6], the facet obtained by switching of Par 7 
by root 6(a^) [resp. 6(£>i), 6(c^)] coincides with the facet obtained by permu-
tation of Par7 by TT̂  . Therefore, Par7 has three nonpermutation equivalent 
switchings. Its group of double symmetries is the dihedral group D7 with gene-
rators a, T\£ for 1 < i < 6. 

Finally, we mention two more curiosities on the roots of Par7: 
(a) all subsets of {1, lf, 2, 27, 3, 3'} can be generated by taking symmet-

ric differences of members of the set {ai : i e [1, 6]}, or of {b^i i e [1, 6]}, or 
of {oil ie[l, 6]}. 

(b) CQ is the complement of Z?QA{0}, C^ = bi A{x} with x = 3, 3', 2, 2', 1, 
1', for i = 1, 2, 3, 4, 5, 6, respectively. 

Most of the above symmetries are lost for the parachute facet Par2^+i with 
k > 5 9 k odd. The automorphism group of Par2^+i is still the group of order 2 
generated by the involution 

II (iif). 
1 <i <k 

The number of orbits of the set of roots of Par2k+l i-s: 

3/k/2 + full + (k - 1)A_! + k 
(number of symmetric roots plus one-half of number of nonsymmetric roots). It 
is known that the number of orbits of the set of roots is an upper bound for 
the number of nonpermutation equivalent switchings (see [7]); we conjecture 
that equality holds for Pa^/c+i, k odd, k > 5 (but equality does not hold for 
Par7). 

4. Concluding Remarks 

It turns out that both the parachute inequality and the bicycle odd wheel 
inequality can be decomposed as integer combination of triangle inequalities 
with all coefficients +1 except one coefficient -1. For instance, the para-
chute facet Par2k+i for odd k can be decomposed as follows: 

Par2/£ + 1.a; = £ (T(a^ , i, i + 1) + T(ai9 ir
9 (i + 1) ')) 

1 <i <k- 1 
+ T(o, 1, l') - T(0, k, kr), 

where ai = k for i odd and a^ = a^t = 0 for i even, and 

T(a, b9 o) = xbc - xab - xao 

denotes the left-hand side of the triangle inequality on nodes a, b9 c. A nice 
property of inequalities v.x < 0 which can be "triangulated" is that v.S(S) is 
even for all cuts 6(5). On the other hand, the Fibonacci face Fib2& ^s t n e s u m 

of triangles; for instance, for k even, we have: 

¥±b2k.x = X CT(0, 2i, U + 1) 4- T(0, (2i) ', (2i + 1) ') 
1 <i < (k -2)/2 

+ T(0>9 (2i - 1) ', (2i) ') + r(0, 1, 1'). 
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Furthermore, we checked that any parachute, Fibonacci, or bicycle odd wheel 
inequality reduces, by consecutive collapsing, to some triangle inequality (the 
same holds for their switchings, see [6]). 
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