THE FIBONACCI AND PARACHUTE INEQUALITIES FOR ℓ_{1}-METRICS

Michel Deza
CNRS, Université Paris VII
Monique Laurent
CNRS, Université Paris Dauphine, Lamsade
(Submitted March 1990)

1. Introduction

Let X be a finite set with $|X|=n$. A metric on X is a real valued function d defined on all pairs of points of X and satisfying the triangle inequality:

$$
\begin{equation*}
d(i, j)+d(j, k) \geq d(i, k) \tag{1}
\end{equation*}
$$

for all triples (i, j, k) of points of X. We allow $d(i, j)=0$ for some pairs (i, j); so we use the term "metric" for denoting what is usually called semimetric. We set $d(i, j)=d(j, i)$ for all pairs (i, j) and $d(i, i)=0$ for all points i of X. The pair (X, d) is called a metric space. The ℓ_{1}-metric on R^{m} is defined by:

$$
d(x, y)=\|x-y\|_{1}=\sum_{1 \leq i \leq m}\left|x_{i}-y_{i}\right|
$$

A metric space (X, d) is isometrically ℓ_{1}-embeddable if there exist points x_{0}, x_{1}, \ldots, x_{n} in some space R^{m} such that

$$
d(i, j)=\left\|x_{i}-x_{j}\right\|_{1} \text { for all } 0 \leq i<j \leq n .
$$

The family of all metrics d on X which are isometrically ℓ_{1}-embeddable forms a cone: $C(X)=C_{n}$, called cut cone (or Hamming cone). The cut cone C_{n} is generated by the cut metrics d_{S} for subsets S of X, where

$$
d_{S}(i, j)=1 \text { if }|S \cap\{i, j\}|=1 \text { and } d_{S}(i, j)=0 \text { otherwise. }
$$

Therefore, a metric d on X is isometrically ℓ_{1}-embeddable if and only if d is the conic hull of cut metrics:

$$
d=\sum_{S \subseteq X} \lambda_{S} d_{S}, \text { with } \lambda_{S} \geq 0
$$

The cut metrics d_{S} correspond, in graph terminology, to the cuts $\delta(S)$; we shall use the latter terminology here. The study of the ℓ_{1}-embeddable finite metric spaces, i.e., of the cut cone C_{n}, was started in 1960 in [5] and continued, e.g., in [1], [3], [6], [8], [9], and [10]. If d is rational valued, then d is isometrically ℓ_{1}-embeddable if and only if $k d$ is isometrically embeddable into the vertex set of the hypercube of R^{m} for some integers k, m ([2]).

Given a vector $v=\left(v_{i j}\right)_{1 \leq i \leq j<n}$, the inequality $v . x \leq 0$ is called valid over the cut cone C_{n} if it is satisfied by all points of C_{n} or, in other words, by all metrics on n points which are isometrically ℓ_{1}-embeddable. The roots of inequality $v . x \leq 0$ are the cuts $\delta(S)$ satisfying equality: $v . \delta(S)=0$. The rank of inequality $v . x \leq 0$ is the rank of its set of roots. Geometrically, valid inequalities correspond to faces of the cone C_{n} while valid inequalities of highest possible rank:

$$
\binom{n}{2}-1=n(n-1) / 2-1
$$

define facets of C_{n}.
[Feb.

Many examples of valid inequalities over the cut cone C_{n} are known; for example,
(a) the hypermetric inequalities ([5], [11], [8]) of the form

$$
\sum_{1 \leq i<j \leq n} b_{i} b_{j} d(i, j) \leq 0
$$

where b_{1}, \ldots, b_{n} are integers satisfying

$$
\sum_{1 \leq i \leq n} b_{i}=1
$$

including triangle inequality (1) as a special case for $b=(1,1,-1,0, \ldots, 0)$.
(b) the bicycle odd wheel inequality [4], defined on $2 k+3$ points $\left\{0,0^{\prime}\right.$, $1,2, \ldots, 2 k+1\}$ for $k \geq 1$ by

$$
\begin{equation*}
d\left(0,0^{\prime}\right)-\sum_{1 \leq i \leq 2 k+1}\left(d(0, i)+d\left(0^{\prime}, i\right)\right)+\sum_{(i, j) \in C} d(i, j) \leq 0 \tag{2}
\end{equation*}
$$

where C denotes the cycle ($1,2, \ldots, 2 k+1$).
(c) the parachute inequality [8], denoted as $\operatorname{Par}_{2 k+1}$, defined on the $2 k+1$ points $\left\{0,1,2, \ldots, k, 1^{\prime}, 2^{\prime}, \ldots, k^{\prime}\right\}$ by:

$$
\begin{align*}
\operatorname{Par}_{2 k+1} \cdot d=\sum_{(i, j) \in P} d(i, j) & -\sum_{1 \leq i \leq k-1}\left(d(0, i)+d\left(0, i^{\prime}\right)\right. \tag{3}\\
& \left.+d\left(k, i^{\prime}\right)+d\left(k^{\prime}, i\right)\right)-d\left(k, k^{\prime}\right) \leq 0
\end{align*}
$$

where P is the path $\left(k, k-1, \ldots, 2,1,1^{\prime}, 2^{\prime}, \ldots .,(k-1)^{\prime}, k^{\prime}\right)$.
(d) the Fibonacci inequality [10], denoted as Fib $2 k$, defined on the $2 k$ points $\left\{0,0^{\prime}, 1,1^{\prime}, 2,2^{\prime}, \ldots,(k-1),(k-1)^{\prime}\right\}$ by

$$
\begin{align*}
\mathrm{Fib}_{2 k} \cdot d= & \sum_{(i, j) \in Q} d(i, j)- \tag{4}\\
& -\sum_{1 \leq i \leq k-1}\left(d(0, i)+d\left(0, i^{\prime}\right)\right) \\
& \sum_{1 \leq i \leq k-2}\left(d\left(0^{\prime}, i\right)+d\left(0^{\prime}, i^{\prime}\right)\right) \leq 0
\end{align*}
$$

where Q is the path $\left(k-1, k-2, \ldots, 2,1,1^{\prime}, 2^{\prime}, \ldots,(k-2)^{\prime},(k-1)^{\prime}\right)$. We call the above inequality (4) the Fibonacci inequality, since its number of roots is related to the Fibonacci number $f_{k}\left(f_{1}=f_{2}=1, f_{k+2}=f_{k+1}+f_{k}\right)$.

See Figures $1-3$ for the graphic representation of inequalities (2) and (3) on seven points and inequality (4) on six points (a plain line indicates coefficient +1 and a dotted line indicates coefficient -1).

Figure 1
The Bicycle Odd Wheel Inequality on 7 Points

Figure 2
The Parachute Inequality Par_{7} on 7 Points

Figure 3
The Fibonacci Inequality Fib_{6} on 6 Points

In this note, we consider the Fibonacci and parachute inequalities, their number of roots in terms of Fibonacci numbers, their rank, their symmetries, and the connections with the bicycle odd wheel inequality (2).

2. Parachute and Fibonacci Inequalities: Equality Case

Given a path $A=(1,2, \ldots, n)$, a subset S of $[1, n]$ is called altermated along path A if

$$
|S \cap\{i, i+1\}| \leq 1 \text { for all } i=1, \ldots, n-1,
$$

and pseudo-aZternated along path A if

$$
|S \cap\{i, i+1\}|=1 \text { for a11 } i=1, \ldots, j-1, j+1, \ldots, n-1
$$

and

$$
|S \cap\{j, j+1\}|=0 \text { or } 2 \text { for some } j \in[1, n-1] .
$$

One observes easily that, for n even, the number of pseudo-alternated subsets S along path $A=(1, \ldots, n)$ for which nodes $1, n$ belong to S is equal to $n-1$; an easy induction on n shows that the number of alternated subsets of $[1, n]$ along path $(1,2, \ldots, n)$ is equal to the Fibonacci number f_{n+2} (where $[1, n]$ denotes the set of integers $1,2,3, \ldots, n)$.

Call a cut $\delta(S)$ symmetric if, for $i=1,2, \ldots, k$, i belongs to S if and only if i^{\prime} belongs to S, i.e., the involution

$$
\alpha=\prod_{1 \leq i \leq k}\left(i i^{\prime}\right)
$$

belonging to the symmetric group $\operatorname{Sym}(2 k+1)$ leaves S invariant.
We describe below the roots of the parachute inequality.
Proposition 1: The roots of the parachute inequality $\operatorname{Par}_{2 k+1}$ are the cuts $\delta(S)$ for which S is a subset of $[1, k] \cup\left[1^{\prime}, K^{\prime}\right]$ of one of the following four types:

Type 1: nodes k, K^{\prime} belong to S and S is pseudo-alternated along path P.
Type 2: nodes k, K^{\prime} do not belong to S and S is alternated along path Q.
Type 3: for k odd, node k belongs to S, node k^{\prime} does not belong to S and (a) or (b) holds:
(a) $S=\left\{2^{\prime}, 4^{\prime}, \ldots,(k-1)^{\prime}, k\right\} \cup T$, where T is a subset of $\{1$, $2, \ldots, k-2\}$ alternated along path $\{1,2, \ldots, k-2\} ;$
(b) $S=\left\{k, 1^{\prime},(k-1)^{\prime}\right\} \cup T \cup V$, where T is a subset of $\{2,3, \ldots$, $k-2\}$ alternated along path (2, 3, ..., $k-2$) and V is a subset of $\left\{2^{\prime}, 3^{\prime}, \ldots .,(k-2)^{\prime}\right\}$ such that $V \cup\left\{1{ }^{\prime},(k-1)^{\prime}\right\}$ is pseudo-alternated along path ($\left.1^{\prime}, 2^{\prime}, \ldots,(k-1)^{\prime}\right)$.
Type 3^{\prime} : similar to type 3 , exchanging nodes i, i^{\prime} for all $i=1,2, \ldots, k$.
There are $2 k-1$ roots of type 1 , all of them linearly independent and the only symmetric root among them is $\delta\left(\left\{1,3, \ldots, k, 1^{\prime}, 3^{\prime}, \ldots, k^{\prime}\right\}\right)$ for k odd and $\delta\left(\left\{2,4, \ldots, k, 2^{\prime}, 4^{\prime}, \ldots, k^{\prime}\right\}\right)$ for k even. There are $f_{2 k}$ roots of type 2 , their rank is $\left(\begin{array}{c}2 k-1\end{array}\right)-2 k+3$ and there are f_{k} symmetric roots among them. The roots of type $3,3^{\prime}$ exist only for k odd; there are altogether $2\left(f_{k}+\right.$ $(k-1) f_{k-1}$) such roots and there are no symmetric roots among them.
Proposition 2: (i) The number of roots [including zero, i.e., cut $\delta(\phi)$] of the parachute inequality $\operatorname{Par}_{2 k+1}$ is equal to $f_{2 k}+2 k f_{k-1}+2 f_{k-2}+2 k-1$ for k odd and $f_{2 k}+2 k-1$ for k even, while the number of (nonzero) symmetri_c roots is always the Fibonacci number f_{k}. (ii) The parachute inequality P ar $2 k+1$ is facet inducing for k odd; for k even, it has rank $\left(2 k_{2}-1\right)+2$, but it is not valid.

Proof of Propositions 1 and 2: Given a subset S of $[1, k] \cup\left[1^{\prime}, k^{\prime}\right]$, we set $s=|S \cap[1, k-1]|$ and $s^{\prime}=\left|S \cap\left[1^{\prime},(k-1)^{\prime}\right]\right|$.

In order to characterize which cuts $\delta(S)$ are roots of the parachute inequality $\operatorname{Par}_{2 k+1}$, we distinguish four cases:

Case 1: $k, k^{\prime} \in S$
Then $\delta(S)$ is a root of $\operatorname{Par}_{2 k+1}$ if and only if $|\delta(S) \cap P|=2 k-2$, i.e., all edges of P but one are edges of $\delta(S)$, i.e., S is pseudo-alternated along path P. So there are $2 k-1$ such roots, among them only one symmetric root:

$$
\delta\left(\left\{k, \ldots, 3,1,1^{\prime}, 3^{\prime}, \ldots, k^{\prime}\right\}\right) \text { for } k \text { odd }
$$

and

$$
\delta\left(\left\{k, \ldots, 4,2,2^{\prime}, 4^{\prime}, \ldots, k^{\prime}\right\}\right) \text { for } k \text { even. }
$$

Case 2: $k, k^{\prime} \notin S$
Then $\delta(S)$ is a root of $\operatorname{Par}_{2 k+1}$ if and only if $|\delta(S) \cap P|=2\left(s+s^{\prime}\right)=2|S|$, i.e., S is alternated along the path ($\left.k-1, \ldots, 1,1^{\prime}, \ldots,(k-1)^{\prime}\right)$ on $2 k-2$ nodes, so there are $f_{2 k}$ such roots. Among them, the number of symmetric roots (including zero) is equal to the number of alternated subsets along path (2, 3, ..., k - 1), i.e., to f_{k}.
Case 3: $k \in S, k^{\prime} \notin S$
Then $\delta(S)$ is a root of $\operatorname{Par}_{2 k+1}$ if and only if $|\delta(S) \cap P|=k+2 s$. Since

$$
|\delta(S) \cap P|=\left|\delta(S) \cap \operatorname{Path}\left(k, \ldots, 1,1^{\prime}\right)\right|+\left|\delta(S) \cap \operatorname{Path}\left(1^{\prime}, \ldots, k^{\prime}\right)\right|
$$

with the first term being less than or equal to $2 s+2$, we have to distinguish two cases.
Case 3a: $\left|\delta(S) \cap \operatorname{Path}\left(1^{\prime}, \ldots, k^{\prime}\right)\right|=k-1$
If k is even, then, necessarily, $1^{\prime} \in S$, contradicting the fact that

$$
\left|\delta(S) \cap \operatorname{Path}\left(1,1^{\prime}, \ldots, k^{\prime}\right)\right|=2 s+1
$$

If k is odd, then

$$
S \cap\left\{1^{\prime}, 2^{\prime}, \ldots, k^{\prime}\right\}=\left\{2^{\prime}, 4^{\prime}, \ldots,(k-1)^{\prime}\right\}
$$

and

$$
\left|\delta(S) \cap \operatorname{Path}\left(1^{\prime}, 1,2, \ldots, k\right)\right|=2 s+1
$$

i.e., S is alternated along path (1, 2, ..., $k-2$); so there are f_{k} such roots.

Case 3b: $\left|\delta(S) \cap \operatorname{Path}\left(1^{\prime}, \ldots, k^{\prime}\right)\right|=k-2$
If k is even, then, necessarily, $1^{\prime} \notin S$, contradicting the fact that

$$
\left|\delta(S) \cap \operatorname{Path}\left(1^{\prime}, 1,2, \ldots, k\right)\right|=2 s+2
$$

If k is odd, then, necessarily, $1^{\prime},(k-1)^{\prime} \in S$ and, since

$$
\left|\delta(S) \cap \operatorname{Path}\left(1^{\prime}, 1, \ldots, k\right)\right|=2 s+2
$$

S is alternated along path (2, 3, ..., $K-2$), while S is pseudo-alternated along path ($1^{\prime}, \ldots, k^{\prime}$); so there are $(k-1) f_{k-1}$ such roots.
Case 4: Identical to Case 3, exchanging nodes i, i^{\prime} for $i=1, \ldots, k$.
Hence, the total number of roots is:

$$
2 k-1+f_{2 k}+2 f_{k}+2(k-1) f_{k-1}
$$

$$
=2 k-1+f_{2 k}+2 k f_{k-1}+2 f_{k-2} \text { for } k \text { odd }
$$

and

$$
2 k-1+f_{2 k} \quad \text { for } k \text { even }
$$

while the number of nonzero symmetric roots is f_{k}, stating Proposition 2 (i).
We now prove Proposition 2(ii). It was proven in [8] that Par $2 k+1$ is facet inducing for k odd and that it is not valid for k even. We now consider Par $2 k+1$ for k even; the set of its roots is $R_{1} \cup R_{2}$, where R_{i} denotes the set of roots
of type i (Proposition 1), for $i=1,2$. To facilitate the computation of the rank of the set of roots, we use the following notion of intersection vector: for a subset S of $[1, k] \cup\left[1^{\prime}, k^{\prime}\right]$, define the vector $\pi(S)$ of $\{0,1\}^{k(2 k+1)}$ by

$$
\pi(S)_{i j}=1 \text { if } i, j \in S \text { and } \pi(S)_{i j}=0 \text { otherwise }
$$

for all. i, j (not necessarily distinct) in [1, $k] \cup\left[1^{\prime}, k^{\prime}\right]$. Given a family of subsets $\left(S_{a}: a \in A\right)$ of $[1, k] \cup\left[1^{\prime}, k^{\prime}\right]$, the family of cut vectors ($\delta\left(S_{a}\right): a \in A$) is linearly independent if and only if the family of intersection vectors ($\pi\left(S_{a}\right): a \in A$) is linearly independent (see [8]).

First, we check that all roots in $R_{1}=\left\{\delta\left(S_{a}\right): \alpha \in A\right\}$ are linearly independent. For this, we take a linear combination of their intersection vectors:

$$
\sum_{a \in A} \lambda_{a} \pi\left(S_{a}\right)=0
$$

To verify that $\lambda_{a}=0$ for all α, observe that, for each root $\delta\left(S_{a}\right)$ of R_{1}, one can find a pair (i, j) such that $\{i, j\} \subseteq S_{a}$, while $\{i, j\} \nsubseteq S_{b}$ for the other roots $\delta\left(S_{b}\right)$ of R_{1} [for instance, take the pair $(k-1, k)$ for the root $\delta(\{k$, $\left.\left.\left.k-1, k-3, \ldots, 2,1^{\prime}, 3^{\prime}, \ldots, k^{\prime}\right\}\right)\right]$.

Next, we check that the rank of the family R_{2} is

$$
\binom{2 k-1}{2}-2 k+3
$$

For this, observe first that the subfamily R_{2}^{\prime} of R_{2} consisting of all possible singletons and pairs of $[1, k-1] \cup\left[1^{\prime},(k-1)^{\prime}\right]$ has full rank equal to

$$
2 k-2+\binom{2 k-2}{2}-(2 k-3)=\binom{2 k-1}{2}-(2 k-3)
$$

(easy if one considers the intersection vectors). Then, note that, for every cut $\delta(S)$ of R_{2}, nodes k, k^{\prime} do not belong to S and S is alternated along Q, implying that

$$
x_{k k}=x_{k^{\prime} k^{\prime}}=x_{k k^{\prime}}=x_{k i}=x_{k^{\prime} i}=x_{i, i+1}=0
$$

for $i \in[1, k-1] \cup\left[1^{\prime},(k-1)^{\prime}\right]$, where $x=\pi(S)$ for $\delta(S) \in R_{2}$. Therefore, we deduce that the rank of R_{2} is less than or equal to

$$
\binom{2 k+1}{2}-(6 k-4)=\binom{2 k-1}{2}-(2 k-3)
$$

Finally, we verify that the family $R_{1} \cup R_{2}^{\prime}$ is linearly independent, thus stating that the rank of face $\operatorname{Par}_{2 k+1}$ for k even is

$$
2 k-1+\binom{2 k-1}{2}-(2 k-3)=\binom{2 k-1}{2}+2
$$

Again, we take a linear combination of the intersection vectors

$$
\sum \lambda_{a} \pi\left(S_{a}\right)+\sum \mu_{c} \pi\left(T_{c}\right)=0
$$

where the first sum is over the intersection vectors corresponding to cuts in R_{1} and the second one corresponds to cuts in R_{2}^{\prime}. It is enough to show that $\lambda_{a}=0$ for all a. For this, for the roots $\delta\left(S_{a}\right)$ of R_{1} having $\{i, i+1\} \subseteq S_{a}$ for some i, by looking at the coordinate ($i, i+1$) in the above linear combination we obviously obtain that $\lambda_{a}=0$. For remaining roots $\delta\left(S_{a}\right)$ of R_{1}, looking at coordinate (k, i) with $i \in S_{a}$ also yields $\lambda_{a}=0$.

Given a vector $v=\left(v_{i j}\right)_{1 \leq i<j \leq n}$ and two points, say 1 and n, the vector obtained from v by collapsing points 1 and n into the single point 1 is the vector $v^{\prime}=\left(v_{i j}^{\prime}\right)_{1 \leq i<j \leq n-1}$ defined by

$$
v_{1 i}^{\prime}=v_{1 i}+v_{i n} \text { for } 2 \leq i \leq n-1 \text { and } v_{i j}^{\prime}=v_{i j} \text { for } 2 \leq i<j \leq n-1
$$

The Fibonacci inequality $\mathrm{Fib}_{2 k}$ can be obtained precisely by collapsing points k, k^{\prime} into a single point 0^{\prime} in the parachute inequality $\operatorname{Par}_{2 k+1}$. Using this observation, the roots of $\mathrm{Fib}_{2 k}$ correspond to the roots of $\operatorname{Par}_{2 k+1}$ of types 1 and 2. So, $\mathrm{Fib}_{2 k}$ and $\operatorname{Par}_{2 k+1}$, for k even, have the same rank, but $\mathrm{Fib}_{2 k}$ is valid while $\operatorname{Par}_{2 k+1}$ is not. Observe also that $\mathrm{Fib}_{2 k}$ coincides (up to renumerotation of the points) with the inequality obtained by collapsing in the bicycle odd wheel inequality (2) point 0 and one point of cycle C. From the above two facts follows the next result.
Proposition 3: The Fibonacci inequality $\mathrm{Fib}_{2 k}$ is valid over the cut cone for any $k \geq 3$ and its rank is

$$
\binom{2 k-1}{2}+2=\binom{2 k}{2}-2 k+3
$$

Its roots are the cuts $\delta\left(S-\left\{k, k^{\prime}\right\}+\left\{0^{\prime}\right\}\right)$ for S of type 1 and $\delta(S)$ for S of type 2. So, $\mathrm{Fib}_{2 k}$ has $2 k-1+f_{2 k}$ roots and f_{k} nonzero symmetric roots.

3. Symmetries of the Parachute Inequality

The following two operations on facets of the cut cone C_{n} are given in [8]: (a) permutation-given a vector $v=\left(v_{i j}\right)_{1 \leq i<j \leq n}$ and a permutation σ of $\operatorname{Sym}(n)$, set $v_{i j}^{\sigma}=v_{\sigma(i) \sigma(j)}$ for $1 \leq i<j \leq n$; then, inequality $v^{\sigma} . x \leq 0$ is said to be permutation equivalent to $v . x \leq 0$. (b) switching-given vector v and a root $\delta(S)$ of inequality $v . x \leq 0$, set $v_{i j}^{S}=-v_{i j}$ if $|S \cap\{i, j\}|=1$ and $v_{i j}^{S}=v_{i j}$ otherwise; then, inequality $v^{S} . x \leq 0$ is said to be switching equivalent to $v . x \leq 0$. If inequality $v . x \leq 0$ is valid (resp. facet inducing) over the cut cone C_{n}, then both inequalities $v^{\sigma} . x \leq 0, v^{S} . x \leq 0$ are valid (resp. facet inducing) over C_{n}. In [7] it is shown that permutation and switching (by any cut) are the only symmetries of the cut polytope. The automorphism group Aut (v) of inequality $v . x \leq 0$ is the group $\left\{\sigma \in \operatorname{Sym}(n): v^{\sigma}=v\right\}$ and its group PS (v) of double symmetries is the group $\left\{\sigma \in \operatorname{Sym}(n): v^{\sigma}=v^{S}\right.$ for some root $\delta(S)$ of $v . x \leq 0\}$; so $\operatorname{Aut}(v) \subseteq \operatorname{PS}(v)$ and $\operatorname{PS}(v)$ is the group of permutations which act simultaneously as switchings. So any facet yields many equivalent ones by switching and permutation. For instance, facet Par 7 yields precisely 7560 equivalent facets of C_{7}.

The example of facet Par_{7} presents a lot of beautiful symmetries that we describe in more detail. The automorphism group of Par_{7} is the subgroup of Sym(7) generated by the involution $\alpha=\left(11^{\prime}\right)\left(22^{\prime}\right)\left(33^{\prime}\right)$, so it is isomorphic to Sym(2). The group PS $\left(\operatorname{Par}_{7}\right)$ of double symmetries of Par_{7} is the dihedral group D_{7} 。

Facet Par_{7} has 21 roots (so it is a simplicial facet) partitioned into 3 classes:
$R_{a}=\left\{\delta\left(a_{i}\right): i \in[0,6]\right\}, R_{b}=\left\{\delta\left(b_{i}\right): i \in[0,6]\right\}$,
and $\quad R_{c}=\left\{\delta\left(c_{i}\right): i \in[0,6]\right\}$,
where α_{i} for $i=0,1, \ldots, 6$ denote, respectively, the sets
$\phi,\{2\},\left\{2^{\prime}\right\},\left\{1,3,2^{\prime}\right\},\left\{1^{\prime}, 3^{\prime}, 2\right\},\left\{2,1^{\prime}\right\},\left\{2^{\prime}, 1\right\}$,
b_{i} for $i=0,1, \ldots, 6$ denote, respectively, the sets
$\left\{2,2^{\prime}\right\},\left\{1^{\prime}\right\},\{1\},\left\{2,3,1^{\prime}, 3^{\prime}\right\},\left\{2^{\prime}, 3^{\prime}, 1,3\right\},\left\{2,3^{\prime}\right\},\left\{2^{\prime}, 3\right\}$,
and c_{i} for $i=0,1, \ldots, 6$ denote, respectively, the sets
$\left\{1,3,1^{\prime}, 3^{\prime}\right\},\left\{1^{\prime}, 3\right\},\left\{1,3^{\prime}\right\},\left\{1^{\prime}, 3^{\prime}, 3\right\},\left\{1,3,3^{\prime}\right\}$,
$\left\{1,2,3^{\prime}\right\},\left\{1^{\prime}, 2^{\prime}, 3\right\}$.

Each class R_{a}, R_{b}, R_{c} is the union of four orbits of Aut (Par_{7}) (one of size 1 for the symmetric root and three of size 2). Denote by $F_{a}=\operatorname{Par}_{7}, F_{b}, F_{c}$ the facets obtained by switching Par_{7} by the symmetrical roots a_{0}, b_{0}, c_{0}, respectively. The facets F_{a}, F_{b}, F_{c} are not permutation equivalent; however, they have the same automorphism group: \{id, $\alpha\}$.

We consider the following involutions:

$$
\begin{aligned}
& \pi_{1}=(03)\left(13^{\prime}\right)\left(1^{\prime} 2^{\prime}\right), \pi_{2}=\alpha \pi_{1} \alpha, \pi_{3}=(02)\left(1^{\prime} 3^{\prime}\right)\left(32^{\prime}\right), \\
& \pi_{4}=\alpha \pi_{3} \alpha, \pi_{5}=(01)\left(21^{\prime}\right)\left(2^{\prime} 3^{\prime}\right), \pi_{6}=\alpha \pi_{5} \alpha .
\end{aligned}
$$

Then, it turns out that, for $i \in[1,6]$, the facet obtained by switching of Par ${ }_{7}$ by root $\delta\left(a_{i}\right)$ [resp. $\left.\delta\left(b_{i}\right), \delta\left(c_{i}\right)\right]$ coincides with the facet obtained by permutation of Par_{7} by π_{i}. Therefore, Par_{7} has three nonpermutation equivalent switchings. Its group of double symmetries is the dihedral group D_{7} with generators α, π_{i} for $1 \leq i \leq 6$.

Finally, we mention two more curiosities on the roots of Par_{7} :
(a) all subsets of $\left\{1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}\right\}$ can be generated by taking symmetric differences of members of the set $\left\{a_{i}: i \in[1,6]\right\}$, or of $\left\{b_{i}: i \in[1,6]\right\}$, or of $\left\{c_{i}: i \in[1,6]\right\}$.
(b) c_{0} is the complement of $b_{0} \Delta\{0\}, c_{i}=b_{i} \Delta\{x\}$ with $x=3,3^{\prime}, 2,2^{\prime}, 1$, 1^{\prime}, for $i=1,2,3,4,5,6$, respectively.

Most of the above symmetries are lost for the parachute facet $\operatorname{Par}_{2 k+1}$ with $k \geq 5, k$ odd. The automorphism group of $\operatorname{Par}_{2 k+1}$ is still the group of order 2 generated by the involution

$$
\prod_{1 \leq i \leq k}\left(i i^{\prime}\right)
$$

The number of orbits of the set of roots of $\operatorname{Par}_{2 k+1}$ is:

$$
3 f_{k} / 2+f_{2 k} / 2+(k-1) f_{k-1}+k
$$

(number of symmetric roots plus one-half of number of nonsymmetric roots). It is known that the number of orbits of the set of roots is an upper bound for the number of nonpermutation equivalent switchings (see [7]); we conjecture that equality holds for $\operatorname{Par}_{2 k+1}, k$ odd, $k \geq 5$ (but equality does not hold for Par_{7}).

4. Concluding Remarks

It turns out that both the parachute inequality and the bicycle odd wheel inequality can be decomposed as integer combination of triangle inequalities with all coefficients +1 except one coefficient -1 . For instance, the parachute facet $\operatorname{Par}_{2 k+1}$ for odd k can be decomposed as follows:

$$
\begin{aligned}
\operatorname{Par}_{2 k+1} \cdot x=\sum_{1 \leq i \leq k-1}\left(T\left(\alpha_{i^{\prime}}, i, i+1\right)\right. & \left.+T\left(\alpha_{i}, i^{\prime},(i+1)^{\prime}\right)\right) \\
& +T\left(0,1,1^{\prime}\right)-T\left(0, k, k^{\prime}\right)
\end{aligned}
$$

where $\alpha_{i}=k$ for i odd and $\alpha_{i}=\alpha_{i^{\prime}}=0$ for i even, and

$$
T(a, b, c)=x_{b c}-x_{a b}-x_{a c}
$$

denotes the left-hand side of the triangle inequality on nodes α, b, c. A nice property of inequalities $v . x \leq 0$ which can be "triangulated" is that $v . \delta(S)$ is even for all cuts $\delta(S)$. On the other hand, the Fibonacci face $\mathrm{Fib}_{2 k}$ is the sum of triangles; for instance, for k even, we have:

$$
\begin{aligned}
\operatorname{Fib}_{2 k} \cdot x=\sum_{1 \leq i \leq(k-2) / 2}(T(0,2 i, & 2 i+1)+T\left(0,(2 i)^{\prime},(2 i+1)^{\prime}\right) \\
& +T\left(0^{\prime},(2 i-1)^{\prime},(2 i)^{\prime}\right)+T\left(0,1,1^{\prime}\right)
\end{aligned}
$$

Furthermore, we checked that any parachute, Fibonacci, or bicycle odd wheel inequality reduces, by consecutive collapsing, to some triangle inequality (the same holds for their switchings, see [6]).

References

1. P. Assouad. "Sur les inégalités valides dans L_{1}." European Journal of Combinatorics 5 (1984):99-112.
2. P. Assouad \& M. Deza. "Espaces métriques plongeables dans un hypercube: aspects combinatoires." Annals of Discrete Math. 8 (1980):197-210.
3. D. Avis \& M. Deza. " L_{l}-Embeddability, Complexity and Multicommodity Flows." Research Memorandum RMI 88-11, University of Tokyo (1988); to appear in Networks.
4. F. Barahona \& A. R. Mahjoub. "On the Cut Polytope." Mathematical Programming 36 (1986):157-73.
5. M. Deza. "On the Hamming Geometry of Unitary Cubes." Doklady Akad. Nauk. USSR (in Russian) 134 (1960):1037-40; English translation in Soviet Physics Dokl. 5 (1961):940-43.
6. C. De Simone, M. Deza, \& M. Laurent. "Collapsing and Lifting for the Cut Cone." IASI-CNR Research Report no. 265, Rome (July 1989); to appear in Graphs and Combinatorics.
7. M. Deza, V. P. Grishukhin, \& M. Laurent. "The Symmetries of the Cut Polytope and of Some Relatives." Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 4 (1991):205-220.
8. M. Deza \& M. Laurent. "Facets for the Cut Cone I." Research Memorandum RMI 88-13, University of Tokyo (1988); to appear in Mathematical Programming.
9. M. Deza \& M. Laurent. "Facets for the Cut Cone II: Clique-Web Inequalities." Document du Lamsade no. 57, Universite Paris Dauphine (1989); to appear in Mathematical Programming.
10. M. Deza \& M. Laurent. "New Results on Facets of the Cut Cone." Research Report B-227, Tokyo Institute of Technology (November 1989).
11. J. B. Kelly. "Hypermetric Spaces." Lecture Notes in Math. 490 (1974):1731.

*** 水*

Author and Title Indexed for The Fibonacci Quarterly

Currently, Dr. Charles K. Cook of the University of South Carolina at Sumter is working on an AUTHOR index, TITLE index and PROBLEM index for The Fibonacci Quarterly. In fact, the three indices are already completed. We hope to publish these indices in 1993 which is the 30th anniversary of The Fibonacci Quarterly. Dr. Cook and I feel that it would be very helpful if the publication of the indices also had AMS classification numbers for all articles published in The Fibonacci Quarterly. We would deeply appreciate it if all authors of articles published in The Fibonacci Quarterly would take a few minutes of their time and send a list of articles with primary and secondary classification numbers to

PROFESSOR CHARLES K. COOK
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH CAROLINA AT SUMTER
1 LOUISE CIRCLE
SUMTER, S.C. 29150

The Editor
Gerald E. Bergum

