ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
Stanley Rabinowitz

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail to 72717.3515@compuserve.com on Internet. All correspondence will be acknowledged.

Each solution should be on a separate sheet (or sheets) and must be received within six months of publication of the problem. Solutions typed in the format used below will be given preference. Proposers of problems should normally include solutions.

Dedication. This year's column is dedicated to Dr. A. P. Hillman in recognition of his 27 years of devoted service as editor of the Elementary Problems Section. Devotees of this column are invited to thank Abe by dedicating their next proposed probleff to Dr. Hillman.

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
$F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 ;$ $L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$ 。
A1so, $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, and $L_{n}=\alpha^{n}+\beta^{n}$.
PROBLEMS PROPOSED IN THIS ISSUE
B-706 Proposed by K. T. Atanassov, Sofia, Bulgaria
Prove that for $n \geq 0$,

$$
\left(\frac{\pi e}{\pi+e}\right)^{1.4 n}>F_{n}
$$

B-707 Proposed by Herta T. Freitag, Roanoke, VA
Consider a Pythagorean triple (a, b, c) such that

$$
a=2 \sum_{i=1}^{n} F_{i}^{2} \quad \text { and } \quad c=F_{2 n+1}, \quad n \geq 2
$$

Prove or disprove that b is the product of two Fibonacci numbers.
B-708 Proposed by Joseph J. Kostal, University of Illinois at Chicago, IL
Find the sum of the series

$$
\sum_{k=1}^{\infty} \frac{3^{k} F_{k}-2^{k} L_{k}}{6^{k}}
$$

B-709 Proposed by Alejando Necochea, Pan American University, Edinburg, TX
Express $\frac{1}{n!} \frac{d^{n}}{d t^{n}}\left[\frac{t}{1-t-t^{2}}\right]_{t=0}$ in terms of Fibonacci numbers.

B-710 Proposed by H.-J. Seiffert, Berlin, Germany
Let P_{n} be the $n{ }^{\text {th }}$ Pell number, defined by $P_{0}=0, P_{1}=1, P_{n+2}=2 P_{n+1}+P_{n}$ for $n \geq 0$. Prove that
(a) $P_{3 n+1} \equiv L_{3 n+1}(\bmod 5)$,
(b) $P_{3 n+2} \equiv-L_{3 n+2}(\bmod 5)$.
(c) Find similar congruences relating Pell numbers and Fibonacci numbers.

B-711 Proposed by Mihály Bencze, Sacele, Romania
Let r be a natural number. Find a closed form expression for

$$
\prod_{k=1}^{\infty}\left(1-\frac{L_{4 r}}{k^{4}}+\frac{1}{k^{8}}\right)
$$

SOLUTIONS

Edited by A. P. Hillman
 Fibonacci Analogues

B-680 Proposed by Russell Jay Hendel \& Sandra A. Monteferrante, Dowling College, Oakdale, NY

For an integer $a \geq 0$, define a sequence, x_{0}, x_{1}, \ldots by $x_{0}=0, x_{1}=1$, and $x_{n+2}=a x_{n+1}+x_{n}$ for $n \geq 0$. Let $d=\left(\alpha^{2}+4\right) 1 / 2$. For $n \geq 2$, what is the nearest integer to $d x_{n}$?

Solution by H.-J. Seiffert, Berlin, Germany
If $\alpha=0$, then x_{n} is 0 for n even and is 1 for n odd. If $\alpha=1$, then $\left(x_{n}\right)$ is the sequence of Fibonacci numbers. 2 is the nearest integer to $\sqrt{5} F_{n}=d x_{n}$ for $n=2$ and $x_{n-1}+x_{n+1}=F_{n-1}+F_{n+1}=L_{n}$ is the nearest integer to $\sqrt{5 F_{n}}=$ $d x_{n}$ for $n \geq 3$ (see B-659). Now let $\alpha \geq 2$ and $n \geq 2$. It is well known that x_{n} $=\left(b^{n}-c^{n}\right) / d$ and $x_{n-1}+x_{n+1}=b^{n}+c^{n}$, where $b=(\alpha+d) / 2$ and $c=(\alpha-d) / 2$. $a \geq 2$ implies the inequalities

$$
\begin{equation*}
|c|<1 \quad \text { and } \quad-1 / 4<c^{2}=a c+1<1 / 4 \tag{1}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
\left|d x_{n}-\left(x_{n-1}+x_{n+1}\right)\right| & =\left|b^{n}-c^{n}-\left(b^{n}+c^{n}\right)\right| \\
& =2|c|^{n} \leq 2|c|^{2}=2|a c+1|<1 / 2
\end{aligned}
$$

This shows that $x_{n-1}+x_{n+1}$ is the nearest integer to $d x_{n}$.
Also solved by R. André-Jeannin, Paul S. Bruckman, Guo-Gang Gao, Lawrence Somer, and the proposers.

$$
\text { Straight Line Separating }\left(F_{n}, F_{n+1}\right) \text { from }\left(F_{n+1}, F_{n+2}\right)
$$

B-684 Proposed by L. Kuipers, Sierre, Switzerland
(a) Find a straight line in the Cartesian plane such that (F_{n}, F_{n+1}) and $\left(F_{n+1}, F_{n+2}\right)$ are on opposite sides of the line for all positive integers n.
(b) Is the line unique?
[Feb.

Solution by Paul S. Bruckman, Edmonds, WA
Let $P_{n}=\left(F_{n}, F_{n+1}\right), n=1,2, \ldots$, denote points in the Cartesian plane. We use the identity
(1) $\quad F_{n+1}=\alpha F_{n}+\beta^{n}, n=1,2, \ldots$.

Since β^{n} and β^{n+1} have opposite signs (and are necessarily nonzero), we see that $\left(F_{n+1}-\alpha F_{n}\right)$ and $\left(F_{n+2}-\alpha F_{n+1}\right)$ have opposite signs. This implies that P_{n} and P_{n+1} lie on opposite sides of the line L, defined by

$$
\begin{equation*}
L=\{(x, y): y=\alpha x\} \tag{2}
\end{equation*}
$$

Therefore, L satisfies the conditions of part (a).
Suppose $L^{\prime}=\{(x, y): y=r x+s\}$ is any line with this same property, where r and s are real. Since L^{\prime} must intersect the segment $P_{n} P_{n+1}$ for each n, the following inequalities must hold:

$$
\begin{equation*}
r F_{n}+s>F_{n+1}, \quad r F_{n+1}+s<F_{n+2}, \quad n=1,3,5, \ldots . \tag{3}
\end{equation*}
$$

Then, using (1), $(\alpha-p) F_{n}+\beta^{n}<s<(\alpha-r) F_{n+1}+\beta^{n+1}$, or

$$
\begin{equation*}
\frac{s-\beta^{n+1}}{F_{n+1}}<\alpha-r<\frac{s-\beta^{n}}{F_{n}}, \quad n=1,3,5, \ldots . \tag{4}
\end{equation*}
$$

Taking limits in (4) as $n \rightarrow \infty$, we see that either end of the inequalities approaches 0 ; therefore, $r=\alpha$. Moreover, we must have

$$
\begin{equation*}
\beta^{n}<s<\beta^{n+1}, \quad n=1,3,5, \ldots \tag{5}
\end{equation*}
$$

Again taking limits as $n \rightarrow \infty$ in (5), we conclude that $s=0$. Thus, we conclude that $L^{\prime}=L$, i.e., the desired line L is uniquely described by (2).

Also solved by Charles Ashbacher, Piero Filipponi, C. Georghiou, Russell Jay Hendel, Hans Kappus, Y. H. Harris Kwong, Mohammad Parvez Shaikh, Lawrence Somer, and the proposer.

Approximation to k as a Function of F_{k}
B-685 Proposed by Stanley Rabinowitz, Westford, MA, and Gareth Griffith, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

For integers $n \geq 2$, find k as a function of n such that

$$
F_{k-1} \leq n<F_{k}
$$

Solution by Lawrence Somer, Washington, D.C.
It follows from the Binet formula for F_{k} that

$$
\sqrt{5} F_{k}+\beta^{k}=\alpha^{k}
$$

Note that $0<\beta^{k}<.5$ if $k \geq 2$ is even and $-.5<\beta^{k}<0$ if $k \geq 3$ is odd. Thus, it follows that if $k \geq 2$ is even, then F_{k} is the largest integer m such that
(1) $\quad \alpha^{k-1}<\sqrt{5} m<\alpha^{k}$.

It also follows that if $k \geq 3$ is odd, then F_{k} is the smallest integer m such that
(2) $\quad \alpha^{k}<\sqrt{5} m<\alpha^{k+1}$.

Using (1) and (2) and taking logarithms to the base α, we have that

$$
k=\left[\log _{\alpha}(\sqrt{5} n+.5)\right]+1
$$

where $[x]$ denotes the greatest integer less than or equal to x.
Also solved by Paul S. Bruckman, Piero Filipponi, C. Georghiou, Russell Jay Hendel, and the proposers.

Some Nearly Geometric Progressions

B-686 Proposed by Jeffrey Shallit, U. of Waterloo, Ontario, Canada
Let a and b be integers with $0<a \leq b$. Set $c_{0}=a, c_{1}=b$, and for $n \geq 2$ define c_{n} to be the least integer with $c_{n} / c_{n-1}>c_{n-1} / c_{n-2}$. Find a closed form for c_{n} in the cases:
(a) $a=1, b=2 ;$
(b) $a=2, b=3$.

Solution by C. Georghiou, University of Patras, Patras, Greece
(a) We will show that $c_{n}=F_{2 n+1}$. Suppose that it is true for $n=k-1$, and $n=k$. Then, from the definition of c_{n} we have

$$
c_{k+1}=\left[c_{k}^{2} / c_{k-1}\right]+1
$$

where, as usual, $[x]$ denotes the greatest integer less than or equal to x.
Using the known identity $F_{2 k+3} F_{2 k-1}-F_{2 k+1}^{2}=1$, we get

$$
c_{k}^{2} / c_{k-1}=F_{2 k+1}^{2} / F_{2 k-1}=F_{2 k+3}-1 / F_{2 k-1}
$$

from which it follows that $c_{k+1}=F_{2 k+3}$. The proof is completed by noting that the assertion is true for $n=0$ and $n=1$.
(b) In a similar way we show that $c_{n}=2^{n}+1$. Assuming that

$$
c_{k-1}=2^{k-1}+1 \quad \text { and } \quad c_{k}=2^{k}+1
$$

we get

$$
c_{k+1}=\left[c_{k}^{2} / c_{k-1}\right]+1=\left[\left(2^{2 k}+2^{k+1}+1\right) /\left(2^{k-1}+1\right)\right]+1=2^{k+1}+1
$$

and at the same time

$$
c_{0}=2^{0}+1 \quad \text { and } \quad c_{1}=2^{1}+1
$$

Also solved by Paul S. Bruckman, Russell Euler, Herta Freitag, Russell Jay Hendel, Carl Libis, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Lawrence Somer, and the proposer.

B-687 Proposed by Jeffrey Shallit, University of Waterloo, Ontario, Canada
Let c_{n} be as in Problem B-686. Find a closed form for c_{n} in the case with $a=1$ and b an integer greater than 1 .

Solution by Lawrence Somer, Washington, D.C.
Let $\left\{H_{n}\right\}$ denote the second-order linear recurrence which has initial terms $H_{0}=1, H_{1}=b$ and satisfies the recursion relation
$H_{n+2}=(b+1) H_{n+1}-(b-1) H_{n}$.
We claim that $c_{n}=H_{n}$. Clearly, $c_{0}=H_{0}$ and $c_{1}=H_{1}$. To prove our result, it suffices to show that
(1)

$$
H_{n+2} / H_{n+1}>H_{n+1} / H_{n}
$$

and
(2) $\quad\left(H_{n+2}-1\right) / H_{n+1} \leq H_{n+1} / H_{n}$.

Thus, it suffices to prove that
(3) $\quad H_{n+2} H_{n}>H_{n+1}^{2}$
and
(4) $\quad H_{n+2} H_{n} \leq H_{n+1}^{2}+H_{n}$.

One can easily show by induction that
(5) $\quad H_{n} \geq b^{n}$
and
(6) $\quad H_{n+2} H_{n}-H_{n+1}^{2}=(b-1)^{n}$.

Thus, from (6), we have that
(7)

$$
H_{n+2} H_{n}=H_{n+1}^{2}+(b-1)^{n}>H_{n+1}^{2}
$$

which establishes in@quality (3). From (5) and (7), we obtain

$$
H_{n+2} H_{n}=H_{n+1}^{2}+(b-1)^{n} \leq H_{n+1}^{2}+b^{n} \leq H_{n+1}^{2}+H_{n},
$$

which establishes inequality (4). Hence $c_{n}=H_{n}$. The closed form for H_{n} is obtained using standard recursion theory.

Also solved by Paul S. Bruckman, C. Georghiou, Russell Jay Hendel, and the proposer.

