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1. Introduction 

Elsewhere [2], I have investigated the properties of G^\x) , the Genocchi 
•polynomials of order k (>0), which were shown to be related to E^\x) , the 
Euler polynomials of order fe, and to B^\x)9 the Bernoulli polynomials of order 
k. 

When k = 1, we have the Genocchi polynomials of the first order, the sim-
plest polynomials of Genocchi type. 

If x = 0, the Genocchi numbers arise. 
Following Norlund ([4] and [5]), who pioneered the study of B^ \x) and 

E n~ (x) , the Bernoulli and Euler polynomials, respectively, of negative order, 
I here offer some of the most important properties of GJfk\x) , the Genocchi 
•polynomials of order -k (k > 0, n > -k) . So far as I am aware, the material in 
this contribution represents new information. 

The justification for seeking knowledge about the negative order polynomi-
als is stated by Norlund [4] . After saying that there is advantage in extend-
ing to negative order the notion of functions of positive order, Norlund 
continues: "On peut ainsi faire rentrer dans un meme cadre des fonctions qui 
apparaissent jusqu!ici comme distinetes»u [We can thus combine in one frame-
work functions which up to now appear as distinct.] 

Beyond this justification, I feel that the G^k^(x) have a vitality of their 
own which deserves recognition. 

Euler and Bernoulli Polynomials of Negative Order 

Norlund ([4] and [5]) defines the Euler polynomials of negative order -k by 

(1.1) t f^Vk...^) - (e"t+1) •••(*"»* +!>**-
n=0n' 2K 

and the Bernoulli polynomials of negative order -k by 

(1-2) ^0n\B" (*I"1---W*> - U i _ w t 

If U>i = 1̂2 = '•' = wk = ^5 t n e n (1-1) and (1*2) become 

:x 
n = 0 n' \ z / 

and 

(1-2)' t%B«\x) - ( ^ I f e ^ . 
n= 0 n° \ u / 

The definition to be given in (2.1) for Genocchi polynomials follows the 
modified forms (1.1) f and (1.2) f, though an extension to the patterns in (1.1) 
and (1.2) could be adopted. 

For subsequent comparison with corresponding forms for Gn (x) (k = 1, 2, 3, 
. . . ) , the first few expressions for E^~ \x) and B^~ (x) are: 
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( 1 . 3 ) E(
0-k\x) = 1 

E['k\x) = x + ^k 

E^k\x) = x* + kx +
 k{k+ 1 } 

E[-k\x) - x3 + hx* + 3 f e ^ + ^ + *£i*±_31 J 2 4 8 

< * > ( « ) = ** + 2 ^ 3 + tttfc+i!^ + * * ( * + 3 ) a + fc(fc+l)(y + 5fc-2) 
H 2 2 16 

and 

(1.4) B(
0'k\x) = 1 

B^Gr) = x + | 

B\-k\x) = ^ + 2^2 + im+-±ix +
 fe2(fe

8
+1) 

B^V) - ** + 2fcr3 + M M _ ± _ l l x 2 + fc2(Y 1 } , + fca5fc3+30fc2
+5fc-2) 

Putting fc = 1, we readily derive the table: 

(1.5) E{-l\x) B{
n'l\x) 

n = 0 1 1 

ft = 1 ^ + 2" X + 2" 

ft = 2 x 2 + x + y x 2 + a: + 3-

ft = 3 # 3 + | x 2 + \x + j x 3 + | x 2 + x + | 

ft = 4 x 4 + 2^r3 + 3x2 + 2x + \ xh + 2x3 + 2xz + x + j 

2. G e n e r a l i z e d G e n o c c h i Po lynomia l s of 
N e g a t i v e O r d e r 

Def in i t i on a n d B a s i c P r o p e r t i e s 

Define 

(2.1) t G<-kHx)-rK- = V^r-)*e** (k = 1, 2, 3, . . . ) , 
n=-k \n\l \ 2t I 

whence 
(2.1) ' G^~k\x) is undefined when n < -k, 

A-k) i.e., ft + A: > 0 is necessary for the existence of Gn (x) . 
Putting k = 0 in (2.1) leads to the situation covered in [2] when k = 0, so 

we exclude this repetition. 
Calculation in (2.1) gives us the first few Genocchi polynomials: 

(2.2) G(Sk\x) = \-k\\ 

Gffc+}l(a0 = |-fe + 11 I -faff + \k\ 

G^(X) -- ^^{^ + kx + ^^pl 
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^ V * ) - '-V,3 1'!*3 + f-2 + 3k{\+1)* + ^ V ^ 1 l-£ + 
3! 

3 | ! 

4 | ! 

L fc(fc + l ) ( k 2 + 5k - 2) 
16 

In particular, when k = I: 

(2.3) G^ar) = 1 

^Q (#0 — X + — 

G)~L)(x) = ~{xz + x + | r[-1}(x) = f { * 2 

^_1)(x) ~ix3 + |*2 + ~x + |1 = |(x + |)(x2 + x + 1) 

G(
3~l\x) = ~-ixh + 2x3 + 3x2 + 2x + | 

G^_1)(^) = ijx5 + |x4 + 5x3 + 5x2 + |a + | 

= i(x + o")(̂ Lf + 2x3 + 4x2 + 3x + 1) 

The Genocchi numbers Gn {n > 0) thus form the sequence 

(2 3) ' l/i I I I I U ' J ; 2\ ' 2' 35 4' 5s " 

while 

(2.3)" Gi|:» t ff("» . 2-12 + i a s n * - . 

Comparison of (2.1) with (1.1)' reveals that 

(2.4) G(
n-k\x) = {JnJ]

k)[E^kl(x). 
Differentiating both sides of (2.1) w.r.t. x leads to the Appell property 

U]* dG^\x) (_k) 
(2.5) ^ = nG^_k{(x), n + k > 1, n > 0, 
whence p ,_M 

d G (x) 
(2.6) ^ = n(n - 1) ••• (n - p + l)ff^(x), n - p > 0, 
so that, using (2.3), we have 

dn + lGJTk\x) 
(2.7) ^— = nl 

dxn+l 

Integration of (2.5) gives (with n -> n + 1) : 

(2.8) 6̂  k\x)dx = - ^ ^ . 
Jx n + 1 
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Summation Formula 

Theorem 1: 
n \ n \ f 

(2.9) £<-*>(* + y) = Z . , ., G^\x)yn'K j - - f e (n - j ) ! | j | ! 

Proof: m-t-m 

00 ^ I Y) I I • -J-

after rearranging the terms. 

Equate coefficients of tn/\n\\ and the result follows. 

For example, If k = n = y = 2, both sides of the formula (2.9) lead to the 
expression, also derivable from (2.2), 

1 M . . Q . , 3 ..9 . -,̂ 1 . . « 1 d"2)(x + 2) = f^ 4 + ̂ 3 + 4fx2 + 10-4 # + 924 

Furthermore, lfk=3, n - l 9 x = 0 , and z/ is replaced by x9 then (2.9) gives 

G['l\x) = | ( x 2 + 3x + 3) 

in conformity with (2.2). 

Complementary Arguments 

We say that x and -k - x are complementary arguments. 

Theorem 2: 

(2.10) ^ " ^ ( - ^ - *) = (-l)n + *G„(-fc)(a;). 

P r o o f : 

= (-1)* £ (-!)»<?<-*>(a:) — 

n = -k \n \ -

Comparison of the coefficients of tn/\n\l yields the result. 

Corollary 1: /„(-k), x . r 7 , 
^ (£; ;(x) if fc + n is even, 

(2.11) G{
n-k\-k - x) = { 

{-G{
n-k\x) if k + n is odd. 

Special cases of interest occur when x = 0 and (equivalently) x = -k. In 
either of these instances, consider also fc = 1. 
Corollary 2: In Theorem 2, replace x by x - (k/2). Then 

(2.12) 4"«(-x-f)= (-l)» + *G<-*>(* - £). 

If x = 0 in Corollary 2 (or # =' -k/2, k + n odd, in Corollary 1), 
then 

(2.13) £n_/0(-f) = 0> & + n odd, 
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i . e . . , G„ (x) has a z e r o when x = -k/2 f o r k + n odd . 

Thus , i n ( 2 . 2 ) , G\ + i(x) h a s a z e r o when x = -fc/2 f o r I odd . 

Analogue of the Multiplication Theorem 

More accurately, this analogue of the multiplication theorem [2] could be 
called a "division theorem" for negative first order Genocchi polynomials. As 
in [2], there are two cases to consider, one of which involves B^~1^ (x) . Unfor-
tunately, as for k > 0, this theorem does not extend beyond k = -1. 

Case I: m odd 
Theorem 3a: 

1 m- 2 

(2.14) G^p-^i- = -m-n^ £<-l)84-1)(* + s). 
Proof: 

t TTT "if (-l)aG£_1)(* + e) = m E ^ r ^ ( - D s ^ e
s * „__i |n| ! s__i gflx zr 

1 t.etete(-e-* + 1 - e* + ... + (-l)m-2eC«-2H) 

1 + g* 
2£ 

gta(-£-*)(l - gt + g2* _ ... + (-l)m-lg(m-l)t) 

1 + e* f(*-l) 1 + ̂ ^̂  . -, , 
— — e v K ^ u • —-9 since 777 is odd 

2v I -\- et 

ntv mt(x-l) « ( m t ) n (_1)/x _ l 

Therefore, 

— g m = - > 777-j—i &Y, \ • 

\ 2mt I nei1 \n\\ n \ rn I 

. -. . m-2 
(-i)/£^lJA = _m-n-l £ (-l)8^-1'^ + s), m odd. 

\ m I s =~i 

Case II: m even 

Theorem 3b: 
(2.15) £(-1}(^^) = 2m--"1 ̂  (-l)s^-1}(x + s) 

Proof; 

rc=-l l nl l s =-1 

= L \ f e t x • -e'^l - e* + e2t - e3t + ... + (-l)^1^"^), as in 
2t Theorem 3a 

_ _ — _ ^ — g t c x - i ; _ since m is even 
2v 1 + g* 

^ ( s - l ) i ^TTZ* _ i mt(x- 1) 

* (1 - e ^ ) = m ^ . ^ — ^ . e * 2t v J 2 mt 
m ^ Q t ) n

 p(-i)/x - 1 
2 ^ = o 

nV 0nP. Km)' 2 
Equate corresponding coefficients of tn/nl and the result follows. It is 

to be noted that, in the left-hand side summation, n = -1 and m even lead to 
the term 

±-?(-l + 1) = 0. 
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R e l a t i o n s b e t w e e n P o l y n o m i a l s of S u c c e s s i v e O r d e r s 

Theorem 4: ( * „(-

( 2 . 1 6 ) G{
n'l\x - 1) + G(

n'l\x) =! 2 

Theorem 4: ( „ ^( -2) , ,x , 
1 2nG^_{{x - 1) w = 1, 2 , 3 , 

^•2i}(a? - 1) n = - 1 , 0 . 

m! 
t \2 

it 
(1 + e"*) = 2t(l + e ) e*(*-D 

= 2^"2)(x - l ) ^ i - + 2G[\2\x - D-A- + ±2nG™{x - l )g 

Equate coefficients of tn/\n\l and the result follows. 

Clearly, the result can be extended to G„\x). 
With x + x + I in Theorem 4, we have 

( 2 . 1 7 ) G< " ( 1 + x) + G{
n
 l\x) ={ 2 

( i n - i | ! g " - 2 l ( a 0 n = - 1 ' °* 
w i t h a s t r a i g h t f o r w a r d e x t e n s i o n t o n - -k i f d e s i r e d . 

A companion r e s u l t i s 

Theorem 6: 

( 2 . 1 8 ) G(
n'l)(l + x) - G{

n~l\x) = 2 ^ (
n - 1 } ( | ) , (« > 0) . 

Proof: 

kr - (-2^-)(et - 1 ) e E f f „ ( l + x) - G ^ n ( x ) 
n= 0 

?2* - 1 2t.f 
It 

2n£fn-l\l)%> on u s i n g ( 1 . 2 ) ' , 
« = 0 

from which the formula follows. 

To generalize Theorem 6, we need to expand (e* - 1)^. After suitable alge-
braic manipulation, it ensues as in the proof of Theorem 6 that 

(2.19) t (-l)i-l())G{
n-k)U + x) = (-l)*-H2nfl£-k)(f) (n > 0). 

Theorem 7: 

(2.20) (n + l)^_1)(x) = n(ar + D ^ U O - |^0)(x) (n > 1) . 

Proof: Differentiate both sides of (2.1) for k - 1 w.r.t. £ partially, and then 
multiply by t. It follows that 

gta: 
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E q u a t e c o e f f i c i e n t s o f tn/n\ a n d t h e r e s u l t f o l l o w s . O b s e r v e ( s e e [ 2 ] ) t h a t 
G{^\x) = xn. 

The n = 0 t e r m , b e i n g a c o n s t a n t , does n o t c o n t r i b u t e t o t h e summation on 
d i f f e r e n t i a t i o n w . r . t . t p a r t i a l l y . 

P r o c e e d i n g i n t h e same manner , we may e s t a b l i s h t h e g e n e r a l i z a t i o n 

(2.21) {n + k)G{
n~k\x) = n(k + x)G{

n^\{x) - ^ k ' l \ x ) (n > 1 ) . 

In particular, when k = 2, the left-hand side of the first line of the proof in 
Theorem 7 (after partial differentiation and multiplication by t) becomes 

h - ̂ ^ + o + ± rt2\^> 
n= 1 

since the n = 0 term does not contribute, being a constant as far as partial 
differentiation w.r.t. t is concerned. 

G^~k\x) in Terms of G^1}(f(x)) 

Adopting a different technique, we are enabled to derive formulas connect-
ing G\~ \X) with negative first order Genocchi polynomials of appropriate func-
tions f(x) of x. When k = 2, 3, we have 

Theorem 8: If n > 0, 
„n+2 

(2.22) 
2(« + DG^ix) = 2{2- + ̂;1)1(f) + G™{x)} - f ^ , 

4(w + 2)(n + l)^i"3)(x) = 3|3^+1^(|) + G ^ U + 1)|. 

Proof: Consider 

V \ It I 2t\ 2 • 2t / 2t\ 2t / 2t2 

and 
(2.24) ( L ^ ) V * 3 (iJ^iX 3t.f + 3 /L,Lji)'(*+1). 
v ' \ 2t * 4t2\ 2 • 3t / 4t2V 2£ / 

Equate coefficients of tn/nl and the results follow. (xn+1 = G^z(x) by 
[2].) 

Determination of the somewhat complicated extensions of (2.22) for general 
k is left to the curiosity of the reader. Depending on the parity of k, we 
will obtain two separate expressions in the generalization. Nevertheless, 
there is a unifying principle in the proof, namely, the grouping of pairs of 
appropriate terms; when k is even, there will be additionally a single unpaired 
term. 

Similar kinds of results may be obtained for E\ (x) and B\ (x) on using 
(1.1)f and (1.2)'- However, in the case of Bernoulli polynomials we remark 
that, for k even, BJf \x) is expandable in terms of Genocchi polynomials. 

G^Hx) in Terms of ̂ ^(jr) 

Theorem 9: 

(2.25) G™W - ± , |W||, .^-"(iK" " W-
r=-i (n - P)!|p|! \2/\ LI 

Proof: . t t t ̂ _ i ^ t 
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j-»(i) ix _ i r + v + i 

}tli|-l|!t (e + D! \M \2)r\]\L0\x 2) ml 
Application of Cauchy's multiplication of power series and comparison of 

coefficients of tn/nl yield the desired result. 

Sums of Products 

What happens if we square both sides of (2.1)? Clearly, 

<"» u/^M^-^ui)--^^y 
= L G{-2\2x)- tn 

n=-2 \n\\ 

Comparison of coefficients of tn/\n\l yields a set of sums of products, ex-
pressible in general form as 

[̂  G{~l)(x^ 
2 Z gj"1}(x),n-^ n odd, 
j--i I" ~ 3\l 

(2.27) G(
n'2)(2x) = 

fn-l 
,(-1), 

2 £ g ^ t e ) , 0 " - ^ + ̂ ""(ar) n even. 

Furthermore, if we replace t by -t in one of the infinite sums in (2.26), we 
find 

<"»> C?-^I > wwi)U.c S-I , w^)--( i^1) * N 2 -t 

,(-2), „ t" 
n=-2 

;(-2) 
n=-2 |n| 

leading to formulas for £^ (-1) similar to those in (2.27). Observe that 

6^~2)(-l) = 0 when n is odd, by (2.13). 

Putting x - -1/2 in (2.27), we also obtain formulas for G„ (-1) in terms of 
4_1)(-l/2). 

Interested readers may wish to extend the above theory to unspecified k in 
G^~ (x) . Additionally, one may determine results corresponding to those in 
(2.27) for Euler and Bernoulli polynomials. 

3. Miscellaneous Theorems 

Use of BooleTs Theorem 

For a polynomial P(x), Boole rs theorem states that 

P(x + y) = VP(ar) + E1(y)VP'(x) + jjE2{y)VP»{x) + ±f3(y) VPr"(x) + -..,. 

where the symbol V (TnablaT) represents the operation of the mean of the func-
tion (see [2]) and E^(x) (i = 1, 2, 3, ...) are the Euler polynomials E^(x) 
obtained from (1.3) by replacing k by -1. Prime superscripts signify differ-
entiation w.r.t. x. 

Now 

VG{~l)(x) = |(^_1)(1 + x} + G(nX)(x)). by the definition of V 
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^nG^lix) {n = 1, 2, 3 , . . . ) 
1 by Theorem 5. 

\n - 1 I ! n l 

Put z/ = 0 in Boole !s theorem and take P(x) = 6^_1)(20 -
Then Boole fs theorem becomes, for n > 0 ( 2 . 5 ) , 

G{
n-l\x) = VG^l\x) + El(0)VG(

n-l)\x) + jjEz(0) VG^l)'\x) + . . . , 
t ha t i s , 
Theorem 10: When n = 1, 2, 3 , . . . , 

(3.1) G{
n~l) = nG{

n~?l(x) + ^ ( 0 ) - nG^l'ix) + j^E2{0) . nG{^\\x) + . . . . 

For example, i f n = 2, the r igh t -hand s ide reduces to 

- | (x3 + | x 2 + | ^ + | ) [= ^ 2 _ 1 ) ^ a s i n ( 2 » 3 ) ] -

Genocchi Polynomials in Terms of Bernoulli Polynomials 

The Euler-Maelauvin theorem (see [3]) s t a t e s , in the case of polynomials 
G{~l\x) , t h a t 

G{
n~l)\x) = A 4 _ 1 ) ( 0 ) + Bi^kG^'ix) + -^r-kG{-l)'\0) + - - . , 

where B^(x) (i = 1, 2, 3, ...) are the Bernoulli polynomials B^ (x) obtained 
from (1.4) by replacing k by -1 and A is the symbol for the operation of taking 
the difference. 

Now, by (2.5), 

G(
n-iy(x) = nG{

n-}l{x) (n > 0) 
and, by the definition of A, 

(3.2) A^-1}Cr) = G{~l\l + x) - G^l\x) 

= 2nB{~l)(^\ by Theorem 6 (n > 0) . 

Then, by (2.5) and ( 3 . 2 ) , the Euler-Maclaurin theorem leads to 
Theorem 11: 
(3.3) nG^x) = 2n^B(

n-l)(0) + Bl {x)B^l)' (0) + ^ f - 4 _ 1 ) " ( 0 ) + . . . j (n > 1 ) . 

When n = 3, the theorem reduces to 

3^"1}U) = x* + f*2 + ̂  + \, 

which is true by (2.3). Theorem 11 enables us to display G„ \x) entirely by 
means of Bernoulli expressions. Both Theorems 10 and 11 (for k = 1) may be 
extended to cover the case when k is general. 
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Some THybrid1 Products 

Let us write 

G tn 

Z 4 1 } (* ) !T , G- -= E <#}(*> (-*)* 
(3.4) 

n= 0 n\ n= 0 

n--l W. I 
(-*)* 

rc = - 1 

where G is as defined in [2], G* refers to (2.1) when k = 1, and £_, 6* are ob-
tained from G9 G*9 respectively, by replacing t by - £ . Corresponding symbol-
ism E, . . . , Et9 B, . .., Bt relates to Euler and Bernoulli polynomials, where E 
and B are also defined in [2]. 

Then, by [2] and (2.1) 

(3.5) GG* = e2tx 

and 

(3.6) GGZ = -e'* , 

Equating appropriate coefficients yields the hybrid results 

(2x)n 

(-D n-1 
rt- 1 ! 

n + i/G^Oc) G^ktf) 
(3-7) E ., ' i ••, 

and n > • / i \ 

(3.8)
 nfl(°n ^ (-DW"^>) 
Similarly, 

(3.9) GLG* = -e* = (GGt)'1 

and 

(3.10) G-G* = e~ltx = (GG*)"1, 

yielding results corresponding to (3.7) and (3.8). The case G*G±i has been 
covered in (2.28). In addition, 

GtGz 
t\2. HF) -t(2x + 2) 

gives the summation (2.1) for G{~2){-{2x + 2)}. 
Moreover, 

(3.11) 

EE* 

E-E* 

>2tx 

3_B* = et 

G*E = \eltx 

GE* te 2tx 

t\2 

G*E* = t{±y-) e t'lX 

1 e it 1 2t.± 
—e 2 

G*B* = 

for example, among a variety of possible products. The last three equations in 
(3.11) give the summations (2.1) and (1.2) ' for 
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^ ( ^ *£>(!), andfl^-i), 

respectively. 
Our theory may be extended to values of k > 1. 
Products of powers of the G, E9 and B symbols give rise to an immense num-

ber of identities, for example 
(GG-G*G±l = 1, 

(3.12) 1GE(E*)Z = tehtx, 
{G3G2(G*)ZB_B*(EI)3 = t3. 

To avoid tedium, we leave the challenge of exploring such possibilities, 
which may be continued almost ad infinitum, ad nauseaml , to the ingenuity and 
perseverance of the reader. 

4. Differential Equations 

Descending Diagonal Functions 

Arrange the G^~ (x) in (2.3) according to the following pattern: 

(4.1) G(_\l\x) = G[\l) 

G(-i>(a0 . G(-D + xG[\l) 

G['l\x) = G[~l) + xG™ + f^(-D 
G{

2~l\x) = G['l) + 2xG[~l) + x*G™ + ±X3G[\1) 

G{{l\x) = G{{1) + 3xG{{l) + 3x2G(1-1) + x 3 ^ ^ + ^ ^ 

^-D(^) = G<-I> + 4^^ 1 } + 6x24"1} + 4*3£(f1) + a^"1* + ̂ 5 ^ 1
1 ) 

in which 

(4.2) G(
n~l\x) = t 7 ^ll.-ii^ 1 ^ "' 

as in [2] for G(n1}(̂ ) . 
Imagine now that the terms are considered to lie in an infinite set of 

downward slanting "parallel lines" to form the following set of descending 
diagonal functions {g{~l)(x)} (n=-l, 0, 1, 2, ...) and their generating functions 
(k|<l): 
(4.3) g^\x) = G[\l)[l + x + \x2 + \x3 + ±x* + .. .) = G[\l\l - log(l - x)) 

^ V) = ̂o (1 + x + x + x + x + " • > = ^ o (1 " °°y 
g{{l\x) = G[~l)(l + 2x + 3x2 + 4a:3 + .--) = G["1){1 - x)~2 

g{~l)(x) = G ^ U + 3x + 6xZ + "••) = Gil)(l - ^ ) " 3 

with, generally, as in [2] for Gn (x), 
(4.4) ^_1)(x) = G ^ l - ^ ) " ^ + 1 ) . 
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(4 .5 ) 

Note t h a t 

9(n 

(-1) 

,(-D(a;) 

^ > ( 0 ) 
4-t0rr> 
w n 

nn+ln(-l) 

(1 + l o g 2)Gi\1} 

[9n 
W r i t e 

( 4 . 6 ) 

whence 

( 4 . 7 ) 

(1) is not defined. 

n > 0 

n > 0 

n = - 1 

D E Z?(ar, z/) = E ^ ( - 1
1
) ( ^ ) z / n ~ 1 = Z G „ " - l U ~ *) ' * 2 / 

3Z) 

W,yW-l 

" # • 

32/ 
(n ^-^f 

while, from (4.5), 

dg{
n-l\x) 

(4.8) (1 - x)- dx in + 1), 

0, 

,(-D (*). 

Observe in (4.6) that g_^ (x) has been omitted. 
Reverting now to (4.2), we may easily generalize this formula by replacing 

-1 by -k (three times). For what follows, the reader may find it helpful to 
construct a partial table like (4.1) from (2.2). An analysis of the cases 
k = 2, 3, ... then discloses the interesting nexus: 

(4.9) 9n t-
l\x) 9n 

("2)(X) 

G (-D G(-2) 
= (1 - x)~n+1 (n 
= 1 - log(l - x) (n 

0, 1, 2, 
-1) 

•) 

When n < - 1 , there is no such simple pattern as in (4.9) [though, excep-
y(-2) tionally, g_„ (x) is expressible in terms of g_-f (x)]. This unstructured situ-

ation results from the somewhat wayward behavior, as k varies, of 

r('k) (-*) (4.10) g^(tf) = G^Ul + 
1 

-k\\ 
-k + 1I \x + 

-fe + 2 1 ! 
2! 

-fe + 3 | ! 
3! 

which is aberrant on account of the unusual presence of. modulus factorials. 
The repetitive nature of the g^~^(x) is understood if we examine successive 

levels in the layout of 

G (-fc), A-k) i-k) (*), Gll^^x), G™z(x), 
corresponding to (4.1) 

Lder, for 

\-k + 3|! 

Consider, for example, the coefficients of x in G_k+^(x) and G_^+^{x), i.e., 

-k + 2 ! 
A-k) and 

-k + 4 ! (-fc) 
-fc + 3 | ! ~k + 3' 

respectively. Substituting k = 2 in the first case and k = 3 in the second, we 
have immediately 1 • £Q and 1 • £Q » i.e., the coefficient 1 is repeated. 

Rising Diagonal Functions 

Concentrate next on the infinite set of upward slanting "parallel lines" 
which form the following vising diagonal functions', 

32 [Feb. 



NEGATIVE ORDER GENOCCHI POLYNOMIALS 

(4.11) h_^'(x) = G{~1> 
h{-l){x) = G(~l) 

- 1 ) 

h[~l)(x) = xG^ + G['l) 

h{~l)(x) = xG{~l) + G{
2'1) 

h{-l\x) = \x2G[\l) + IxG^ + G™ 

h{~l\x) = x2G(
Q-l) + 3xGlf1) + G^"° 

h{-l)(x) = ^G[\l) + 3x2G[-1} + kxG{{l) + G^1 

h{-l)(x) = ar3G<_1) + 6x2G({l) + 5xG{
k'l) + G^'l) 

h(~l\x) = \xhG{_~^ + Ax3G['l) + lOx2G(f1) + 6xG(
5'l) + G^ 

h{'l)(x) = xhG{~l) + Kta 3 G^° + l5x2G{'l) + lxG{'l) + G<_1) 

General ly , , 

(4.12) h(
n-1}(x) = t ' " " ^I.G^.xJ. 

Clearly, 
(4.13) h{;l)(0) = G{

n-l) = ^ _ 1 ) ( 0 ) . 
Consider 

(4.14) R = R(x, y) = E ^-\^)yn'1 

= (1 - xy2)~lG{-l) + y(l - xy2)-2G[-l) 

+ y2(l - xy )~3Gl{1) + . . . . 
Writ ing 

(4.15) * E (1 - xy2)-2G{~l) + 2/(1 - xy2)-*G[-l) + y2(l - xy2)-^^ + .-
and 
(4.16) c)> = (1 - xy2)~2G{{l) + 22/(1 - X2/ 2 ) - 3 ^^ 1 } + 3zy2(l - xy2)~hG{~l) + 
we readily obtain, as in [2], the partial differential equations 

dR 
9x 

(4.17) ||= yH 
and 

(4.18) |^ = 2xy^ + *, 

leading to 

on partially differentiating (4.17) w.r.t. y and (4.18) w.r.t. x and then apply-
ign Bernoulli!s theorem: 

d2R d2R 
dxdy dydx' 

Generally, \n+k] 
L ^ J In (4.20) h^khx) - L t J # ^ i ; V J ' . 
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i.e., -1 in (4.12) has been replaced by -k (three times), and an extended theory 
for differential equations may be pursued corresponding to that given in [2]. 
Observe that, whereas in (4.20) the number G_^ has been omitted, in the gene-
ral case, the numbers G_^ > G^^ > •••> ^-k W ^ H D e missing. 

5. Concluding Remarks 

Many other properties of GJf \x) may be developed, but it is hoped that 
this exposition will give a flavor of the basic ingredients of the mixture. 
Further extensions could, for instance, involve relationships with B^k^ (x) and 
En~ (%) • As a guide to the possibilities, one might consult [2] for corre-
sponding material relating to G^kH%)> e.g., graphs, and for appropriate refer-
ences . 

In treating £„ \x), there is the obvious choice of deciding whether or not 
to exclude the cases n = -k, -k + 1, ..., -1. Inclusion of these values does 
add to complications in the theory. Without them, one can sometimes proceed 
from results in [2] for k > 0 to those established here, simply by replacing k 
by -k. This situation gives the continuity and unity mentioned by Norlund (for 
Euler and Bernoulli polynomials) in the French quote in the Introduction. 

Consideration of negative values of n in G^^(x) adds much to the complete-
ness of the theory and, despite the difficulties involved, enhances the enjoy-
ment of the work. 
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