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1. In t roduct ion 

We report solutions to the following general problem: 

Fix a base b and a positive integer k . Does every set of positive 
integers {#]_, . .., xk] have an integer multiplier m > 1 such that 
none of mxi, . .., mxk contains the digit 1 in various positions of 
its base b representation? 

It has been known for more than a century ([1], p. 454) that every positive 
integer x has a multiple mx consisting of repetitions of any prescribed string 
of digits followed perhaps by zeros. But the structure of a set of numbers 
{mxi, . .., mxk] is not so easy to stipulate, even if we merely require that the 
digits differ from 1. Related questions are discussed in [1] Ch. XX, [2] Ch. 
IX, and, in connection with the generation of pseudo-random numbers, [3] Sec. 
3.2. 

2. Summary of Results 

Let the base H e a positive integer > 2, and let the variables k9 m9 n9 
Xi, ..., xk denote positive integers. Our results are the following: 

Result 1: (i) If 2k < b, then for any set {#]_, ..., xk} there is an m such 
that none of mxi, ..., mxk has leftmost digit 1. 

(ii) If 2k > b, then there exist sets { } such that for any 
m at least one of mxi, ..., mxk has leftmost digit 1. 

Result 2: (i) If b is not a prime power, or if b = pn for some prime p and 
k < n(pn - p n _ 1 ) , then for any set {xi, ..., xk} there is an m such that none 
of wx\y ..., mxk has rightmost nonzero digit 1. 

(ii) If b = pn and k > n(pn - p n - 1 ) , then there exist sets {xl5 ..., 
xk} such that for any m at least one of mx\, . . . , mxk has rightmost nonzero digit 
1. 

Result 3: If k < b - 2 when b is prime, or k < the smallest prime factor of b 
when b is not prime, then, for any n and any set { }, there is an m 
such that none of wx\9 ..., mxk has the digit 1 among its n rightmost nonzero 
digits (a string of consecutive digits the last of which is the rightmost 
nonzero digit of the number). 

3. The Leftmost Digit Case 

Given a set of positive integers x1? ..., xk, we express them in scientific 
notation by xi = a^b1^1 with k^ in {0, 1, 2, ...} and ai in [1, b) O Qs and order 
them so that al < ' ••• < ak. 

Proposition 3.1: Let b be > 3. The following are equivalent: 

(3.1.1) for each integer 77? > 1 at least one of mxi, ..., mxk has leftmost 
digit equal to 1; 

and 
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(3.1.2) | < ̂  and ^ ± ± < 2, for all i = 1, . . . , k - 1. 

Proof: Suppose (3.1.1) fails for some m. Then each mxi has leftmost digit > 2. 
Choose j such that 2i«7' < xl < bJ + l

5 and let n = j - kx. If (3.1.2) is true, an 
induction shows that mat < bn + l for each i (mai+i < 2mat < 2bn + l implies that 
mai + i < bn+l). This gives a contradiction since 2bn + l < mbai ^ 2™a-k < bn + l . 

Conversely, suppose (3.1.2) fails. If a.+ l > 2aj for some j , set mi = ki 
for i < j and mt = kt + 1 for i > j . Then it is straightforward to verify that 
the inequalities 

a7+l ak 

can be r e w r i t t e n a s : 
(2hmi ) (hmi + 1 

( 3 . 1 . 3 ) m a x < ^ — : 1 < i < k\ < m i n < ^ : 1 < i < k 

(3.1.3) is also true when b/2 > akl a\ provided mi = ki for every i. According-
ly, we can find rational numbers of the form m/bq strictly between the two 
bounds in (3.1.3). Then 

2o z ^ < mxi < b z H 

for all i , and (3.1.1) fails. H 

Part (i) of Result 1 is an immediate consequence of Proposition 3.1 since 
(3.1.1) can only be true if 

* ^ a* /*2\ <_^k_\ < 2,_2 
ak = /^2\ 9 e /

 ak \ 
al \ai) °' * \ak _i) 2 

and this cannot occur if 2k < b. 
A set Y is called a multiple of {#i, ..., tf^} if and only if Y = {???̂ ]_, ..., 

7772̂ } for some positive integer m. Y is called a quasimulti-vle (in base £>) of 
{#1, ..., x̂ .} if and only if 

J = Ow' • a?i • bnW, ..., m' • xk* bn(k)} 

where /??; is a positive integer and n(l), ..., n(k) are nonnegative integers. 
For example, {6, 9, 15 } is a multiple of {2, 3, 5}, and {9, 600, 150} is a 
quasimultiple (in base 10) of {2, 3, 5}. 

Part (ii) of Result 1 follows from the next proposition. 

Proposition 3.2: Let 2k > b. Then every quasimultiple {x\9 ..., xk } of {1, 2, 
..., 2k~1} has property (3.1.1). There are other sets with this property if 
and only If 2k > b. 

Proof: The set T= {1, 2, ..., 2k~1} satisfies (3.1.2) if 2k > b. Hence, it 
satisfies (3.1.1). Since (3.1.1) is preserved under quasimultiplication (mul-
tiplication by powers of b merely adjoins zeros on the right), quasimultiples 
of T also satisfy (3.1.1). 

If {xi, ..., xk} has property (3.1.1) and is indexed as in Proposition 3.1, 
then (3.1.2) can be rewritten as 

(3.2.1} ! < fill , b , (f2\ (_^\ , 2*-i. 

I f 2fc == fe, ai + i/<2i must e q u a l 2 f o r each i . Then 

^ = 2t~1a1& * for each i, 

where a.\ = X\lb l is a fraction of the form m/2q with 777 odd. It follows easily 
that Xi = m* 2!?Ii , where each mi is a distinct integer mod k. Hence {xi, . .., 
x^} is a quasimultiple of T. On the other hand, if 2k > b9 we can choose frac-
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tions vt = CLi + i/ai satisfying (3.2.1) with each inequality satisfied strictly 
and the product less than mln{b, 2k~1}. We also choose a fraction a\ > 1 such 
that ai • 1*2 vk <'b* All °f these fractions can be taken to have the 
form m/bq with m odd. Multiplying each ai = a\ • r2 P{ by the smallest 
power of b that makes the product an integer, we get x^1 s satisfying (3.1.2), 
and hence (3.1.1). Since each x is odd, {#]_, . . . , xk} cannot be a quasimul-
tiple of T. m 

4. The Rightmost Digit Case 

Proposition 4.1: Let b be neither a prime nor a prime power. Then for any set 
of positive integers X\9 ..., xk there is an integer m > 1 such that none of 
mxi, ..., mxk has rightmost nonzero digit 1. 

Proof: Express b as the product of two relatively prime integers r and s that 
are greater than 1. Let t be the highest power of v that occurs in any of X\9 
..., xk, and let m = st + 1. 

If for some i the rightmost nonzero digit of mx^ is 1, then 

mxi = st+lxi = bn~l (mod bn) 

for some positive integer n. So rn~* divides x^ and n - 1 < t. Removing the 
common factor sn~l from the equation above, we conclude that s divides a power 
of r. Since this is impossible, all of the integers rnx^ have rightmost nonzero 
digit distinct from 1. ® 

Proposition 4.2: Let b = pn where p is a prime. Then the following are equiva-
lent: 

(4.2.1) for each integer m > 1 at least one of mx\, ..., mxk has rightmost 
nonzero digit 1, 

and 

(4.2.2) for each positive integer c in {1, ..., b - 1} that is relatively 
prime to p and each integer i in {0, ..., n - 1}, there is an x in 
{#]_, ..., xk] such that y E cp^ (mod pn + i) where z/ is the quotient 
obtained by dividing x by the highest power of b in x. 

Proof: Suppose that (4.2.2) holds. To establish (4.2.1), we assume without 
loss of generality that m is a positive integer not divisible by b. Then 
m = aps, where a is a positive integer not divisible by p, and 0 < s < n - 1. 
Because a and £> are relatively prime, there are integers c and <i such that ao + 
bd = 1 with 1 < <? < i> - 1. If s = 0, let i = 0 and choose a;, y as in (4.2.2) 
so that y = c (mod 2?). Then my E mo E I (mod £>) . So 7772/ has rightmost digit 1, 
and (4.2.1) holds for mx. If s > 1, let i = n - s and choose #,2/ as in 
(4.2.2) so that 2/ = cpn~s (mod p 2 n _ s ) . Then 

my E acpn (mod p2n) E pn (mod p2n) E b (mod £>2) . 

Thus, my has its two rightmost digits equal to 10, mx has rightmost nonzero 
digit 1, and (4.2.1) holds. 

Conversely, suppose (4.2.1) holds. Remove all powers of b from each xi, 
and the resulting set {y\9 ..., yk} still satisfies (4.2.1) with none of the 
y^s divisible by b. Let c be any integer from 1 to b - 1 relatively prime to 
p. Choose integers a and d such that ao + bd = 1 and 1 < a < b - 1. Let 
77? = ap71"1 with 0 < i < n - 1, and by (4.2.1) choose y in {y1 , ..., z/fc} such 
that 7??z/ has rightmost nonzero digit 1. Then 

my E apn"ly = Z?s (mod Z?s + 1) for some s > 0. 

Since p does not divide a, and £> does not divide y9 s = 1 and p^ divides 2/. 
Then 
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ay - pl (mod pn + i) and y = (aa + bd)y = op*1 (mod pn + i), 

as required in (4.2.2). B 

Corollary 4.3: Let b = pn. Then there exist sets {xl9 . .., a;fe} which satisfy 
(4.2.1) if and only if k > n(pn - pn~l). 

Proof: The number of positive integers c in {1, . . . , £ - 1} relatively prime to 
p is p n - p n - 1 , and the number of equations of the form y = opi (mod pn + i), 
with c as above and 0 < i < n - 1, is n(pn - p n _ 1 ). It is easy to see that no 
integer y satisfies two different equations of this form. Thus (4.2.2), and 
hence (4.2.1), can be satisfied precisely when k ^ n(pn - p n _ 1 ) . m 

Parts (i) and (ii) of Result 2 follow at once from Proposition 4.1 and 
Corollary 4.3. 

5. Strings of Rightmost Digits 

Lemma 5.1: Let (z\, ..., zk) be an ordered fc-tuple of positive integers sat-
isfying 

k 
(5.1.1) ]Tgcd(2>, zt) < b - 2. 

i= 1 
Then, for every ordered k-tuple (y\s ..., yk) of integers, there is an integer 
m in {1, ..., b - 1} such that none of the equations 
(5.1.2) mzi = yi (mod b), i = 1, ..., fe, 

is true. 
If it is assumed that 

k 
(5.1.3) Y,gcd(b, zt) < b - 1, 

i= 1 
the conclusion above holds for some integer m in {0, ..., b - 1}. 
Proof: By elementary number theory ([4], p. 102), the equation mz^ = z/̂  (mod b) 
has a solution m in the integers mod b if and only if y^ is divisible by gcd(Z), 
Zi). When such a solution exists, there are exactly gcd(Z?, z^) of them. If we 
assume the worst, then equations (5.1.2) all have distinct solutions. This 
leaves 

k 

i= 1 
(> 0) 

integers 77? among the integers 1, 2, ..., b - 1 to satisfy the conditions of the 
lemma. 

The last statement is proved similarly. • 

The n rightmost nonzevo digits of x refers to the string of n successive 
digits in x whose rightmost member is the rightmost nonzero digit of x. Thus, 
e.g., in base 10 the three rightmost nonzero digits of 740,500 are 4, 0, and 5. 

Proposition 5.2: Let foi, ,.., xk} be a set of positive integers whose right-
most nonzero digits satisfy (5.1.1), and let n be a positive integer. Then 
there exists an integer m in {1, .. ., bn - 1} such that none of mxi, ..., mxk 
has the digit 1 among its n rightmost nonzero digits. 

Proof: Let sl5 ..., zk be the rightmost digits of Xi, ..., xk, none of them 
zero without loss of generality. By Lemma 5.1, choose rriQ, the rightmost digit 
of m, in {1, ..., b - 1} so that the equations 

, i\ mQ%i - 1 (mod b) for i such that gcd(Z?, z^) = 1 
ITIQZI = 0 (mod b) for i such that gcd(2?, z^) > 1 
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(i = 1, . .., k) are all false. Then mQz^ (mod b) 9 the rightmost digit of mxiy 
is in the set {2, . .., b - 1} for each £. 

If the first j digits of m from right to left—m 0 , . .., ^j-i—have already 
been chosen, then the (j + l ) t h digit of mxi will equal mjz^ + u^j (mod £>)> 
where Uij is an integer depending on the first j digits of m and Xi and the 
(j 4- l)th digit of xi. By Lemma 5.1, choose m-j in {1, ..., b - 1} so that none 
of the equations 

rrijZi E l - uij (mod b), i = 1, ..., k, 

holds. For j > n, set Wj = 0. Then 777 is as required, m 

Proof of Result 3: Let q be the smallest prime factor of b. The rightmost non-
zero digits Zi of Xi satisfy gcd(b, z^) < b/q. If 

(5.3.1) k -(|) < b - 2, 

then (5.1.1) is true and Proposition 5.2 yields Result 3. 
When b is prime or k < q ~ 1, the hypotheses in Result 3 ensure that (5.3.1) 

holds. Thus, we need only consider the case when b is composite and k = q. 
Suppose until further notice that gcd(2?, z^) is smaller than b/q for at 

least one i. Then the left side of (5.1.1) is bounded above by (q - I)(b/q) + 
p', where rr is the second largest factor of b, the largest being v = b/q. 
If rf < v - 2, (5.1.1) applies again. If not, b = 6 or 4. 

If £> = 6, then q = 2 and {^1} ^2) is a pair. Either JTIQ = 1 fails to sat-
isfy each of the two equations (5.2.1) or else one of Zi and z^_ is 1. In the 
latter case, 

gcd(Z?, zi) + gcd(£, z2) < 3 + 1 < 6 - 2, 

and (5.1.1) is fulfilled. In the former case, the induction in Proposition 5.2 
can proceed using (5.1.3) since 

gcd(&, zx) + gcd(Z?, S 2 ) < 3 + 2 < 6 - 1 

and 77?j can be chosen equal to zero if necessary (for j > 1) . 
If b = 4, then q = 2 again. An argument similar to the last one applies 

except when {s^, z2) = {1» 2}. Then m0 = 3 can be used to falsify equations 
(5.2.1), and 2 + 1 < 4 - 1 ensures that (5.1.3) applies to the later digits of 
m. 

Finally, suppose gcd(Z?, z^) = r for each i, - 1, ..., q. Then each Xi -
y^T8 with s > 1, where Vs is the largest power of v dividing all x^ . Then {y\, 
..., z/̂ } is covered by the earlier arguments since not all y^ f s are divisible 
by v. If none of /m/i, ..., 7772/̂  has l's among the n rightmost digits, the same 
is true for 

(̂ s77?)̂ 1, ..., (qsm)xq ^my^8, ..., myqb3. m 

6. Further Questions 

1. To what extent do these results apply to other digits (or strings of 
digits) and other positions? For example, under what conditions can we ensure 
that the two rightmost nonzero digits differ from 1? 

2. Can the hypotheses of Result 3 be weakened, or are they necessary as 
well as sufficient? 

3. What are the smallest multipliers needed in Results 1, 2, and 3? The 
proofs provide upper bounds, but calculations suggest that much smaller multi-
pliers will often suffice. 
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4.. Under what conditions can lrs be eliminated in every position? Result 
1 shows that 2k < b is a necessary condition. However, even the following ele-
mentary question remains unanswered for bases > 4: Are there numbers x and y 
such that for every m at least one of mx or my contains the digit 1? 
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