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1. Introduction 

Mairy papers concerning a variety of generalizations of the Fibonacci se-
quence have appeared, primarily in The Fibonacci Quarterly* in recent years. 
Horadam [1] was one of the first to initiate this interest when he changed the 
two initial terms of the Fibonacci sequence from 0, 1 to HQ9 # I , arbitrary 
integers, while maintaining the recurrence relation. He remarked in [1] that 
there are fundamentally two ways in which the Fibonacci sequence may be 
generalized; namely, either the recurrence relation can be changed or the 
initial terms can be altered. The two techniques can be combined, of course. 
Of the two alterations, a change in the recurrence relation seems to lead to 
greater complexity in the properties of the resulting sequence. 

Some generalizations have been given names. The Tribonacci sequence, {Tn}, 
is defined by 

(1) Tn = Tn.Y + Tn„2 + Tn_3 (n > 3), T0 = 0, Tl = T2 = 1. 
A generalized Tribonacci sequence results when the recurrence relation is the 
same and TQ> T-±, T2 are arbitrary. The Tribonacci sequence and this particular 
generalization have been examined rather extensively in the literature. See, 
for example, [2], [3], [4], [5], [6], [7]. 

The Tetranacci sequence, {Mn}, is defined by 

(2) M„ = Mn_! + M„_2 + M„_3 + Mn_h (n > 4), M0 = M1 = 0, M2 = M3 = 1. 

The first mention of the Tetranacci sequence seems to have occurred in [2], 
and it has received further brief attention or reference in [8], [9], [10], 
[11], [12]. Some writers have used the name "Quadranacci" (Latin) instead of 
"Tetranacci" (Greek). We use the latter, as in [2]. 

The characteristics and properties of the Tetranacci sequence apparently 
have not been examined in detail, and that, along with an examination of the 
generalization which occurs when the four initial terms are chosen as arbitrary 
integers, is the purpose of this paper. 

As the recurrence relation and initial terms of Fibonacci-type sequences 
become more general, we quite naturally expect that the relationships among 
terms and the formal properties of the resulting sequences will become more 
complicated and complex, and this indeed is true. Nevertheless, by employing 
appropriate techniques, particularly by using vector and matrix methods, a 
number of properties of the Tetranacci sequence and generalizations and 
identities involving terms of these sequences are found and proved. 

2. Fundamental Properties 

As we begin an examination of the Tetranacci sequence and generalizations, 
two "companion" sequences emerge and are considered along with (2). These 
sequences are designated {Nn} and {Sn} and are defined as follows: 

(3) Nn = ffn_x + Nn_z + Nn_3 + Nn_h (n > 4), N0 = N2 = 0, Nl = N3 = 1, 

(4) Sn = Sn.l + £n_2 + 5'n_3 + Sn_h {n > 4), S0 = S3 = 1, Sx = S2 = 0. 
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS 

The sequences {Nn} and {Sn} have the same recurrence relation as {Mn} but 
different initial terms. The initial terms are, in fact, two distinct permuta-
tions of the four initial terms of {Mn}» It can be shown also that these two 
companion sequences are further related to {Mn} by 

(5) Nn = Mn_x + Mn_2 + Mn_3 (n > 3), 

(6) Sn = Mn_! + Mn_2 (n > 2). 

We define the generalised Tetranacci sequence, {yn}5 as 

(7) ]ln = Un_x + Un_2 + \in-s + \ln-h (n ^ 4) 

where y0» Vi> ^2> ^3 a r e arbitrary integers. 
The analogous genevdtized companion sequences, {vn} and {on}, then become 

(8) vn = vn_: + vn_2 + vn_3 + vn_4 (n > 4) 

or, alternately, 

(9) vn = yn_x + yn_2 + un_3 (n > 3), 

where v0 = Ui - UQ» vx = u2 - UX, v2 = U3 - Vz> v3 = ^2 + Pi + Uo> 

and 

(10) an = an_! + an_2 + an_3 + an_4 (n > 4) 

or, alternately, 

(11) an = u ^ + un_2 {n > 2), 

where aQ = \x2 ~ Vi ~ Uo> al = ^3 "' ̂ 2 ~ ^l* °2 = ^1 + Uo> a3 * ^2 + ^1-

The choice of the initial terms of {vn} and {on} is not arbitrary but is deter-
mined by their relationship to {un}. 

The table below gives values of the three sequences {Mn}, {Nn}} and {Sn} 
for n = 0 to 18. 

n 

Mn 

#n 

^n 

0 

0 

0 

1 

1 

0 

1 

0 

2 

1 

0 

0 

3 

1 

1 

1 

4 

2 

2 

2 

5 

4 

4 

3 

6 

8 

7 

6 

7 

15 

14 

12 

8 

29 

27 

23 

9 

56 

52 

44 

10 

108 

100 

85 

11 

208 

193 

164 

12 

401 

372 

316 

13 

773 

717 

609 

14 

1490 

1382 

1174 

15 

2872 

2664 

2263 

16 

5536 

5135 

4362 

17 

10,671 

9,898 

8,408 

18 

20,569 

19,079 

16,207 

The analogue of Binetfs formula for the Fibonacci sequence can be derived 
for {Mn} and {un}. In [7] Spickerman and in [3] Waddill and Sacks derived the 
analogue of Binet's formula for the Tribonacci sequence and later in [8] Spick-
erman and Joyner generalized the result obtained in [7] to recursive sequences 
of order K. Since the Tetranacci sequence is a variation of the recursive 
sequence of order 4 in [8], the formula there may be adapted to give Binetfs 
formula for the Tetranacci sequence; namely, 

(12) Mn = A ^ + A2vl + A3r% + A^r%, 

where A± are constants and r^ are the four distinct roots of 

x4 - x^ - x2 - x - 1 = 0 . 

Binetfs formula for un is the same as (12) except that the A^ are functions 
of UQ, U]_, U2> U3. The Ai and 2^ in (12) may be computed routinely but the 
resulting formula is long and cumbersome; hence, it is not written explicitly 
here nor used in the sequel. 
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A useful means of r ep re sen t ing the recur rence r e l a t i o n of the Te t ranacc i 
sequence i s by employing what we c a l l the T-matr ix s the analogue of the Q-
matr ix [13] which has been widely used in e s t a b l i s h i n g p r o p e r t i e s of the 
Fibonacci sequence. 

The ^-matr ix i s defined to be 

(13) 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

Induction proofs may be used to establish 

(H) Mr,-n-1 
n-2 
n-3 

(15) 

and 

(16) 

= 

= 

1 
1 
0 

_ 0 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
1 
0 

1 
0 
0 
1 

1 
0 
0 
1 

1 ' 
0 
0 
0 

1 
0 
0 
0 

71-3 

n-3 

M3 
M2 
Ml 

. M0 _ 

^3 
y 2 

Vn-1 
y*-3 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

Mn + 2 Nn + 2 Sn + 2 Mn + l 
Mn + l Nn + l Sn+l Mn 
Mn Nn Sn Mn_! 
Mn-i ®n-\ Sn.l Mn_2 

The right side of equation (16) indicates a reason for calling {Nn} and 
{Sn} "companion" sequences of {Mn}i both occur naturally in successive powers 
of the T-matrix. 

Although up to this point, we have restricted the subscripts of the Tetra-
nacci sequence and generalizations to being nonnegative, we may remove that 
restriction and define {Mn}5 {Nn}> {Sn} and their corresponding generalizations 
for all n» 

By writing the difference equation (2) as 

(17) Mn = Mn+h - Mn + 3 - Mn + 2 - Mn + l , 

and choosing n < 0S then n + 4 5 n + 3 , n + 2 5 and n + 1 are all greater than n5 

which allows us to define Mn by the four terms immediately following it. That 
is, 

M_L = M3 - M2 - Mi - MQs 
M_2 = M2 - Mi - MQ ~ M_l5 

and so on. 
We may obtain another useful definition of Mn, n < 05 by using the T-matrix. 

We first write (14) as 

(18) 

Mn 

Mn + l 
Mn+2 
Mn + 3 

0 1 0 0 
0 0 1 0 
0 0 0 1 
1 1 1 1 

n ' M0 " 
M]_ 
M2 
M3 

Now, in (18), if we replace n by -n, we have, for n > 0, 
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(19) 

M-n 
M-7Z + 1 
M.n+2 

M-n + 3 

0 
0 
0 
1 

1 
0 
0 
1 

0 
1 
0 
1 

0 
0 
1 
1 

-n ' M0 ' 
Mi 
M2 

_ ^ 3 . 

= 
-1 - 1 - 1 - 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

n ' M0 ' 
Mx 

Mz 

M3 

which defines Mn for n < 0; and this definition using the T-matrix is equiva-
lent to (17) . 

The sequences {Nn}, {Sn}, {yw}, {vn}, {on} may be defined for n < 0 in like 
manner. 

We now establish some interesting and useful identities. Using (15) and 
(16), we may write 

(20) 
Vn + p 
Vn+p-1 
y n + p - 2 
Vri+p-3 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

n-3 U3 
^2 
^1 
^0 

Mp + 
M-t 

'p + 2 1]lp + 2 N„ 

Mv 
P + l 

Np 
M7 P - l il/7 

^p + 2 
^ p + 1 
sP 
Sr, 

M 

p - l tfp-i Af! 

fP + l 

P - l 
p - 2 

^ n - 2 
Vn-3 

From which we conclude that 

(21) y n + p = Mp + 2 p n + Np + 2Vn_x + 5 p + 2 u n _ 2 + Mp + lMn_3 

or 

(22) U n + p = Mn + 2np + ̂  + 2U p_ 1 + ^ + 2 U p - 2 + Mn+lvp_3. 
By replacing il/p + 2 an<^ ̂ p + 2 using (5) and (6), regrouping and then employing 

(9) and (11), we find that (21) and (22) may be written 

y. n + p Mp + 2^n + M
P + ^n + V » + M

P-l^n-l (23) 

or 

(24) yn + p = ̂ + 2 y p + «n+1vp + Mnap + tf„_l»V-l-

As special cases of (21) and (23), respectively, when p 

yn = Mn_lV3 + Nn_lVl + sn_lVl + Mn„2v0 
or 

Mn = Mn_iv3 + Mn_2v3 + Mn_3o3 + Mn_i+y2-

We next consider the sequence {Rn} which is defined by 

0, we have 

Rr M,, R , = S Rn Nn R0 = Mn 

R3n 
R3n-l 
R3n-2 
R3n-3. 

Mn + l 
Nn + l 
^n+l 

. Mn 

1 
1 
1 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

n - 1 ^ 3 
R2 

R\ 
_ ^ 0 . 

and 

(25) 

The generating matrix of {Rn} is the transpose of the T-matrix, and the 
terms of {Rn} are generated in groups of three rather than singularly as in 
(14). It is evident that the sequence {Rn} is merely a meshing of the three 
sequences {Mn}, {Nn}, {Sn}, and, consequently, its terms are not as "spread 
out" as the terms of either of these sequences individually. This latter 
property become useful in establishing identities later on. 

The generalized sequence for {Rn} is designated {pn} and is defined as ex-
pected by 
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P2 = V 2 5 p3 

and 

(26) 

P 3n 
^3«-l 
P3n-2 
P3n-3 

= 
v„+l 
v n + l 
° n+l 

. V-n J 

"«n + l 
^n + 1 
^ft+1 

. Mn 

= 

Mn 

«n 
^n 
Mn-

1 1 
1 0 
1 0 
1 0 

Mn-l 
Nn-l 
S-n-1 

L Mn-2 

0 0 " 
1 0 
0 1 
0 0 j 

n-l 

K-2 ' 
^n-2 
^n-2 
^n-3 

p3 
P2 
Pi 

_ PO 

p3 
P2 

Pi 
PO 

Identities analogous to (21) and (23) may now be written for the sequences 
{vn} and {an}= Using (26) and writing 

(27) 
V-n + p 
^n + p 
°n + p 
^ n + p - 1 

1 1 0 0 
1 0 1 0 
1 0 0 1 
1 0 0 0 

p r 1 1 0 0 
1 0 1 0 
1 0 0 1 
1 0 0 0 

n-3 
^3 
V3 
°3 

L ̂ 2 J 

M 

M. 

p+2 
[P+2 
\p + 2 
P + l 

M. P + l 

' P + l 
Mr 

Mp 
NP 

M 

M. 

P - l M[ 

P - l 

p - 2 J ^ n - 1 

from (27) we conclude that 

(28) 

(29) 
f̂t + P 

°n + p 

Np+2^n + N. p + l v n v„ + Nno„ + /!/ p wn ' p - l ^ n - l J 

N u + N v + /I/ a + /!/ , y n + 2 P n + 1 p n P n - l p - l 
or hj (20) replacing u^ with v^5 we have 

( 3 0 ) 

( 3 1 ) 

S i m i l a r l y , 

Vn + p " Mp + 2Vn + V 2 V n - l + S p + 2 V n - 2 + M p + l V n - 3 ' 
Vn+p = M n + 2 V p + * n + 2 V p - l + 5 n + 2 V p - 2 + M n + l V p - 3 -

( 3 2 ) 

( 3 3 ) 

( 3 4 ) 

( 3 5 ) 

I 

(36) 

Jn+p 
7n + p 
J n + p 

Sp + 2^n + ^P + l V n + SP°n + ^ p - l ^ n - 1 
5 n + 2 ^ 5 n + l V p ^nC7p + Sn_lvp.l9 

Mp + 2°n + ^p + 2 ^ f t - l + Sp + 2°n-2 + M p + l Q n - 3 > 

°n+P = Mn + 2Op N a , + S o n + M , a „. n + 2 p - l n + 2 p - 2 n + 1 p - 3 
We may f u r t h e r g e n e r a l i z e ( 2 1 ) t o r e a d 

xn+ p = Mp+*c + 2^n-fc + N
P + k + 2^n~k-l + ^p + k + 2 ^ n - f c - 2 + V k + l ^n - fc -3> 

where k is any integer. Since {\in} has been defined for all n, all terms in 
(36) are defined even if a chosen value of k produces negative subscripts. 
Also equations (22)-(24) and (28)-(35) can be written in this more general way. 

In the vector on the left side of (15) the terms 

^ n 5 y n - l 5 ^ n - 2 5 yft-3 

are clearly adjacent terms of the sequence {un}. By using appropriate matrices 
we can write a vector in which the four terms are not adjacent but are "spread 
out1" in a prescribed manner. 
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS 

By (21) we have, for arbitrary integers p, q, and v, 

(37) 

^n +p 
^n + q 

Mp+2 Np+2 Sp+2 Mp+l 
Mq+2 Nq + 2 Sq+2 Mq+l 
Mr + 2 Nr+2 Sr + 2 Mr + 1 
1 0 0 0 

Vn-2 
Vn-3 

Using (23), (28), and (32), we conclude that 

(38) 
an+p 
^n+q 

L Vn 

M 2 M Mp M Y 
Nq+2 Nq+1 Nq Nq^ 
Sr + 2 Sr + 1 Sr Sr-l 
1 0 0 0 

Equations (37) and (38) will be used later on. 

3. Linear Sums 

A number of linear sum identities were discovered and proved. We give some 
of these and write them in terms of the generalized Tetranacci sequence, even 
though each has as a special case the corresponding identity for the Tetranacci 
sequence. All the listed identities may be proved by induction, but that 
method of proof gives no clue about their discovery. We give one proof to 
indicate how these identities, in general, were discovered. 

We have 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

n i 
£ "i = ^Wn + 1 + 2yn + y„_! + 2yQ + nx - U 3 ] , 
= 0 J 

n ^ 
£ V2i+l = 3^2^2n+2 + V2n ~ y2n_! - 2yQ + 2Vl - 3y2 + y 3 ] , 
.= 0 J 

.£ V2i ' S^Vzn+i + U2„_! " P2n_2 + 4^0 ~ ̂  + 3^2 " 2 M ' 
;= 0 J 

X ^ 3 i = 9 f 4 ^ 3 n + l + 3 ^ 3 n ~ Hn-1 + V3n-2 + 5 ^ 0 " 5 ^ 1 " 3 ^ 2 + 2 ^ ' 
= 0 * 

E VU+1 = o[4y3n + 2 + 3y 3 n + 1 - n3n + y 3 n _ 1 + 2yQ + 7yx - 3u 2 - y3.' 

i= o 

i= o 

^= 0 

i= 0 

E ^ + 2 = 9 ^ 3 n + 3 + 3 ^ 3 n + 2 " ^ 3 n + l + ^3n " ^0 + ^1 + 6 ^ 2 ~ 4 ^ > 

i+w-1 

i = 0 

4n 

E U^ = E ^ = 3 K n + l + 2 ^ n - l + ^hn-2 + 2 ^0 + ^1 " ^ ' 
i = 1 -" " " J 

E ^ ; + i = E ^ = 3^^+2 + 2 >V + ^ - 1 " yo + ^i - ^ ' 
i = 1 ^ = 1 

n *f«+l -j 
E Vhi + 2 = E H = 3̂ ifW + 3

 + 2*V+1 + Hn " ^0 " 2 ^ 1 " ^ > 

n kn + 2 , 
X > ^ + 3 = , E ^ i = J ^ ^ + if + 2 î4n + 2 + VHn+1 " y 0 " 2 ^ 1 " 3 ^ 2 " ^ 3 ^ ' 
i= 1 i = 3 
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Proof of (39): We w r i t e t h e f o l l o w i n g o b v i o u s e q u a t i o n s ; 

^0 
H 
u2 

+ 
+ 
+ 

Vl 
p 2 

^ 3 

+ 
+ 
+ 

y 2 

^ 3 
H 

= 
= 
= 

N 
^ 5 
^6 

- ^ 3 
" H 
~ ^ 5 

xn-l + y n + y n + 1 = y n + 3 
J n + 3 ' ^n + y n + i + y n + 2 = vn+k 

Now, adding these equations, we have 

n n n 
E Vi + Z î + ^n + 1 ~ ̂ 0 + Z W + ̂ n + 1 + ^n + 2 
i= 0 i= 0 i= 0 

w + 4 

or 

^ = 0 

which may be reduced easily to (39) by using (7) and dividing both sides by 3. 
The remaining identities, (40)-(48), are derived using similar techniques. 

4 . Q u a d r a t i c , C u b i c , a n d Q u a r t i c I d e n t i t i e s 

An a p p l i c a t i o n o f t h e T - m a t r i x i s i n d e r i v i n g a n d p r o v i n g t h e q u a d r a t i c 
i d e n t i t y 
( 4 9 ) « 2 + i + M2+M2_i + 2M{Mn^ + ^ _ 2 ) = M ^ 

Proof of (49): By ( 1 6 ) , we h a v e 

(50) rjiln _ 

M2n + 2 N2n + 2 $2n + 2 M2n-l 
M2n+l N2n+l S2n+l M2n-2 
M2n ®2n S2n M 2 n _ 3 
M2n~l N2n~l S2n~l M2n~k 

Mn + 2 Nn + 2 Sn + 2 Mn + l 

Mn+l Nn+l Sn+l Mn 

M„ 
Mn-l 

Nn 
Nn-1 

Sn 

£>n-l 
Mn-1 
M„-3 

Now we c a r r y o u t t h e m a t r i x m u l t i p l i c a t i o n on t h e r i g h t s i d e of ( 5 0 ) a n d 
e q u a t e t h e e l e m e n t s i n t h e t h i r d r o w , f i r s t c o l u m n on b o t h s i d e s o f ( 5 0 ) t o 
o b t a i n 

MnMn+2 + NnMn+l + SnMn + Ml_Y M. 2n 
which is equivalent to (49). 

By equating corresponding elements in the fourth row, first column of (50), 
we obtain 

( 5 1 ) M , o^L - Ml + MM„ + Mz + 2M ,M = Mn '1n + 2L'1n r j n ' L n n - 3 n-\ n - l n - 2 2n - 1 " 
The g e n e r a l i z e d v e r s i o n s o f ( 4 9 ) a n d ( 5 1 ) a r e , r e s p e c t i v e l y , 

( 5 2 ) y 2 + i + y 2 + y 2 ^ + 2 p n ( y n _ 1 + y n _ 2 ) 

= y 3 ^ 2 n - l + Vz(V2n " ^ 2 n - l } + ^ 1 ^ 2 n - 2 + ^ 2 n - 3 } + ^ 2 n - 2 
a n d 

( 5 3 ) P n + 2 y n - vl + P n y n _ 3 + vl-x + 2 y n _ ! y n _ 2 

= P 3 U 2 n _ 2 + U 2 ^ 2 n - 2 " y 2 n - 6 } + M^n-3 + V2n-0 + ^ 2 n - 3 ' 
I n ( 5 2 ) , i f we l e t yQ = y , = 0 a n d y 2 = y 3 = l , we h a v e 

Ml^ + Ml + M2 , + 2M (M , + M , ) = « 9 , 
n + 1 n n-\ nK n-\ n-2/ 2n ' 

which is (49). By letting p = n - 1, uQ = u-̂  = 0, u^ = u3 = 1, and replacing n 
by n + 1 is (21), we obtain (49) also. However, (21) is not readily obtain-
able from (52) nor is (52) obtainable from (21). 
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The same technique used in the proof of (49) may be used to find and prove 
cubic i d e n t i t i e s . In t h i s case , we use the fac t t h a t for the T-matrix, 
(54) rn3n-2 — mn-lmn-lmn 

and again after expanding and equating appropriate corresponding terms on each 
side of (54), we obtain, for example, 

(55) M3n = Mn+2(R1 • CO + Mn+l(Rl • C2) + Mn(Rl • C3) + ̂ _x(i?! - £\) , 

where i?1 is the first row of Tn~l, Ci is the i t h column of Tn~l and • is the 
usual dot product of two vectors. The right side of (55) is clearly a cubic 
which we do not expand completely because of its length. 

The analogue of (55) for {un} may be written in a manner similar to the way 
in which we wrote (52). 

We may continue using the above technique to find quartic, quintic, and 
higher-ordered relations, but it is clear that one side (the side involving 
powers) of the equation becomes exceedingly long and complex. 

One of the oldest and perhaps best known identities for the Fibonacci 
sequence is 

(56) F F n+lrn-l 

which was derived first by R. Simson [14]. In [3], the identity analogous to 
(56) was found for the Tribonacci sequence. We now pursue a like identity for 
the Tetranacci sequence. The simplest one may be obtained as in [3] by 
considering the determinants of both sides of (16) to obtain 

(57) 

'n + 2 
n + l 
>n 
'n-l 

Mn + 1 
Mn 

Mn-l 
M„-2 

Mn 

Mn-Y 
Mn-2 
M„-3 

Mn-1 
Mn-2 

Mn-3 
M„-h 

Mn+2 
K + 1 

Mn- 1 

-1 
-2 
-3 

n-h 

Mn 

Mn-l 
Mn-2 

Mn + i 
Mn 
M»-i 
M„.o 

Mn+2 Nn+2 Sn+2 Mn+l 

Mn+i Nn+1 Sn+l M 
Mn 

Mn-l 
«n s„ 

Sn-i 
Mn-l 
Mn-2 

1 1 1 1 
1 0 0 0 
0 1 0 0 
0 0 1 0 

( -1 ) n + l 

We shall not expand the left side of (57), but it is clearly a quartic 
consisting of 24 terms. 

We now consider some generalizations of (57). First, we rewrite (57) for 
the sequence {un} to obtain 

(58) 
Vn + 2 
^ n + 1 
Vn 
" n - l 

"n + l 
Vn 
" n - l 
" n - 2 

Vn 
" n - l 
" n - 2 
" n - 3 

" n - l 
" n - 2 
" n - 3 
" n - 4 

( - l ) n 
" 6 
" 5 
H 
" 3 

" 5 
"̂  
" 3 
" 2 

"̂  
" 3 
" 2 
" l 

" 3 
" 2 
" l 
" 0 

a quartic expression independent of n except for sign. 

Proof of (58): By (15), we have the following matrix equation: 

(59) 
" n + 2 
" n + l 
" n 

- " n - l 

" n + l 
" n 
" n - l 
" n - 2 

Un 
" n - l 
" n - 2 
" n - 3 

" n - l 
" n - 2 
" n - 3 
" n - t 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
0 
1 

1 
0 
0 
0 

n-h " 6 
" 5 
" 4 
" 3 

" 5 
" 4 
" 3 
" 2 

" 4 
" 3 
" 2 
" l 

" 3 
" 2 
" l 
" 0 

Now, by taking determinants of both sides of (59), we have (58). 

As a special case of (58), consider the sequence {®n} where 0, 
= 1 , 0L,, = a-

becomes 
arbitrary. The, determinant on the right side of (58) then 
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4(a + 1) 
2(a + 1) 

(a + 1) 
a 

2(a + 1) 
(a + 1) 
a 
1 

a + 1 
a 
1 
0 

a 
1 
0 
0 

(60) 

which is a quartic polynomial in a. Consequently, an algebraic integer a = (3 
exists, which makes the determinant (60) zero. Thus, for any n, the sequence 
{an} whose initial terms are 0, 0, 1, 3> where |3 is chosen so as to make (60) 
equal 0, always results in 

= 0. 

To obtain a more general form of (58) , we first observe that the quartics 
on the left side of (57) and (58) involve seven adjacent terms in the sequences 
{Mn} and {un}, respectively . We use the technique in the proof of (58) along 
with (37) to show that the terms of the quartic may be "spread out," so to 
speak, and that the number of terms involved may be as great as 16. Specifi-
cally, we prove the following identity: 

a , 0 n + 2 
n + l 

«n 
a n - l 

a n + l 
an 
an-l 
a n - 2 

an 
an-l 
an-2 
a n - 3 

a n - l 
« n - 2 
a n - 3 
an-h 

(61) 

Vn+m+r V-n+p+r V-n+q+r Vn+r 
Vn+m+s Vn+p+s Vn + q + s Vn+s 
Vn+m + t Vn+p+t Vn+q+t Vn + t 
Vn+m Vn+p Vn+q Vn 

= (-D n-l 
Mr+1 

Ms + 1 
Mt + l 

Mr 

Me 
Mt 

Mr-l 
Ms-i 
Mt-l 

Vm + 3 
^m+2 
^m + l 
Vm 

ap + 3 
xp+2 ^q + 2 
dp + l Vq + l 

Vq + 3 
Vn 

^3 

v2 

Vp Vq 

like (58) a quartic expression independent of n except for sign. 

Proof of (61): By (37) and (20), we have the following matrix equation: 

(62) 
Vn + m + r Vn+p +r V-n+q+r Vn+ r 
Vn+m+s Vn+p+s Vn+q+s Vn+s 
Vn+m+t Vn+p+t Vn+q+t Vn +t 
Vn + m Vn + p Vn+ q - yV n 

Mr + 2 Nr+2 Sr + 2 MP+l 

Ms+2 *s+2 Ss+2 Ms+1 
Mt+Z Nt+2 St+2 Mt+1 
1 0 0 0 

Mr+2 Nr+Z Sr+2 Mr+1 

Ms+2 «s+2 Ss+2 M s + 1 
Mt+2 Nt+2 St+2 Mt+l 
1 0 0 0 

V-n + m Vn+p Vn+q 
Vn + ra-1 ̂ n + p-l V-n + q-1 
Vn+m-2 V„+p-2 Vn+q-2 
V-n + m-3 Vn+p-3 ^n + q-B 

% + 3 
Vm + 2 
Wm +1 

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
0 
1 

1 
0 
0 
0 

Vn 
Vn-l 
Vn-2 
Vn-3 

Vp + 3 
Vp+2 
Vp + l 
Vp 

Vq+3 
Vq+2 
Vq + l 

Vq 

^3 

vz 

v o 
We take determinants of both sides of (62) to obtain (61) since, by using (5) 
and (6) and well-known determinant properties, we can show that 
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MP + 2 

Ms+2 
Mt + 2 
1 

Nr + Z 

^ s + 2 
Nt+2 
0 

Dp+2 
$s + 2 
$t + 2 
0 

^s + 1 

0 

Mr + 1 

« S + 1 
«t + l 

UT 

Ms 

Mt 

Mr-l 
Ms-i 
Mt-l 

(63) 

For the sequence {Mn}, (61) becomes. 

Mn + m+ r Mn + p + r Mn+ q+ r Mn+r 

Mn+m+s Mn+p+s Mn+q+s Mn+ 

Mn+m+t Mn+p+t Mn+q+t 

M n + m M, n+ p M. n+ q 
Mn+t 

(-Dn-
Mr + l 
Ms + i 
Mt + l 

Mr 

Ms 
Mt 

Mr-l 
Ms-l 
Mt-l 

Mm+l 
Mp + i 
Mq + i 

Mm 
Mp 

Mq 

Mm-l 
Mp-i 
Mq-l 

Several s p e c i a l cases of (61) are worth mentioning. 
p = 2t, m = T = 3t, n a r b i t r a r y , to ob ta in 

(64) 
^n + ht ^n + 3t ^n + 2t ^n + t 
^n + 3t ^n + lt Vn + t Vn 

F i r s t , l e t q = t , s = 

= ( - I ) " " 
M3t+l 
Mat 
Mzt-l 

Mzt+1 
M2t 
Mzt-l 

M. t + l 
Mt 
M. t-l 

y 3 t + 3 y 2 t + 3 
p 3 t + 2 
V3t+1 

3t 

y 2 t + 2 
v2t+l 
»2t 

Vt + 3 
H + 2 
Vt + 1 
Vt 

^3 
y 2 

^0 

which displays an interesting symmetry. 
Another special case of (61), which displays even greater symmetry, is ob-

tained by letting q = t = n, p = s = 2n, m = r = 3n. We then have 

(65) 
»7n ^6n 

Vkn 
\i 3n 

(-I)"-

^5n 

^3n 
^2n 

«3n + l 
Mzn 
M3n-l 

W3n 
»2n 
Vn 

M2n+l 
M2n 
M2n-l 

M„ + i 
Mn 

Mn-i 

3n + 3 
3n + 2 
3n + l 
3n 

U 2 n + 3 
y 2 n + 2 
y 2 n + l 
^2n 

^n + 3 
^n + 2 
^ n + 1 
Pn 

^ 3 
y 2 

^ i 
^0 

Note how all terms in the determinant on the left of (65) are n units apart, 
whereas those on the right occur contiguously in groups of three or four, and 
the groups are n - 3 units apart. 

5. Concluding remarks 

Many number-theoretic properties for the Fibonacci sequence quite expectedly 
do not extend to the Tetranacci sequence. However, the following divisibility 
properties hold: 

(66) 

(67) 

(68) 

(69) 

M5n-1 E M5n E M5n+l E 0 (™od 2 ) , 

% « - 2 = M5n + 2 = 1 (mod 2 ) , 

% n E M 5 n + 1 E 0 (mod 4 ) , 
M5n-2 E 1 ( m o d 4 ) • 

Proof of (66) and (67) : We consider the sequence {Mn} (mod 2) and d i sp lay the 
r e s u l t s in the following t a b l e : 
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n 

Mn (mod 2) 

0 

0 

1 

0 

2 

1 

3 

1 

4 

0 

5 

0 

6 

0 

7 

1 

8 

1 

9 

0 

From the table, it is clear that {Mn} (mod 2) starts to repeat after five 
terms and, since the pattern of zeros and ones will then continue to repeat in 
the same order, we have 

Mt 4 = M5n_x = 0 (mod 2), M5 E M5n 

M3 = M3n_2 = 1 (mod 2) 

0 (mod 2), Me E M5n+l E 0 (mod 2), 

M2 E M5n + 2 E l (mod 2)» 

Since by (66), M5n_i> % n , M 5 n + 1 are even, it is clear that three arbitrary 
adjacent terms of the Tetranacci sequence may have greatest common divisor 
greater than one. However, we can show that the greatest common divisor of 

Mn9 Mn+l, Mn+Z, M n + 3, 

any four consecutive terms of {Mn},is one. 
This paper, quite clearly, is not intended as an exhaustive treatment of 

properties of the Tetranacci sequence and generalizations. Some fundamental 
identities and sufficient other results and techniques for proving them are 
given to indicate the rich and remarkable nature of this sequence and generali-
zations . 
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