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facilitate their consideration, all solutions should be submitted on separate
signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE
H-466 Proposed by Paul S. Bruckman, Edmonds, WA

Let p be a prime of the form ax? + by?, where a and b are relatively prime
natural numbers neither of which is divisible by p; x and y are integers.
Prove that x and y are uniquely determined, except for trivial variations of
sign.

H-467 Proposed by Larry Taylor, Rego Park, NY

Let (ay, bn, Cn) be a primitive Pythagorean triple for n = 1, 2, 3, 4 where
Qns buns Cn are positive integers and by, is even. Let p = 1 (mod 8) be prime;
r?2 + 52 = t2 (mod p) where the Legendre symbol

((t +pr)/2> .y

Solve the following twelve simultaneous congruences:
(a1, by, e1) = (r, s, ),
(ags, by, c3) = (r, s, ~-t),
(a3, b3, c3) = (s, v, t),
(ay, by, cy) = (s, v, =t)  (mod p).
For example, if (», s, t) = (3, 4, 5) (mod 17),
(a1, b1s 1) = (3, 4, 5),
(105, 208, 233),
(667, 156, 685),

(21, 20, 29).

I

(az, bz: 02)

(az, b3, c3)

(aq, bq, Cq)
H-468 Proposed by Lawrence Somer, Washington, DC

Let {Un};=0 be a Lucas sequence of the second kind satisfying the recursion
relation

Up42 = QUns1 + bUn,

where a and b are positive odd integers and vy = 2, v; = a. Show that vy, has
an odd prime divisor p = 3 (mod 4) for » > 1. (This was proved by Sahib Singh
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for the special case of the recurrence {L,} on page 136 of the paper '"Thoro's
Conjecture and Allied Divisibility Property of Lucas Numbers" in the April 1980
issue of The Fibonacci Quarterly.)

SOLUTIONS

A Triggy Problem

H-466 Proposed by J. A. Sjogren, U. of Santa Clara, Santa Clara, CA
(Vol. 28, no. 4, November 1990)

Establish the following result:

Let n be a whole number and, for any rational number ¢, let [g] be the
greatest integer contained in ¢g. Then

5] -
.= 1 (3 + 2 cos _E_>°

k=1

Here, an empty product is to be interpreted as unity.
Solution by Paul S. Bruckman, Edmonds, WA

We consider the Chebychev polynomials of the second kind, defined as fol-
lows:
(1) U,(x) =
where

(2) a=a(x) =x+Vx2 -1, b =Db(x) =x - /x2 - 1.

n=20, 1, 2, ...,

It may be shown that U,(x) = 0 iff x = cos(mk/(n + 1)), k =1, 2, ..., n.
The U,(x) are polynomials of degree #, and their leading term is (2x)”. There-

fore,
n

Kk
- on _
(3) U,(x) = 2 k[}(x cos l)'
It follows that
U, (ix) Uy (=ix) = 4" fﬁ an + cos? KT )
n i k=1 n+1)°
By a change in variable from #n to n - 1:
n-1
(4) Up-1(Z2)Upy-1(-i) = [1 (4x2 + 2 4+ 2 cos gkl).
k=1 n
In particular, setting x = 1/2, we obtain:
n-1
(5) Up1(i/2)Up-1(~2/2) = [1 (3 + 2 cos 253).
k=1 n

Next, using (1) and (2), we obtain
a(i/2) = 3i(1 £ /5) = iu or 48,

where a and B are the usual Fibonacci constants; also
b(i/2) = 2i(1 7 /5) = 4B or ia,

respectively. 1In either case,

Uy,-1(2/2) = <" 1F, .
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Likewise,
Up-1(=2/2) = (=i)"~1F, .
Consequently,
(6) Upr (2/2)Up-1(=2/2) = F2, n =1, 2, 3,

Now, let A4, denote the product expression indicated in the statement of the

problem. For brevity, let 6, = 3 + 2 cos(2kw/n). Note that 6,_3 = 6x. We
consider two cases:

Case 1: n = 2m

Then 4, = [l 6, = Il 6,. Also, 8, = 1.

n

Hence, 42 = k(l 0y -

Case 2: =2m+ 1
m n-1 n-1
Then 4, = [] 0, = Il 0x, so A% =11 O -
k=1 k=m+1 k=1
In either case, we have
n-1
(7) A% = I] (3 + 2 cos gkﬂ).
k=1 n

Comparing this last expression with (5) and (6), we see that
(8) A2 = F2, n=1, 2,
Since 6, 2 1, we see that 4, =2 1. From this it follows that

(9) A, =F,, n=1, 2, ... . Q.E.D.

Also solved by S. Rabinowitz and H.-J. Seiffert.

Rings True

H-448 Proposed by T. V. Padmakumar, Trivandrum, South India
(Vol. 28, no. 4, November 1990)

If n is any number and aj, dps ..., dp are prime to n (N > A1, Qs «+vs Ap)s
then (ajap ... am)2 =1 (mod n). [The number of positive integers less than 7
and prime to it is denoted by ¢(n) = m.]

Solution by R. André-Jennin, Tunisia

put Z/nZ = {0, 1, ..., (w = 1)}, and U = {a;, @y, ..., am}. By hypothesis,
U is the multiplicative group of the invertible elements of the ring Z/nZ.

It is clear that the map x + 2! is a one-to-one mapping of U onto itself.
Hence,

a;l = ayyy, for 2= 1, .., m,
where ¢ is a permutation of {1, 2, ..., m}.

Thus, in the ring Z/nZ,

= =~ V-1 = 5-1 1 = -

(aiay, .. ay) =alt e At = Agqy cee Gueny= Ay e Oy
and so _

(al o e Clm)z =1,
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or, in other words,

(@] «+- ay)? =1 (mod n).
Also solved by D. Redmond and the proposer.

A Recurrent Theme

H-449 Proposed by Ioan Sadoveanu, Ellensburg, WA
(Vol. 29, no. 1, February 1991)

Let G(x) = xk + alxk“l + ... + a; be a polynomial with ¢ as a root of order
p. If G®Xx) denotes the pth derivative of G(x), show that

npc”_p
————— is a solution to the recurrence
G(P)(c)

U, = ¢ - A U, ) T AU, o, T e = ARl ke

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY

The result is trivial if ¢ = 0, so we shall assume that ¢ z 0. Write

G(z) = (x - e)PH(x),

where H(c) =

o

Let
2XG(1/x) and  h(xz) = xX"PH(1/x)

g(x)

such that g(x) = (1 - cx)?h(x), where h(l/c) # 0. Denote the generating func-
tion of u, by U(x). It is straightforward to check that

> k
g(@)U(x) = g(x)< Zoux> -y (@) + —E

I - cx
for some polynomial wj(x) which depends on ugy, %35 ..., Ugx-1. Therefore,
(1 - ex)wy(x) + xk (1 - cx)wy(x) + xk
(1 U = - =
(1 = ex)g(x) (1 - ex)P*™ih(x)

It follows that the characteristic equation for the recurrence is
(z - )P ) = 0.

Hence, u, = nPc¢” is a solution. We now proceed to improve this result.
There exist a polynomial w,(x) and constants 4, ..., Ap4+1 such that

wp (%) 41 Ap+1
+ T . S—
h(x) 1 - ex (1 - ex)pt!

(2) U(x) =

Consider
1 _s (ttn-1 n
A n=0( -1 )(cx) .

Since (tszlj is a polynomial in »n of degree ¢ - 1, it is clear that

Api1/ (1 - cx)Pt!

is the only expansion in which the coefficient of x” contains »nP. Indeed, this
coefficient is precisely A,,.1nP¢™/p!. Equating the numerators in (1) and (2),
we obtain

(1 - ex)wy (@) + 2k = wy(x) (1 - cx)P¥l + h(x){A; (1 - cx)? + .. + Ap+1}.

190 [May



ADVANCED PROBLEMS AND SOLUTIONS

Thus
_ (1/e) 1

Aprl = (1) T ePHE)”

From the observation

qr+l p+1

d
P {(z - c)p”H(ac)}x:C = dxp+1{(x - c)G(x)}x

(p + 1P,

(p + D) H{e)

=cC

we conclude that

"
_ Ap+1npcn _ nPe" P

Un = : T T®
p! G (e)

is a solution to the given recurrence relation.
Also solved by P. Bruckman, R. André-Jeannin, and the proposer.
Comparable

H-450 Proposed by R. André-Jeannin, Tunisia
(Vol. 29, no. 1, February 1991)

Compare the numbers
21
0=3 —
n=an

and

0" =2+ i .
2R QF2_ L+ (-1)PTH 22+ (-1

n-1

Solution by P. Bruckman, Edmonds, WA

We let
(1) A, = 2F2 + (-1)', mn=0,1, 2, ...,
(2) D, = EAud,_1, n=1, 2, 3,

We will prove the identity:

1 1 2F 2F,
3 — = 5 + 2 - , n=1, 2, 3,
(3) Dy Fn AVL An—l

The right member of (3) is equal to
1
5;[‘47114”_1 + ZFn (Fn+l‘4n—l - FnAn)];

therefore, it suffices to prove the identity:

(4) A Ay + 2F, (F 14,-y - F4,) =1, n=1, 2, 3,
Let S, denote the left member of (4). We see from (1) that Ay = A; = 1; hence,
Sy = 1. It suffices to prove that S,,; - S, =0, n =1, 2, ..., for this would
imply (4). We first require some basic identities:

2 2 2
(5) 4, = Fn + Fpifn-1 = Fpey - BoFpo1 = Fyo1 t FnFn+l;
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(6) Apg1 — 4y = 2F, (1 F,
(7) App1 = An-1 = 20905
(8) Fpo1hney + Bphyy = A, (Fyyp + 2F,).

Proof of (5): Since F,, F,_, - FZ = (-1)",
Ay = 25 + FypyFyoy = F2 = Fp + Fyp\Friy = (Fuyy = Fuo))? 4 BBy
= F2uy = FpyrFuoy + ooy = F2yy = Fyo1 By = Fao)) = Fayy = BBy
Foy + Fppy(Fyyy = Fro1) = Fioy + B Fyyy

2
Proof of (6): A,+1 - An = 3“ + FoioF, = Fio1 + FyFy
= F,(Fpyo + Fpo1) = Fy(Fuey + By + Fyyy = Fy) = 2F,1F,.

Proof of (7): Auyey = Apoy = Fhoy + FupoFy = Fioy = BBy
= (Fuvr = Fpo)) By + Fpo)) + By (Fuvo = Fro)

F L, + Fy(Foyy + Fy = Fy + Fp_1) = 28,1, = 2Fy,.

Proof of (8): F, 14n41 + B A,y = Foy1(4y + 2F, 1 Fy) + F, (4, - 2F,F,_1) [by (6)]
= (Fus1 + F)Ay + 28, (Fiuq = FyFy_1) = FyypAy + 2F, 4, [using (5)]
= (Fyip + 28,)A,.

Therefore,
Spe1 = Sn = Ap1dn + 26,01 (Fuyohy = Fpy1dne1) = Aphp-1= 28, (Fppdy oy = i Ay)
= Ay (Apay = An1) + 24, (FF + Fuy1Fuip) = 28,01 (B idysy + Fpdy 1)
Ay (2F0,) + 24,4 ,41 = 2F, 1A, (Fpyo + 2F,) [using (5), (7), (8)]
28, (Font Apsr = Fup1 By + 2Fy))
24, (Fpy + Fnz t Fpi1Fvo = Fuv1Fuyo = 2B, Fp ) = 24, (Fyy = B, (2F, 4 - F.))
= 24,(Fy, - F,(F,y1 + F,1)) = 24, (Fy, - F,L,) = 0.

This completes the proof of (4), and hence of (3).
We may now sum both sides of 93) over all natural numbers 7, observing that
all sums are absolutely convergent. The left sum is equal to

s~ 1
VL=1Dn

=0’ - 2.
Let u, = 2F,,1/4,. The right sum is equal to

l:z ?’1_+ U, - “n—l} = fl— - uy = 0 - 2 (using the fact that
n=1 tn n=1*%n Un, > 0 as n > ).
We conclude:

(9) 0’ = 0.

Comment: This very interesting result furnishes us with a series equivalent
to the much-studied series Z:=11/Fn, but converging much more rapidly than the

latter series. Thus,
0 =3+ 1/3 4+ 1/42 + 1/399 + 1/4655 + 1/50568 + --.- = 3.3599.

3k 3k koK ok
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