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1. Introduction

Let {w,} be the sequence satisfying the second-order linear recurrence
(1.1) Wy = PW,_1 + W,_», 1 € Z,

where w,, w; are given integers and p is an odd positive integer.

Of particular interest are the generalized Fibonacci and Lucas sequences,
{U,(p)} and {V,(p)}, respectively, which are defined by (l1.1) and the initial
conditions

Uo(p) =0, Ul(p)

1,
and

Volp) = 2, Vi(p) = p.
Cohn [2] has proved the two theorems below, which we shall need later.
Theorem 1: The equation V,(p) = 2 has:

(1) 4if p = 1, two solutions n = 1, 3;

(2) 4if p = 3, one solution n = 3;

(3) 4if p 2 1 is a perfect square, one solution n = 1;
(4) mno solution otherwise.

The equation V,(p) = 222 has the solution n = 0, and for a finite number of
values of p also n = *6, but no other solutions.

Theorem 2: The equation U,(p) = 22 has:

(1)- the solutions n = 0, and n = *1;

(2) 1if p is a perfect square, the solution n = 2;
(3) 4if p = 1, the solution n = 12,

(4) no other solutions.

Recently, Goldman [3] has shown that if L, = Lymx?, where Lon is prime, then
n = *2™, Adapting Cohn's and Goldman's method, we shall prove here the follow-
ing theorems.

Theorem A; Let g > 2 be an even integer. Then V,(p) = Vq(p)x?2, if and only
if n = *q.

Theorem B: Let g 2 3 be an odd integer. Then the equation U, (p) = Uq(p)x2 has
the solutions

(1) n =0, and n = %q,
(2) if p=1o0r 3, g =3, and n = 6,

and no other solutions.

2. Preliminaries

The following formulas are well known (see [1], [4], [5]) or easily proved
(recall that p is odd). For the sake of brevity, we shall write U, and V,,
instead of U,(p) and V,(p).
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(a) U, = (-1)*1U,, and V., = (-1)"V,,
(b) Uzn = Uth,

(¢) if d = ged(m, n), then Uy = ged(U,, U,),
(d) if g = 3, then Uq|U, iff q|m,
(e) if g = 2, then Vq|V, iff g|n, and n/q is odd,

(f) if an odd prime number divides Vy; and Vi, then v,(q) = v,(k), where
vy(s) is the 2-adic value of the integer s,

(g) 2|V, iff 3|n,

(h) if k = 2 (mod 6), then V3 = 3 (mod 4),

(1) gecd(Uy, Vn) =1 or 2,

(3j) 4if {wy,} is a sequence satisfying (1.1), then, for all integers n, X,

K. o_
Wopor + (D w, = w1 V-

The following fundamental lemma (see [2], [3]) is recalled here with a new
proof.

Lemma 1: If {w,} is a sequence satisfying (1.1), and kX an even number, then,
for all integers n, ¢

Woyoke = (-1)Pw, (mod V).

Proof: By (j) we have, since k is even
Wy42k = —W, (mod Vi),

and the proof follows by induction upon ¢. Q.E.D.

We shall also need the next result.

Lemma 2: If g and k are integers, with ¢ odd and k = *2 (mod 6), then
ged(Uqg, V) = 1.

Proof: By (h) and (i), notice that gecd(Uy, V3) = 1, since Vi is odd. Let
d = ged(q, k) = ged(g, 2k).

By (b) and (c), we have
gcd(Uq, Vi) |ged(Ug, Usy) = Ugs

and U, |Up, since d|k. Thus,
ged (Ugs Vi) |Uss

and so gecd(Ug, Vi) = 1, since ged(Uy, Vi) = 1. Q.E.D.

3. Proofs of Theorems

Proof of Theorem A: Assume that V, = quz, where g 2 2 is even, and n # #q.
Since Vhth, it follows from (e) that

n= (1 + 435)q, § = 0
= +xq + 2.3%k,
where 2jg = 3"k, and kK = *2 (mod 6). By Lemma 1 and (a),
Vy = ~Vaiqg = ~Vg (mod Vz),

since g is even; hence,
~Vg = Vygz? (mod V).

Since 2jgq = 3%k, then vy(k) > vy(q), so by (f) and (g), gcd(Vg, Vz) = 1 since
Vx is odd; hence, '
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-1 = 22 (mod V),
which is impossible, since V3 = 3 (mod 4). Q.E.D.
Proof of Theorem B: Assume that U, = Usx?, where ¢ 2 3 is odd, and n = %q.
Since Uq\Un, it follows from (d) that q‘n.
Assume first that n is even, n = 2jq, and note that j 2 1, since # even and
negative would imply that U, < 0. By (b), we get
UjqViq = Ugx?s
hence,
Ki = yz or qu = 2y2,
since Ug|Ujq and ged(Ujq, Viq) = 1 or 2.
If j = 1, then V4 = y2 or Vg = 2y?, which imply by Theorem 1 that p = 1 or
3, and g = 3, n = 6; it can be verified that
Ug(1l) = U3z(1).22 and Ug(3) = U3(3).62.

If § 2 2, then Vig = yz must be rejected by Theorem 1, since Jg > 3 and
Vig = 2y? can be satisfied only if jg = 6, by Theorem 2, i.e., for ¢ = 3, J =
2, and n = 12. However,
UlZ = U3x2
can be written, by (b),
UsV3Vg = Usx? or ViV = x2.
Since Vg = 2y2, then V3 = 232, and this is impossible by Theorem 1.
Second, assume that U, = quz, where n is odd,
n = (x1 + 43)q, § = 0,
= +q + 2.37k,
where kK = *#2 (mod 6). Then, by Lemma 1 and (a),
U, = ~-Usq = -Ugq (mod Vi)
since ¢ is odd. Therefore, by Lemma 2 and hypothesis,
-1 = 22 (mod Vi)

which is impossible, as above. Q.E.D.
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