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1. In t roduct ion 

Let iwn] be the sequence satisfying the second-order linear recurrence 

(1.1) wn = pwn_1 + Wn_l9 n E Z, 

where WQ, U>I are given integers and p is an odd positive integer. 
Of particular interest are the generalized Fibonacci and Lucas sequences, 

{Un(p)} and {Vn(p)}, respectively, which are defined by (1.1) and the initial 
conditions 

U0(p) = 0, UY(p) = 1, 
and 

V0(p) = 2, Fx(p) = p. 

Cohn [2] has proved the two theorems below, which we shall need later. 

Theorem 1: The equation Vn(p) = x2 has: 

(1) if p = 1, two solutions n = 1, 3; 
(2) if p = 3, one solution n = 3; 
(3) if p ^ 1 is a perfect square, one solution n - 1; 
(4) no solution otherwise. 

The equation Vn(p) = 2xz has the solution n - 0, and for a finite number of 
values of p also n = ±6, but no other solutions. 

Theorem 2: The equation Un(p) = x2 has: 

(1) the solutions n = 0, and n = ±1; 
(2) if p is a perfect square, the solution n = 2; 
(3) if p = 1, the solution n = 12, 
(4) no other solutions. 

Recently, Goldman [3] has shown that if Ln = L2
m^2

9 where L2^ is prime, then 
n = ±2m. Adapting Cohnfs and Goldman's method, we shall prove here the follow-
ing theorems. 

Theorem A; Let q > 2 be an even integer. Then Vn (p) = Vq(p)x2, if and only 
if n == ±q. 

Theorem B: Let q > 3 be an odd integer. Then the equation Un(p) = Uq(p)x2 has 
the solutions 

(1) n = 0, and n = ±q, 
(2) if p = 1 or 3, q = 3, and n = 6, 

and no other solutions. 

2. Preliminaries 

The following formulas are well known (see [1], [4], [5]) or easily proved 
(recall that p is odd). For the sake of brevity, we shall write Un and Vn , 
instead of Un(p) and Vn (p). 
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(a) U_n = {-l)n + 1Un, and 7_n = (-l)nVn, 
(b) U2n = UnVn, 
(c) i f d = gcd(m, n ) , t h e n i/d = gcd(£/m, Un) , 
(d) i f <? > 3 , t h e n £/̂  | i/w i f f q\m9 

(e ) i f q > 2 , t h e n Vq \Vn i f f <?|n, and n/<^ i s odd, 
( f ) i f an odd p r ime number d i v i d e s Vq and Vk, t h e n V2(q) = V2(k), where 

V2(s) i s t h e 2 - a d i c v a l u e of t h e i n t e g e r s , 
(g) 2\Vn i f f 3 |w, 
(h) i f fc = ±2 (mod 6 ) , t h e n Vk E 3 (mod 4 ) , 
( i ) gcd(£/ n , Vn) = 1 o r 2 , 
(j) if {un} is a sequence satisfying (1.1), then, for all integers n, k, 

wn + 2k + (~1^ Wn = wn + kVk ' 

The following fundamental lemma (see [2], [3]) is recalled here with a new 
proof. 

Lemma 1: If {wn} is a sequence satisfying (1.1), and k an even number, then, 
for all integers n, t 

wn + 2kt E '(-D* *>„ (mod Vk). 

Proof: By (j) we have, since k is even 
wn + 2k E ~Wn (mod 7fe), 

and the proof follows by induction upon t . Q.E.D. 

We shall also need the next result. 

Lemma 2: If q and k are integers, with q odd and k E ±2 (mod 6), then 

gcd(^, 7fe) = 1. 

Proof: By (h) and (i), notice that gcd(Uk, Vk) = 1, since Vk is odd. Let 

d = gcd(q, k) = gcd(<?, 2k). 

By (b) and (c), we have 

gcd(Uq, Vk)\gcd(Uq, U2k) = Ud, 

and Ud\Uk9 s i n c e d\k. Thus , 

gcd(Uq, Vk)\Uk, 

and so gcd(Uq, 7^) = 1, s i n c e gcd(Uk, Vk) = 1. Q.E.D. 

3 . P r o o f s of T h e o r e m s 

Proof of Theorem A: Assume t h a t Vn = Vqx2, where q > 2 i s e v e n , and n * ±g.. 
S ince Vq\Vn, i t f o l l o w s from (e) t h a t 

n = (±1 + 4 j ) q , j * 0 
= ±4 + 2.3rfe, 

where 2jq = 3rk, and k = ±2 (mod 6). By Lemma 1 and (a), 

Vn = -V±q = -Vq (mod 7 k ), 

since q is even; hence, 

-7<j E 7^x2 (mod 7fc). 

Since 2jq = 3Pfc, then V2(k) > V2(q), so by (f) and'.(g) , gcd(7^, Vk) = 1 since 
Vk is odd; hence, 
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-1 = x2 (mod Vk) , 

which is impossible, since Vy. = 3 (mod 4 ) . Q.E.D. 

Proof of Theorem B: Assume that Un = Uqx2, where q > 3 is odd, and n * ±q. 
Since Uq\Un, it follows from (d) that q\n. 

Assume first that n is even, n = 2jq, and note that j > 1, since n even and 
negative would imply that Un < 0. By (b), we get 

Ujq Vjq = UqX ; 
hence, 

Vjq = y2 o r Vjq = 2^2' 

s i n c e Uq\Ujq and gcd(£/jq , F jq) = 1 o r 2 . 
I f j = 1, t h e n 7^ = z/2 o r Vq = 2y2, which imply by Theorem 1 t h a t p = 1 o r 

3 , and q = 3 , n = 6; i t can be v e r i f i e d t h a t 

£ / 6 ( l ) = f / 3 ( D - 2 2 and tf6(3) = / 7 3 ( 3 ) . 6 2 . 

If j > 2, then F/^ = y2- must be rejected by Theorem 1, since jq > 3 and 
Vjq = 2y2 can be satisfied only if jq = 6, by Theorem 2, i.e., for ̂  = 3, J = 
2, and n = 12. However, 

u12 = t / 3 ^ 
can be written, by (b), 

USV3V& = Uzxz or V3V6 = x2. 

Since Fg = 2z/2, then F3 = 2s 2, and this is impossible by Theorem 1. 
Second, assume that Un = UqX2, where n is odd, 

n = (±1 + 4j)<?, j * 0, 
= ±q + 2.3pfc, 

where fc = ±2 (mod 6 ) . Then, by Lemma 1 and (a), 

Un = " ^ = " ^ (mod 7fc), 

since q is odd. Therefore, by Lemma 2 and hypothesis, 

-1 = x2 (mod Ffe), 

which is impossible, as above. Q.E.D. 
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