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1. Introduction 

In 1878 Edouard Lucas gave the following result for computing binomial co-
efficients modulo a prime [3], [4]. 

Theorem 1.1: If p is a prime, n, r, n^, and rQ are nonnegative integers, and 
HQ and r0 are both less than p, then 

K:S)MXS) <«*?>• 
We have recently derived the following variations of Lucas1 Theorem (see 

[ i ] ) . 
Theorem 1.2: If n and v are nonnegative integers, and p is prime, then 

Theorem 1.3: If n and p are nonnegative integers, and p is a prime greater 
than 3, then 

S)MJ) <-f3>-
In [2] we have also obtained the following congruences which bear a strong 

resemblance to the theorem of Lucas. 

Theorem 1.4: If p is prime, n and r are nonnegative integers, and i is an in-
teger strictly between 0 and p, then 

U " S < ) 2 " + » U i ) ( ! ) <™op2>-
Theorem 1.5: If p > 5 is prime, n, 777, and k are nonnegative integers, k < p, 
and i is an integer strictly between 0 and p, then 

U * •"£ • < ) s ( - + " ( - " I)(*PP+ *) <"o<lp3)-
In this paper we show that in fact an infinite sequence of results like 

those above hold. In our proofs we need the following result (see, e.g., [5]). 

Theorem 1.6: If p is prime, n = ps, and pt divides k while pt+l does not divide 
k, then p s _ t divides (*) and p s _ t + 1does not divide (") . 

2. Main Results 

Our first result is as follows. 

Theorem 2.1: If p > 5 is prime, n and 777 are nonnegative integers, s and all 
the a^ are integers with s > 1, 0 < ag < p> and 0 < a^ < p for k = 1, 2, ..., 
s - 15 then 
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/ mps \ 
\nps + as-ips~l + ... + aip + a0) 

= (w + 1) ( ™ M s-l _, ^ _, ^ ) (mod p s + 1 ) . 
\n + l/\afl-ips x + ... + Gxp + a0/ F 

Proof: Theorems 1.4 and 1.5 show that the conclusion of the theorem is valid 
for s = 1 and s = 2. We assume therefore that the theorem's conclusion holds 
for some s > 2 and consider the assertion 

/ mps+l \ 
\nps+l + aspS + ... + aip + aQJ 

E (n + 1)( !f ,)( s ^ pS+J _>_ ) (mod p s + 2 ) . 
\n + lf\asps + ... + a\p + a0/ ^ 

If m = 0 the assertion above is merely that 0 = 0. Likewise, if 77? = 1 one 
can check that our inductive assertion holds trivially. Therefore, we assume 
the validity of the inductive assertion for some m > 1 and consider first the 
case in which n = 0. Then we must treat 

/ (77? + l)ps + 1 \ asPs+"--+ aiP+aQ, mps + l \/pS + 1\ 
\asps + ... + dip + a0) A* \asps + ... + aQ - jl\ j /" 

(pS^) = 0 (mod ps + 1 ) . 

We first show that whenever 0 < j < asps + ... + aip + ag, we have 

(1) ( 8 +
 Wf + 1 ,_ .)(P7X) = 0 (modp«+2). 

VasPs + ••• + axp + a0 - j/\ J / * 
To this end, let j = bsps + ... + b^p + Z?0 and note that, if &g * 0, then 

Theorem 1.6 shows that 

* + l\ 

J 

Moreover, by Theorem 1.1, 

/ mps + l \ = / mps + l \ 
\asp8 + . . . + a0 - Q) \osps + . . . + cQ) 

•AZK)L.\) -Om-° ("dp)-
since not all the c^ are zero. Hence, we have the product in (1) congruent to 
0 modulo ps + 2- as desired. If, on the other hand, Z?0 = 0> w e s e e t n a t 

/ mps+l \ - ( mps+l \ 
\asps + - -. + a0 - j) \csps + . -. + cip + a0) 

and that this last is congruent to zero modulo p s + 1 since ag ^ 0 by hypothesis. 
Likewise, one can argue that 

(PV ) E 0 (mod p), 

and again the product in (1) is congruent to 0 modulo p s + . 
Therefore, we have established that 

/ ( m + l ) p » - n x / mp« + i x / p ^ v + 2 ) 
\ a s p s + . . . + ^ p + a 0 / \ ^ S P S + • • • + a0/ w s P s + • • • + ag/ 
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and by t h e i n d u c t i v e h y p o t h e s i s t h i s i s c o n g r u e n t modulo ps+z t o 
8+1 

(m + l'\asps + . . . + axp + aQ) 

which i s t h e d e s i r e d r e s u l t . 
Next we assume n * 0 and c o n s i d e r 

s + 1 
/ (777 + l ) p s + 1 \ =

 Py- / mps+l \(PS + l\ 
\nps+i + aspS + ... + aoj 2-^ \nps + i + asps + ... + a0 - j7\ j / 

As previously, one can show that all terms in the above sum are congruent to 0 
modulo ps+2 save those where j = 0, J = ps + 1, or j = asps + ••• + aQ. So, thus 
far, we have 

/ (T?7 + l)ps+1 \ 
\nps + l + asps + ... + ai + <ZQI 

I mps + l \ /77?ps+1\/ p s + 1 \ 
\nps+1 + asps + ... + aip + a0/ \nps+l)\asps + ••• + a0/ 

(in - l)ps + 1 + a^« + • • • + alP + a0) ( m o d p S + 2 ) " 

Now consider the terms on the right-hand side of the above congruence. By the 
inductive assumption 

/ mps+l \ 
\nps+l + asps + ... + aYp + a0) 

= (« + 1)( !! i)( « a. P 8 1 1 -u V <m ° d P S + 2 ) ' 
Moreover, since 

cs^u. r:.1.+j -° o(a,P. r : . 1 . + j <-< p-2>-
And calling on the inductive assumption once again, we see that 

/ mps+l \ 
\ ( n - l ) p s + 1 + asps + . . . + axp + a 0 / 

= *H( « a. ^ l 1 a. ) ^ ° d PS + 2 ) ' 
U / W s p s + . - . + alP + aQ) ^ 

Thus , we c o n c l u d e t h a t 
(T?7 + l ) p s + 1 

/ (777 + L)pa^x \ 
\nps + 1 + asps + . . . + a^ + a 0 / 

But this last expression is obviously 

( n + l ) ( W + 1 ) ( PS+l V 
v y \n + l/\asps + - • • + axp + aQ) 
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This completes the induction and establishes the theorem. 

Our next result generalizes that of Theorem 1.3. 

Theorem 2.2: If p > 5 is prime and k, r, and s are all nonnegative integers, 
then 

fkps+l\ = (kp (&..) = K ) <»^"3>-\rpa xI \rp 
Proof: We proceed by induction. For s = 0 the assertion is identical with that 
of Theorem 1.3. We therefore assume the result for some s > 0 and consider the 
assertion 

«> (g«Hg:!) <»<p->-
Obviously assertion (2) holds for v = 0. Thus, we fix v > 1, assume (2) 

holds for all smaller r, and establish our assertion by induction on k. Asser-
tion (2) clearly holds for k < r, so we assume its validity for some fixed 
k > T and consider 

Kk + l)ps+2\ _ v V kPs + Z \(Ps+2\ - v V kPs+2 \(Ps+2\ + 7? 
\ rps+2 I " £*Q

 {rps+2- - i)\ i ) ~ A 0 W s + 2 - Zp/v lp J 
where B is the sum of those terms of the form 

/ kvs+2 \/vs + 2-\ 
Vpps + 2 _ i)\ I ) f o r ^ n o t a multiple of p. 

As in Theorem 2.1, it is easy to show that each summand in B is congruent to 0 
modulo ps + i+. Therefore, we have 

Now we consider a particular summand in (3) with 0 < l < ps+l so that 

I = a s p s + as-ips~l + . . . + aqpq where aq * 0 and 0 < g < s. 
Then 

\ £p / l ( a s p s - ^ + . . . + aq)p«+l) 

E l(asps-<? + ae_ipa^-^ + ... + a*)?*) ( m ° d P } 

by inductive assumption. But this simply says 

One can also show 

(pSz+1) E 0 (mod ps + 1-«), 

(rp^+2+_ Jp) = (rpXl\ Z) (mod p<? + 3), 
and 

Therefore, 
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K)[r;tr. lP) * (nxx1- *) <- ^> 
and 

KX^r.1 lp)^rn^ciz) W r t . 
It follows then that 

Now if we note finally that the inductive hypotheses on k and r insure that 

($«) = (£::) <-*••*> 
holds, as does a similar statement with r replaced by r - 1, we see that 

(%un<£u^)(<r) <-*>*«>• 
But this clearly gives 

riiiO^iir1) (-p-«). 
This completes the inductive proof of assertion (2) and establishes the 

theorem. 

Remark: Professor Ira Gessel has called the author's attention to a result 
which implies Theorem 2.2. See Ira Gessel, "Some Congruences for Generalized 
Euler Numbers/1 Can. J. Math. 35. 4 (1983):687-709. 
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