GCD-CLOSED SETS AND THE DETERMINANTS OF GCD MATRICES

Scott Beslin

Nicholls State University, Thibodaux, LA 70310
Steve Ligh
Southeastern Louisiana University, Hammond, LA 70402
(Submitted July 1990)

1. Introduction

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite ordered set of distinct positive integers. The $n \times n$ matrix $[S]=\left(s_{i j}\right)$, where $s_{i j}=\left(x_{i}, x_{j}\right)$, the greatest common divisor of x_{i} and x_{j}, is called the greatest common divisor (GCD) matrix on S (see [2]). In [6], H. J. S. Smith showed that if S is a factor-closed set, then the determinant of $[S], \operatorname{det}[S]$, is $\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)$, where $\phi(x)$ is Euler's totient function. A set S of positive integers is said to be factorclosed if all positive factors of any member of S belong to S. In [2], we considered GCD matrices in the direction of their structure, determinant, and arithmetic in Z_{n}, the ring of integers modulo n. In [1], we generalized Smith's result by extending the factor-closed sets to a larger class of sets called gcd-closed sets. A set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ as above is said to be gcd-closed if for every i and $j=1,2, \ldots, n,\left(x_{i}, x_{j}\right)$ is in S. Every factorclosed set is gcd-closed, but not conversely.

Using structure theorems in [2], Zhongshan Li [4] obtained the value of the determinant of a GCD matrix defined on an arbitrary ordered set of distinct positive integers, and proved the converse of Smith's result. Since the formula derived in [4] is valid for any GCD matrix, it also solves the problem stated in [5] for arithmetic progressions.

In this paper we shall provide another formula for the determinant of a GCD matrix based on the class of gcd-closed sets. Li's formula comes as a corollary. We also use this new formula to find closed-form expressions for the determinants of some special GCD matrices.

2. Preliminary Results

It was remarked in [2] that the determinant of the GCD matrix defined on a set S is independent of the order of the elements of S. Thus, if $S=\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{n}\right\}$, we may henceforth assume that $x_{1}<x_{2}<\cdots<x_{n}$. Given this natural order on S, we let $B\left(x_{i}\right)$ denote the sum

$$
B\left(x_{i}\right)=\sum_{\substack{d \mid x_{i} \\ d \nmid x_{t} \\ t<i}} \phi(d),
$$

for all $i=1,2$, \ldots, n. We note that $B\left(x_{i}\right)=\phi\left(x_{i}\right)$ for all i if and only if S is factor-closed.

The following proposition can be found in [1].
Proposition A : Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be gcd-closed with $x_{1}<x_{2}<\cdots<x_{n}$. Then, for every i and $j=1,2, \ldots, n$,

$$
\left(x_{i}, x_{j}\right)=\sum_{x_{k} \mid\left(x_{i}, x_{j}\right)} B\left(x_{k}\right) .
$$

It is clear that any set S of positive integers is contained in a gcdclosed set. By \bar{S} we mean the minimal such gcd-closed set, or ged-closure of S.

It is worthwhile to observe that \bar{S} usually contains considerably fewer elements than any factor-closed set containing S. We now prove a structure theorem for GCD matrices.
Theorem 1: Let $\bar{S}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be the gcd-closure of $S=\left\{y_{1}, y_{2}, \ldots\right.$, $\left.y_{n}\right\}$ with $x_{1}<x_{2}<\ldots<x_{m}$ and $y_{1}<y_{2}<\ldots<y_{n}$. Then [S] is the product of an $n \times m$ matrix A and the incidence matrix C corresponding to the transpose of A.

Proof: Define $A=\left(\alpha_{i j}\right)$ via

$$
a_{i j}=\left\{\begin{array}{cl}
B\left(x_{j}\right) & \text { if } x_{j} \text { divides } y_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

If we let $C=\left(c_{i j}\right)$ be the incidence matrix corresponding to the transpose of A, then the (i, j)-entry of $A C$ is equal to

$$
\sum_{k=1}^{n} a_{i k} c_{k j}=\sum_{\substack{x_{k}\left|y_{i} \\ x_{k}\right| y_{j}}} a_{i k}=\sum_{x_{k} \mid\left(y_{i}, y_{j}\right)} B\left(x_{k}\right)
$$

which is equal to $\left(y_{i}, y_{j}\right)$ by Proposition A and the fact that \bar{S} is gcd-closed.
Remark 1: In the above theorem, \bar{S} may actually be replaced with any gcd-closed set containing S.

The following corollaries appeared in [1].
Corollary 1: If $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is gcd-closed with $x_{1}<x_{2}<\ldots<x_{n}$, then $\operatorname{det}[S]=B\left(x_{1}\right) B\left(x_{2}\right) \ldots B\left(x_{n}\right)$.
Corollary 2 (Smith): If $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is factor-closed, then

$$
\operatorname{det}[S]=\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)
$$

Corollary 3: Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be gcd-closed. Then

$$
\operatorname{det}[S]=\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)
$$

if and only if S is factor-closed.
Remark 2: It was actually shown in [4] that the converse of Corollary 2 is true.

3. The Value of $\operatorname{det}[S]$

The (i, j)-entry of the matrix A in Theorem 1 may be written as $e_{i j} B\left(x_{j}\right)$, where $e_{i j}=1$ if x_{j} divides y_{i}, and 0 otherwise. Let E be the $n \times m$ matrix ($e_{i j}$). Thus, $C=E^{\top}$, the transpose of E. If Λ is the $m \times m$ diagonal matrix with diagonal $\left(B\left(x_{1}\right), B\left(x_{2}\right), \ldots, B\left(x_{m}\right)\right)$, we have that $A C=E \Lambda E^{\top}$.

Now let $k_{1}, k_{2}, \ldots, k_{n}$ be distinct positive integers such that

$$
1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq m,
$$

and let $\left.E_{\left(k_{1}, k_{2}\right.}, \ldots, k_{n}\right)$ denote the submatrix of E consisting of the k_{1} th , ..., $k_{n}{ }^{\text {th }}$ columns of E. Define $A_{\left(k_{1}, \ldots, k_{n}\right)}$ similarly. It is clear that

$$
\operatorname{det} A_{\left(k_{1}, \ldots, k_{n}\right)}=B\left(x_{k_{1}}\right) B\left(x_{k_{2}}\right) \ldots B\left(x_{k_{n}}\right) \cdot \operatorname{det} E_{\left(k_{1}, \ldots, k_{n}\right)} \text {, }
$$

since

$$
A_{\left(k_{1}, \ldots, k_{n}\right)}=E_{\left(k_{1}, \ldots, k_{n}\right)} \cdot D
$$

where D is the $n \times n$ diagonal submatrix of Λ with diagonal $\left(B\left(x_{k_{1}}\right), \ldots, B\left(x_{k_{n}}\right)\right)$.

The following theorem gives the value of $\operatorname{det}[S]$ in terms of $B\left(x_{1}\right), B\left(x_{2}\right)$,, $B\left(x_{m}\right)$.
Theorem 2: Let S and \bar{S} be as in Theorem 1. Then $\operatorname{det}[S]$ is given by the sum

$$
\sum_{1 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m}\left(\operatorname{det} E_{\left(k_{1}, \ldots, k_{n}\right)}\right) \quad B\left(x_{k_{1}}\right) \ldots B\left(x_{k_{n}}\right) .
$$

Proof: From Theorem 1, $[S]=A C$. Now apply the Cauchy-Binet formula (see [3], p. 22) to obtain

$$
\operatorname{det}[S]=\operatorname{det}(A C)=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{n} \leq m} \operatorname{det} A_{\left(k_{1}, \ldots, k_{n}\right)} \cdot \operatorname{det}\left(E_{\left(k_{1}, \ldots, k_{n}\right)}\right)^{\top} ;
$$

the result follows from the preceding remarks.
Corollary 4 (Li [4], Theorem 2): Let S be as in Theorem 1 and let $S^{*}=\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{m}\right\}$ be the minimal factor-closed set containing S, with $x_{1}<x_{2}<x_{3}<$ $\cdots<x_{m}$. Then

$$
\operatorname{det}[S]=\sum_{1 \leq k_{1}<k_{2}<\ldots<k_{n} \leq m}\left(\operatorname{det} E_{\left(k_{1}, \ldots, k_{n}\right)}\right)^{2} \phi\left(x_{k_{1}}\right) \ldots \phi\left(x_{k_{n}}\right) .
$$

Remark 3: By using a proof similar to that occurring in Li's paper for the converse of Corollary 2 (see [4], Theorem 3), one may establish the converse of Corollary 1.

4. Determinants of Special Matrices

Although the matrices $E\left(k_{1}, \ldots, k_{n}\right)$ in Theorem 2 are (0,1)-matrices, it is not true in general that det $E_{\left(k_{1}, \ldots, k_{n}\right)}= \pm 1$. In this section, we consider certain sets S which have the property that every such submatrix $E\left(k_{1}, \ldots, k_{n}\right)$ has determinant equal to 1 or -1 , and thus find a closed-form expression for $\operatorname{det}[S]$.

A set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is said to be a k-set if $\left(x_{i}, x_{j}\right)=k$ for every $i, j=1,2, \ldots, n_{\dot{S}}$ For example, $\{6,9,15,21,33\}$ is a 3 -set. Let S be a k-set. Then either $\bar{S}=S \cup\{k\}$ or $\bar{S}=S$.

Case 1. If $x_{1}<x_{2}<\cdots<x_{n}$ and $k=x_{1}$, then S is gcd-closed, and $B\left(x_{i}\right)$ $=x_{i}-k$ for $i=2,3, \ldots, n$. Hence, by Corollary 1 ,

$$
\operatorname{det}[S]=k\left(x_{2}-k\right) \ldots\left(x_{n}-k\right) .
$$

Case 2. Suppose $k \neq x_{1}$ so that $\bar{S}=\left\{k=x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$. By Theorem 2,

$$
\operatorname{det}[S]=\sum_{0 \leq t_{1}<t_{2}<\ldots<t_{n} \leq n}\left(\operatorname{det} E_{\left(t_{1}, \ldots, t_{n}\right)}\right)^{2} B\left(x_{t_{1}}\right) B\left(x_{t_{2}}\right) \ldots B\left(x_{t_{n}}\right) .
$$

Lemma 1: $\operatorname{det} E_{\left(t_{1}, \ldots, t_{n}\right)}= \pm 1$.
Proof: If $\left(t_{1}, \ldots, t_{n}\right)=(0,2,3, \ldots, n)$ or $(1,2,3, \ldots, n)$, then $E\left(t_{1}, \ldots, t_{n}\right)$ is a lower triangular matrix with diagonal ($1,1, \ldots, 1$). Thus, $\operatorname{det} E_{\left(t_{1}, \ldots, t_{n}\right)}$ = 1. If
$\left(t_{1}, \ldots, t_{n}\right)=(0,1, \ldots, s-1, s+1, \ldots, n)$ for $2 \leq s \leq n$,
then Row s of $E_{\left(t_{1}, \ldots, t_{n}\right)}$ is ($1,0,0, \ldots, 0$). Moreover, the submatrix of $E\left(t_{1}, \ldots, t_{n}\right)$ formed by removing Column l, i.e.,

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

and Row s is the $(n-1) \times(n-1)$ identity matrix. Hence, $\operatorname{det} E_{\left(t_{1}, \ldots, t_{n}\right)}= \pm 1$.
This completes the proof.
Now $B\left(x_{0}\right)=k$ and $B\left(x_{i}\right)=x_{i}-k$ for $i>0$. Thus, by Theorem 2 ,

$$
\operatorname{det}[S]=k \cdot\left(\sum_{i=1}^{n} \frac{\left(x_{1}-k\right) \cdots\left(x_{n}-k\right)}{\left(x_{i}-k\right)}\right)+\left(x_{1}-k\right) \cdots\left(x_{n}-k\right)
$$

Cases 1 and 2 above may therefore be combined into the following theorem.
Theorem 3: If $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a k-set with $x_{1}<x_{2}<\ldots<x_{n}$, then

$$
\begin{aligned}
\operatorname{det}[S]= & k\left(x_{2}-k\right) \cdots\left(x_{n}-k\right) \\
& +\left[k\left(x_{1}-k\right) \cdots\left(x_{n}-k\right)\right]\left[\frac{1}{k}+\frac{1}{x_{2}-k}+\cdots+\frac{1}{x_{n}-k}\right]
\end{aligned}
$$

Corollary 5: Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ consist of pairwise coprime positive integers. If $x_{1}<x_{2}<\cdots<x_{n}$, then

$$
\begin{aligned}
\operatorname{det}[S]= & \left(x_{2}-1\right) \cdots\left(x_{n}-1\right) \\
& +\left[\left(x_{1}-1\right) \cdots\left(x_{n}-1\right)\right]\left[1+\frac{1}{x_{2}-1}+\cdots+\frac{1}{x_{n}-1}\right]
\end{aligned}
$$

Corollary 6: Let $p_{1}, p_{2}, \ldots, p_{n}$ be primes with $p_{1}<p_{2}<\cdots<p_{n}$. If $S=\left\{p_{1}\right.$, p_{2}, \ldots, p, then

$$
\begin{aligned}
\operatorname{det}[S] & =\left(p_{1}-1\right) \cdots\left(p_{n}-1\right)\left[1+\frac{1}{p_{1}-1}+\cdots+\frac{1}{p_{n}-1}\right] \\
& =\phi\left(p_{1}\right) \cdots \phi\left(p_{n}\right)\left[1+\frac{1}{\phi\left(p_{1}\right)}+\cdots+\frac{1}{\phi\left(p_{n}\right)}\right]
\end{aligned}
$$

Finally, in view of Lemma 1 , and for lack of a counterexample, we make the following conjecture and leave it as a problem.
Conjecture: Let S and \bar{S} be as in Theorem 3, with $n>3$. If det $E\left(k_{1}, k_{2}, \ldots, k_{n}\right)=$ ± 1 for every choice of $k_{1}, k_{2}, \ldots, k_{n}$, then either S is gcd-closed or S is a k-set for some positive integer k.

References

1. S. Beslin \& S. Ligh. "Another Generalization of Smith's Determinant." BuZZ. AustraZian Math. Soc. (3) 40 (1989):413-15.
2. S. Beslin \& S. Ligh. "Greatest Common Divisor Matrices." Linear Algebra and Its Applications 118 (1989):69-76.
3. R. Horn \& C. Johnson. Matrix Analysis. Cambridge: Cambridge University Press, 1985.
4. Zhongshan Li. "The Determinants of GCD Matrices." Linear AZgebra and Its Applications 134 (1990):137-43.
5. S. Ligh. "Generalized Smith's Determinant." Linear and Muztizinear Algebra 22 (1988):305-06.
6. H. J. S. Smith. "On the Value of a Certain Arithmetical Determinant." Proc. London Math. Soc. 7 (1875-1876):208-12.
