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1. Introduction

For the simple symmetric random walk on a two-dimensional lattice, it is
well known (see, e.g., Feller [4], p. 361) that the probability of the origin
begin revisited at the 2nth step is
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and the Catalan number
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(see Constantine [2], p. 61) is expressible as
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In a study of the transient behavior of the random walk Downham & Fotopoulos
[3] have shown after much computation that
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for n =1, 2, ..., and this leads to inequalities for ¢, which we strengthen by

using standard analytical techniques. It is shown that, for k = 3 and every
positive integer #,

1+ f(n, k) < iy <1+ f(n, k) + x4
where 2
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For any positive integer n,
lim €+l < 0
k+w
and so both the bounds given by the inequalities tend to 1/wnu,, as K increases;

hence, uy, can be approximated as accurately as desired.
Explicitly, for k = 3, the above results give
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and these are stronger than the inequalities of Downham & Fotopoulos.
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2. Proof of the Inequalities

It is easily verified that
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and then, by Gauss's theorem (see Whittaker & Watson [5], p. 281):

F(a, b; ¢3 1) = 522)5(2)1—"(2 — ZZ;; for Re(¢ — a - b) > 0,

it follows that

l/ﬂnf(—%, —%; n; l) since 7 is a positive integer
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Since v, > 0 (¥ 2 1), it follows that up, < 1/mm and so, if r > 3, then
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hence, for k 2= 4,
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by Gauss's theorem, since n > —1. This simplifies to
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it then follows that, for k > 3,

1
1L + f(n, k) < Triia <1+ f(n, k) + g4
where
(k = 2)! _ 1
0 < gy < gkl = 81k - Dk + 0 as k > «.
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3. Numerical Comparisons

The following table shows some bounds given in the cases k = 3 and kK = 4 as

well as the bounds obtained from the inequalities of Downham & Fotopoulos. For
problems related to the computation of the integer ¢, when n is large, see
Campbell [1].
n Uon Cn
Lower Upper Lower Upper
Bound Bound Bound Bound
D & F | .24868 .25863 .9974 1.0171
1|k =3/|.24942 .25073 .9989 1.0015
k =4 |.249778 .250429 .99956 1.00086
Up = .25 cy1 =
D & F | .140 504 141 126 1.99914 2.00356
2|k =131].140 560 .140 698 1.99954 2.00052
k = 4 | .140 605 .140 660 1.99986 2.00025
Uy = .140 625 Cop =
D & F |.031 045 161 .031 046 156 16795.935 16796.204
10 | k = 3 |.031 045 315 .031 045 481 16795.977 16796.022
k =4 |.031 045 390 .031 045 416 16795.997 16796.004
uzg = .031 045 401 c1g9 = 16796
D& F |.003 175 151 061 .003 175 151 160
100 | k = 3 |.003 175 151 085 .003 175 151 088 c100 = -896 5199 x 10°7
k =4 ).003 175 151 086 636 .003 175 151 086 683
Uzgg = -003 175 151 086 657
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