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1. Introduction

We begin our discussion with a definition.
Definition: As usual,
Z:={0, *1, *#2, ...}, N:={0, 1, 2, ...}, P:= I\{0}.
Then, for each n € /W,

ro(n) = |{(x, y) € 22|n = 22 + y2}|,
tom): = |{(x, y) € N?|n =x(x + 1)/2 + y(y + 1)/2}].
Also, for each n € P and each 7 € {1, 3},
d.b(n) = Z 1.
dln
dz=17 (mod4)

We can now state two theorems.
Theorem 1 (Jacobi): For each n € P,
rom) = 4{dy(n) - ds(n)}.
Theorem 2: For each n € N,
to(n) = dy(4n + 1) - dz(4n + 1).

Clearly, r,(0) = £,(0) = 1. Next, we observe that, for positive integers,
Theorem 2 can be deduced from Theorem 1. In this note we give an independent
proof of Theorem 2. Our proof is based on the triple-product identity

(1) [T - 22 - a2 (1 - a1y = 3 (-1)ra’ar,
1 —o

which is valid for each pair of complex numbers a, x such that a # 0 and ]x]< 1.
Hirschhorn [2] showed how to deduce Jacobi's theorem from the triple-product
identity. The reader will doubtless note that our method is similar to that of
Hirschhorn.

2. Proof of Theorem 2

Separating even and odd terms on the right side of (1), and then again
using (1) to replace the series in the resulting identity by infinite products,

we get
fi (1 - xZn)(l _ axZn—l)(l _ a—len—l)
1

- ixlmzaZn . ixun(nﬂ)azn

]

iﬁ (1 - x8) (1 + a2x8~%) (1 + a 228 1)
1

- (a+aba fi(l - 287) (1 + a2x®) (1 + a™%xf).
1
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With Dg denoting derivation with respect to a, we then operate on both
sides of the foregoing identity with al, to get

(2) -JT-227)(1-ax? 1) (1- a la2n1) 37 vy () (ak - a7k)
1 1
= 2 n (1- x8")(l+a2x8”"q)(l+a'2x87‘—4) Z (_1)k—lvk (xk) (a?_k _ a—2k)
1 1
~(a-a Dy [T (1-28)(1+a 2x8) (1 + a” 2x8")
1
~(a+a )2z [] (1- @87) (1+a2x8) (1+a~2287) 3 (-1)* 1oy (28) (a2 - a~2k),
1 I
where, for convenience u;(x) : = xke (1-2%)71, v, (x) : = ak « (1-x2%)"1, k€ P,
and x is a complex number with |z| < 1. Now, in (2), let a = i and divide the
resulting identity by -27 to get
[;[ (1 - 22n)(1 + x"=2) 3 (~Dkvyy,1(x) =« [1[(1 - x87)3,
0

or, equivalently,

o (1 - x8n)3 o p2k+1
=11 2 wgy T & OV T
1 (1 = x2n) (1 + xtn=2) ) 1 - xhk+
Hence, 8ny2 2k+1
« (1 - x2°7") > xRkt = d .
cfj—7 = -k ——— = (-1)k @7+ 1D(2k+ 1)

Owing to a well-known identity of Gauss ([1], p. 284), it then follows that

0 " 1 o 3 (l - x8n)2
2 ta(mxntl = x{zxZn(rHl)}z Y | it
0 0 I (1 — x8rn-4)2

3RS 2@iHD@AD o D g2mtl T (o1)@-Di2
= i m=0

k=0 j=0 dl2m+1
= Y oattl T (cp@-bi2 oy ixun+3 T (-1)@-Diz
n=0 dlun+1 n=10 dlun+3

Equating coefficients of like powers of x, we get, for each n € N,

ty(n) = E (_1)(d-l)/2 = Z 1 - Z 1
dlume 1 dlum+1 dlsn+1
d =1 (mody) d =3 (mod &)

dl(lm + 1) - d3(4ﬂ + 1),

]

2: (_1)(d—1V2

d|un+i3

0.

This proves Theorem 2. In passing we note that the second conclusion fol-
lows easily from the following independent argument. For each # € N and each
divisor d (and codivisor d') of 4n + 3, exactly one of the pair (d, d') is = 1

(mod 4) and exactly one is = 3 (mod 4). Hence,
(-D@-DI2 4 (- -Diz2 = o,

Summing over all of these pairs, we obtain the desired result.
Finally, we prove that Theorems 1 and 2 are actually equivalent. To this
end, we first recall the following well-known result.
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Theorem: For an arbitrary positive integer n > 1, let

i=r e.
n = n pll
=1
denote its prime-power decomposition. Then, # is representable as a sum of two
squares if and only if, for each 7 € {1, 2, ..., »} such that p, =3 (mod 4),
e; 1is even.
It then follows that counting representations of positive integers by sums

of two squares can be restricted to positive integers of the form 27 (4k + 1),
fs kK € N. Equivalence of Theorems 1 and 2 will then be an easy consequence of

the following lemma.

Lemma: I1f for each k€ N,

S =5k):={(x, y) e N % P|4k + 1 =x2 + yz}
and
T=1Tk):={(Z, §)€ N2|k = 2(Z + 1)/2 + j(G + 1)/2},
then
|s] = |z].
Proof: To see this we define a function 6:7 + S as follows: for each (Z, J) €T,
(0, 22 + 1), if 7 = g,
0(i, J): =< (1 -g, 1 +4+ 1), if i > g
Z+g+1,g9-1), if 7 < 4.

Simple calculation reveals that 6 is single-valued, and always 68(<, j)€S. So,
we proceed to show that 6 is one-to-one from T onto S.

Suppose that (g, k), (¢, J) € T, and 6(g, h) = 6(Z, j). If (a) g = h, then
0(g, W)t = (0, 2g + 1).

Therefore, 6(Z, J) € N x P must also have first coordinate equal to 0: that ig,
6(<, J)=(0, y), with 2 = j and y = 2¢ + 1. So, 2g + 1 = 27 + 1, whence g = <,
whence g = h = ¢ = j, whence (g, h) = (¢, §). If (b) g > h, then

8(g, h): (g-h, g+h+1).
Therefore, 6(Z, ) = (x, y) € P2, with & < y, whence x = < —_j andy = 2+ J + 1,
whence 7 - j =g -hand 2 +J+ 1 =g+ h + 1, whence (Z, §) = (g, h). If (c)
g < h, then

8(g, h):

As before, we must have:

(g+h+1, h - 9g).

g+h=714+gj and -g+h=-1+g,
whence (g, k) = (¢, j). Thus, 6 is one-to-one.
Pick any (x, y) € S(k), and split two cases: (i) x = 0 or (ii) x > 0. Under
(i) we have
4k + 1 = 02 + y2, whence y = 27 + 1, for some ¢ € N.
Hence, for 7 = j: = (y - 1)/2, we have
(x, y) = (0, 22 + 1) = 6(Z, J), where (2, J) € T(K).

Under case (ii) we split two further subcases: (ii') x < y or (ii”) x > y. Then
under (ii') we put © - J =x and © + J + 1 =y to find

i=(+y-1)/2 and J=(=z+y-1)/2.
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Thus, 7 > j, © = j =%, and ¢ + J + 1 = y, whence (x, y) = 0(Z, J). [Clearly,
(Z, §) € T(k).] Under (ii") we put ¢ + j + 1 =x and -2 + J = y to find

(x+y - 1)/2.

i=(x-y-1)/2 and g

As before, 7 < j and (x, y) = 6(Z, J), where (Z, J) € T(k). This proves that 6
is onto S.
Now let us assume that Theorem 2 holds. Then, for each k € N,

[SR)| = |T(k)| = dy(4k + 1) - da(4k + 1).
Therefore,
vy (4k + 1) = [{(x, y) € 22|4k + 1 = 22 + y?2}|

4{d1(4k + 1) - d3(4k + 1)},

since each solution (x, y) € S yields 4 solutions (x, *y) € z2.
Conversely, let us assume that Theorem 1 holds. Then, for each k € N,

[S(K)| = rp(4k + 1) /4 = dy(4k + 1) - d3(4k + 1),
whence (owing to our Lemma),
to(k) : = |T(k)| = dy(4k + 1) - da(4k + 1),

as well.
Since P2(2f(4k + 1)) = ry(4k + 1), equivalence of Theorems 1 and 2 follows.
Owing to the equivalence of the two theorems, our proof of Theorem 2 is a
new one for both theorems.
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