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1. Introduction 

We begin our discussion with a definition, 

Definition: As usual, 

Z: = {0, ±1, ±2, . . . } , N: = {0, 1, 2, . . . } , Pi = N\{0}. 

Then, for each n e N, 

v2{n) : = \{(x, y) e Z2\n = x2 + yz}\, 

tz(n) : = \{(x, y) e N2\n = x(x + l)/2 + y(y + 1)/2}|. 

Also, for each n £ P and each i e {1, 3}, 

d\n 
d= i, (mod 4) 

We can now s t a t e two theorems. 

Theorem 1 (Jacobi) : For each n e P, 

v2{n) = Mdi(n) - d3(n)}. 

Theorem 2: For each n e N9 

t2(n) = dx(4n + 1) - d3(4n + 1) . 

Clearly, r2(0) = t2(0) = 1. Next, we observe that, for positive integers, 
Theorem 2 can be deduced from Theorem 1. In this note we give an independent 
proof of Theorem 2. Our proof is based on the triple-product identity 

(1) 0(1 - x2n)(l - ax2n~l)(l - a~lx2n-1) = Y.{-l)nxn2an, 
i 

which is valid for each pair of complex numbers a, x such that a * 0 and \x\ < 1. 
Hirschhorn [2] showed how to deduce Jacobi's theorem from the triple-product 
identity. The reader will doubtless note that our method is similar to that of 
Hirschhorn. 

2. Proof of Theorem 2-

Separating even and odd terms on the right side of (1), and then again 
using (1) to replace the series in the resulting identity by infinite products, 
we get 

f[ (1 - oo2n)(l - ax2n~l){\ - a-lx2n~l) 
l 

= YJx^1a2n - axJ2x^n^n + ^a2n 

= ft (1 - ̂ 8n)(l + a2x8n-^)(l + a~2xQn-^) 
l 

- (a + a~l)x 0(1 - xQn)(l + a2x8n)(l + a~2x8n). 
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With Da denoting d e r i v a t i o n with r e spec t to a , we then opera te on both 
s ides of the foregoing i d e n t i t y with aDa to get 

(2) - f l ( l - x 2 * ) ( l - axln~l)(l- a-lxln-l)f^vk(x)(ak-a-k) 
1 l 

= 2 (\(l~ xQn) (1 + a2xQn~^) (1 + a~2xQn-^) J^ {-l)k-lvk{x^)(<a2k - a~2k) 
i l 

-{a-a~l)x ft ( 1 - ̂ 8 n ) (1 + a~2x8n) (1 + a~2x8n) 
i 

-(a+a~l)2x n ( l - ^ 8 n ) ( l + a 2 ^ 8 n ) ( l + a - 2 x 8 " ) V ( - l ) * " 1 ^ (x8) (a2k - a~2k) 9 
l i * 

where, for convenience uk(x) : = xk ° (I- xk)~l
9 Vk(x) : = xk •(1-x2*)"1, fe £ P, 

and x is a complex number with |x| < 1. Now, in (2), let a = i and divide the 
resulting identity by -2i to get 

ft (1 - x2")(l + x^~2) £ (-l)*i>2fc+i(*) - x ft(l - * 8 * ) 3 , 
i o i 

or, equivalently, 
oo / i _ « ,8n \3 * ™2fc+1 

*n„ ( ' / „_„ - E (-D* — l (1 - x2n)(l + x^'2) o 1 ~ x*k + 2 

Hence, 
00 f 1 _ 7»OfI *\ / - oo <y*2.K~i~ 1 oo oo 

1 ( 1 - Xm 4 ) Z 0 1 - X*k+2- fc=0 j - 0 

Owing to a well-known identity of Gauss ([1], p. 284), it then follows that 
(1 - x8n)2 

\2 £t2(n)*W1 - x(fx2^^^\2 = aft — ^—^~ 

= ]C ( - l ) k £ #(2j + l)(2fc+l) = j p x 2m+l V- („1)(J- l ) /2 
fc=0 j = 0 m=0 d|'2m + l 

= Z > ^ + 1 E (-D(d"1)/2 + f > ^ + 3 E (-l)««l)/2. 
n=0 d\i+n + l w = 0 <*K«+3 

Equating c o e f f i c i e n t s of l i k e powers of x9 we ge t , for each n £ N, 
t 2 ( n ) - £ ( - i )U-D/2 - V i - £ i 

d |mn+l d\Hn + l d|if« + l 
d = 1 (mod if) i = 3 (mod 4) 

= dx(4n + 1) - d3(4n + 1), 

£ (-l)W-D/2 = 0. 

This proves Theorem 2. In passing we note that the second conclusion fol-
lows easily from the following independent argument. For each n € N and each 
divisor d (and codivisor dT) of 4n + 3, exactly one of the pair {d, df) is = 1 
(mod 4) and exactly one is E 3 (mod 4). Hence, 

(-DW-D/2 + ^ i d ' - i m . . o. 

Summing over all of these pairs, we obtain the desired result. 
Finally, we prove that Theorems 1 and 2 are actually equivalent. To this 

end, we first recall the following well-known result. 
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Theorem: For an a r b i t r a r y p o s i t i v e in teger n > 1, l e t 

i-1 

denote its prime-power decomposition. Then, n is representable as a sum of two 
squares if and only if, for each i E {1, 2, . .., r} such that p. = 3 (mod 4), 
e^ is even, 

It then follows that counting representations of positive integers by sums 
of two squares can be restricted to positive integers of the form 2̂ (47c + 1), 
/, k E N. Equivalence of Theorems 1 and 2 will then be an easy consequence of 
the following lemma. 

Lemma: If for each k e N, 

S = 5 (7c) : = { ( * , 2/) e N x p 14k + 1 = x2 + z/2} 
and 

T = T(fe) : = {(i, j) E N2|fc = i(i + l)/2 + JU + l)/2}, 
then 

Proof: To see this we define a function 0 : T •> 5 as follows: for each (i, j)eT, 
( (0, 2i + 1), if i = j, 

Q(i> J): = < (i - Js i + J + 1)» if £ > j\ 
((£ + j + 1, j - £), if i < j. 

Simple calculation reveals that 6 is single-valued, and always 0(£, j)eS* So, 
we proceed to show that 0 is one-to-one from T onto S» 

Suppose that (g, h), (£, j) E T, and 0(0, h) = 0(i, j). If (a) g = h, then 

6(0, W : = (0, 2 0 + 1 ) . 

Therefore, 0(i, j) E N x p must also have first coordinate equal to 0: that is, 
9(i5 j) = (0, y), with i = j and 2/ = 2i + 1. So, 20 + 1 = 2i + 1, whence g = i , 
whence 0 = h = i = J, whence (0, 7z) = (£, j) . If (b) g > h9 then 

0(0, 7z): = (̂  - 7z, ̂  + 7z + 1). 

Therefore, 0(i, j) = (x, y) E P2
5 with x < y, whence x = i - j and y = £ + j + 1, 

whence i - j = g - h and i + j + l=g + h + l , whence (£, j) = (0, 7z) . If (c) 
g < h, then 

0(0, fc): = (0 + h + 1, h - g). 

As before, we must have: 

0 + In = i + j and -0 + 7z = -i + j, 

whence (0, 7z) = (£, j) . Thus, 0 is one-to-one. 

Pick any (x, y) E S(k), and split two cases: (i) x = 0 or (ii) x > 0. Under 
(i) we have 

kk + 1 = 02 +. yz
9 whence y = 2i + 1, for some £ E N. 

Hence, for £ = j : = (y - l)/2, we have 

(ff, 2/) = (0, 2£ + 1) = 0(£, j), where (£, j) E T(fe) . 

Under case (ii) we split two further subcases: (ii') x < y or (ii") x > y. Then 
under (ii') we put £ - j = x and i + j + I = y to find 

£ = (x + 2/ - l)/2 and j = {-x + y - l)/2. 
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Thus, i > j , i - j = x9 and i + j + 1 = y, whence (x9 y) = 8(i, j). [Clearly, 
(i, j) E T(fc) . ] Under (ii") we put i + j + 1 = x and -i + j = 2/ to find 

i = (x - y - l)/2 and j = (x + 2/ - 1) /2. 

As before, i < j and (x, 2/) = 8(i, j) , where (i, j) e T(k). This proves that 0 
is onto 5. 

Now let us assume that Theorem 2 holds. Then, for each k E N, 

|S(fc)I = \T(k)I = di(4fe + 1) - d3(^k + 1). 

Therefore, 

r2{i±k + 1) = I {(a;, y) e Z2 14fe + 1 = x2 + 2/2}| 

= 4{dx(4^ + 1) - d3(4k + 1)}, 

since each solution (x, y) e S yields 4 solutions (±x, ±y) e Z2. 
Conversely, let us assume that Theorem 1 holds. Then, for each k E N, 

\S(k)\ = p2(4fe + l)/4 = diihk + 1) - d3(4fc + 1), 

whence (owing to our Lemma), 

t2(k) : = \T(k)I = dY(kk + 1) - d3(4fc + 1), 
as well. 

Since r2(2^(4fe + 1)) = P2(4fe + *)> equivalence of Theorems 1 and 2 follows. 
Owing to the equivalence of the two theorems, our proof of Theorem 2 is a 

new one for both theorems. 

Acknowledgment 

The author would like to thank the referee for suggested improvement of the 
exposition. 

References 

1. G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. 4th 
ed. Oxford: Clarendon Press, 1960. 

2. M. D. Hirschhorn. "A Simple Proof of JacobiTs Two-Square Theorem." Amer. 
Math. Monthly 92 (1985):579-80. 

178 [May 


