ON REPRESENTATIONS OF NUMBERS BY SUMS
 OF TWO TRIANGULAR NUMBERS

John A. Ewell
Northern Illinois University, DeKalb, IL 60115
(Submitted July 1990)

1. Introduction

We begin our discussion with a definition.
Definition: As usual,

$$
Z:=\{0, \pm 1, \pm 2, \ldots\}, N:=\{0,1,2, \ldots\}, P:=N \backslash\{0\}
$$

Then, for each $n \in N$,
$r_{2}(n):=\left|\left\{(x, y) \in z^{2} \mid n=x^{2}+y^{2}\right\}\right|$,
$t_{2}(n):=\left|\left\{(x, y) \in N^{2} \mid n=x(x+1) / 2+y(y+1) / 2\right\}\right|$.
Also, for each $n \in P$ and each $i \in\{1,3\}$,

$$
d_{i}(n)=\sum_{\substack{d \mid n \\ d \equiv i(\bmod 4)}} 1
$$

We can now state two theorems.
Theorem 1 (Jacobi) : For each $n \in P$,

$$
r_{2}(n)=4\left\{d_{1}(n)-d_{3}(n)\right\} .
$$

Theorem 2: For each $n \in N$,

$$
t_{2}(n)=d_{1}(4 n+1)-d_{3}(4 n+1)
$$

Clearly, $r_{2}(0)=t_{2}(0)=1$. Next, we observe that, for positive integers, Theorem 2 can be deduced from Theorem 1. In this note we give an independent proof of Theorem 2. Our proof is based on the triple-product identity

$$
\begin{equation*}
\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1-a x^{2 n-1}\right)\left(1-a^{-1} x^{2 n-1}\right)=\sum_{-\infty}^{\infty}(-1)^{n} x^{n^{2}} a^{n} \tag{1}
\end{equation*}
$$

which is valid for each pair of complex numbers α, x such that $\alpha \neq 0$ and $|x|<1$. Hirschhorn [2] showed how to deduce Jacobi's theorem from the triple-product identity. The reader will doubtless note that our method is similar to that of Hirschhorn.

2. Proof of Theorem 2

Separating even and odd terms on the right side of (1), and then again using (1) to replace the series in the resulting identity by infinite products, we get

$$
\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1-a x^{2 n-1}\right)\left(1-a^{-1} x^{2 n-1}\right)
$$

$=\sum_{-\infty}^{\infty} x^{4 n^{2}} a^{2 n}-\alpha x \sum_{-\infty}^{\infty} x^{4 n(n+1)} a^{2 n}$
$=\prod_{1}^{\infty}\left(1-x^{8 n}\right)\left(1+a^{2} x^{8 n-4}\right)\left(1+a^{-2} x^{8 n-4}\right)$
$-\left(a+a^{-1}\right) x \prod_{1}^{\infty}\left(1-x^{8 n}\right)\left(1+a^{2} x^{8 n}\right)\left(1+a^{-2} x^{8 n}\right)$.
1992]

With D_{a} denoting derivation with respect to a, we then operate on both sides of the foregoing identity with $a D_{a}$ to get

$$
\begin{align*}
& -\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1-a x^{2 n-1}\right)\left(1-a^{-1} x^{2 n-1}\right) \sum_{1}^{\infty} v_{k}(x)\left(a^{k}-a^{-k}\right) \tag{2}\\
= & 2 \prod_{1}^{\infty}\left(1-x^{8 n}\right)\left(1+a^{2} x^{8 n-4}\right)\left(1+a^{-2} x^{8 n-4}\right) \sum_{1}^{\infty}(-1)^{k-1} v_{k}\left(x^{4}\right)\left(a^{2 k}-a^{-2 k}\right) \\
& -\left(a-a^{-1}\right) x \prod_{1}^{\infty}\left(1-x^{8 n}\right)\left(1+a^{-2} x^{8 n}\right)\left(1+a^{-2} x^{8 n}\right) \\
& -\left(a+a^{-1}\right) 2 x \prod_{1}^{\infty}\left(1-x^{8 n}\right)\left(1+a^{2} x^{8 n}\right)\left(1+a^{-2} x^{8 n}\right) \sum_{1}^{\infty}(-1)^{k-1} u_{k}\left(x^{8}\right)\left(a^{2 k}-a^{-2 k}\right)
\end{align*}
$$

where, for convenience $u_{k}(x):=x^{k} \cdot\left(1-x^{k}\right)^{-1}, v_{k}(x):=x^{k} \cdot\left(1-x^{2 k}\right)^{-1}, k \in P$, and x is a complex number with $|x|<1$. Now, in (2), let $a=i$ and divide the resulting identity by $-2 i$ to get

$$
\prod_{1}^{\infty}\left(1-x^{2 n}\right)\left(1+x^{4 n-2}\right) \sum_{0}^{\infty}(-1)^{k} v_{2 k+1}(x)=x \prod_{1}^{\infty}\left(1-x^{8 n}\right)^{3}
$$

or, equivalently,

$$
x \prod_{1}^{\infty} \frac{\left(1-x^{8 n}\right)^{3}}{\left(1-x^{2 n}\right)\left(1+x^{4 n-2}\right)}=\sum_{0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{1-x^{4 k+2}}
$$

Hence,

$$
x \prod_{1}^{\infty} \frac{\left(1-x^{8 n}\right)^{2}}{\left(1-x^{8 n-4}\right)^{2}}=\sum_{0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{1-x^{4 k+2}}=\sum_{k=0}^{\infty}(-1)^{k} \sum_{j=0}^{\infty} x^{(2 j+1)(2 k+1)}
$$

Owing to a well-known identity of Gauss ([1], p. 284), it then follows that

$$
\begin{aligned}
\sum_{0}^{\infty} t_{2}(n) x^{4 n+1} & =x\left\{\sum_{0}^{\infty} x^{2 n(n+1)}\right\}^{2}=x \prod_{1}^{\infty} \frac{\left(1-x^{8 n}\right)^{2}}{\left(1-x^{8 n-4}\right)^{2}} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \sum_{j=0}^{\infty} x^{(2 j+1)(2 k+1)}=\sum_{m=0}^{\infty} x^{2 m+1} \sum_{d \mid 2 m+1}(-1)^{(d-1) / 2} \\
& =\sum_{n=0}^{\infty} x^{4 n+1} \sum_{d \mid 4 n+1}(-1)^{(d-1) / 2}+\sum_{n=0}^{\infty} x^{4 n+3} \sum_{d \mid 4 n+3}(-1)^{(d-1) / 2}
\end{aligned}
$$

Equating coefficients of like powers of x, we get, for each $n \in \mathbb{N}$,

$$
\begin{aligned}
t_{2}(n)=\sum_{d \mid 4 n+1}(-1)^{(d-1) / 2} & =\sum_{\substack{d \mid 4 n+1 \\
d \equiv 1(\bmod 4)}} 1-\sum_{\substack{d \mid 4 n+1 \\
d \equiv 3(\bmod 4)}} 1 \\
& =d_{1}(4 n+1)-d_{3}(4 n+1), \\
\sum_{d \mid 4 n+13}(-1)^{(d-1) / 2} & =0 .
\end{aligned}
$$

This proves Theorem 2. In passing we note that the second conclusion follows easily from the following independent argument. For each $n \in N$ and each divisor d (and codivisor d^{\prime}) of $4 n+3$, exactly one of the pair (d, d^{\prime}) is $\equiv 1$ $(\bmod 4)$ and exactly one is $\equiv 3(\bmod 4)$. Hence,

$$
(-1)^{(d-1) / 2}+(-1)^{\left(d^{\prime}-1\right) / 2}=0
$$

Summing over all of these pairs, we obtain the desired result.
Finally, we prove that Theorems 1 and 2 are actually equivaZent. To this end, we first recall the following well-known result.

Theorem: For an arbitrary positive integer $n>1$, let

$$
n=\prod_{i=1}^{i=r} p_{i}^{e_{i}}
$$

denote its prime-power decomposition. Then, n is representable as a sum of two squares if and only if, for each $i \in\{1,2, \ldots, r\}$ such that $p_{i}, \equiv 3$ (mod 4), e_{i} is even.

It then follows that counting representations of positive integers by sums of two squares can be restricted to positive integers of the form $2^{f}(4 k+1)$, $f, k \in \mathbb{N}$. Equivalence of Theorems 1 and 2 will then be an easy consequence of the following lemma.

Lemma: If for each $k \in \mathbb{N}$,

$$
S=S(k):=\left\{(x, y) \in \mathbb{N} \times \mathbb{P} \mid 4 k+1=x^{2}+y^{2}\right\}
$$

and

$$
T=T(k):=\left\{(i, j) \in \mathbb{N}^{2} \mid k=i(i+1) / 2+j(j+1) / 2\right\}
$$

then

$$
|S|=|T|
$$

Proof: To see this we define a function $\theta: T \rightarrow S$ as follows: for each $(i, j) \in T$,

$$
\theta(i, j):=\left\{\begin{aligned}
(0,2 i+1), & \text { if } i=j \\
(i-j, i+j+1), & \text { if } i>j \\
(i+j+1, j-i), & \text { if } i<j
\end{aligned}\right.
$$

Simple calculation reveals that θ is single-valued, and always $\theta(i, j) \in S$. So, we proceed to show that θ is one-to-one from T onto S.

Suppose that $(g, h),(i, j) \in T$, and $\theta(g, h)=\theta(i, j)$. If (a) $g=h$, then $\theta(g, h):=(0,2 g+1)$.
Therefore, $\theta(i, j) \in \mathbb{N} \times \mathbb{P}$ must also have first coordinate equal to 0 : that is, $\theta(i, j)=(0, y)$, with $i=j$ and $y=2 i+1$. So, $2 g+1=2 i+1$, whence $g=i$, whence $g=h=i=j$, whence $(g, h)=(i, j)$. If (b) $g>h$, then

$$
\theta(g, h):=(g-h, g+h+1)
$$

Therefore, $\theta(i, j)=(x, y) \in \mathbb{P}^{2}$, with $x<y$, whence $x=i-j$ and $y=i+j+1$, whence $i-j=g-h$ and $i+j+1=g+h+1$, whence $(i, j)=(g$, h). If (c) $g<h$, then

$$
\theta(g, h):=(g+h+1, h-g)
$$

As before, we must have:

$$
g+h=i+j \quad \text { and } \quad-g+h=-i+j
$$

whence $(g, h)=(i, j)$. Thus, θ is one-to-one.
Pick any $(x, y) \in S(k)$, and split two cases: (i) $x=0$ or (ii) $x>0$. Under (i) we have

$$
4 k+1=0^{2}+y^{2}, \text { whence } y=2 i+1, \text { for some } i \in \mathbb{N}
$$

Hence, for $i=j:=(y-1) / 2$, we have

$$
(x, y)=(0,2 i+1)=\theta(i, j), \text { where }(i, j) \in T(k)
$$

Under case (ii) we split two further subcases: (ii') $x<y$ or (ii'") $x>y$. Then under (ii') we put $i-j=x$ and $i+j+1=y$ to find

$$
i=(x+y-1) / 2 \quad \text { and } \quad j=(-x+y-1) / 2
$$

Thus, $i>j, i-j=x$, and $i+j+1=y$, whence $(x, y)=\theta(i, j) . \quad$ [Clearly, (i, j) $\in T(k)$.$] Under (ii") we put i+j+1=x$ and $-i+j=y$ to find

$$
i=(x-y-1) / 2 \quad \text { and } \quad j=(x+y-1) / 2 .
$$

As before, $i<j$ and $(x, y)=\theta(i, j)$, where $(i, j) \in T(k)$. This proves that θ is onto S.

Now let us assume that Theorem 2 holds. Then, for each $k \in N$,

$$
|S(k)|=|T(k)|=a_{1}(4 k+1)-d_{3}(4 k+1)
$$

Therefore,

$$
\begin{aligned}
r_{2}(4 k+1) & =\left|\left\{(x, y) \in \mathbb{Z}^{2} \mid 4 k+1=x^{2}+y^{2}\right\}\right| \\
& =4\left\{d_{1}(4 k+1)-d_{3}(4 k+1)\right\}
\end{aligned}
$$

since each solution $(x, y) \in S$ yields 4 solutions $(\pm x, \pm y) \in \mathbf{Z}^{2}$.
Conversely, let us assume that Theorem 1 holds. Then, for each $k \in N$,

$$
|S(k)|=r_{2}(4 k+1) / 4=d_{1}(4 k+1)-d_{3}(4 k+1)
$$

whence (owing to our Lemma),

$$
t_{2}(k):=|T(k)|=d_{1}(4 k+1)-d_{3}(4 k+1),
$$

as well.
Since $r_{2}\left(2^{f}(4 k+1)\right)=r_{2}(4 k+1)$, equivalence of Theorems 1 and 2 follows. Owing to the equivalence of the two theorems, our proof of Theorem 2 is a new one for both theorems.

Acknowledgment

The author would like to thank the referee for suggested improvement of the exposition.

References

1. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 4th ed. Oxford: Clarendon Press, 1960.
2. M. D. Hirschhorn. "A Simple Proof of Jacobi's Two-Square Theorem." Amer. Math. Monthly 92 (1985):579-80.
