STRONG DIVISIBILITY LINEAR RECURRENCES OF THE THIRD ORDER

Pavel Horák

T. G. Masaryk University, Brno, Czechoslovakia
(Submitted April 1990)

1. Introduction

A $k^{\text {th }}$-order linear recurrent sequence $u=\left\{u_{n}: n=1,2, \ldots\right\}$ of integers, satisfying the following property for greatest common divisors:

$$
\left(u_{i}, u_{j}\right)=\left|u_{(i, j)}\right| \text { for all } i, j \geq 1
$$

is called a $k^{\text {th }}$-order strong divisibility sequence (SDS). The notion of strong divisibility was introduced by C. Kimberling in [3] for $k^{\text {th }}$-order linear recurrences $\left\{u_{n}: n=0,1,2, \ldots\right\}$.

All the second-order SDS's have been described in [2]. A characterization of all the SDS's in certain subsystems of the system T of all the third-order linear recurrences of integers was given in [1]. The purpose of this note is to extend the results of [1] and to describe all the SDS's in further subsystems of T.

Let U denote the system of all the sequences $u=\left\{u_{n}: n=1,2, \ldots\right\}$ defined by

$$
\begin{aligned}
& u_{1}=1, u_{2}=v \neq 0, u_{3}=\mu \neq 0 \\
& u_{n+3}=a \cdot u_{n+2}+b \cdot u_{n+1}+c \cdot u_{n}, \text { for } n \geq 1
\end{aligned}
$$

where ν, μ, α, b, and c are integers. The system of all the strong divisibility sequences from U will be denoted by D.

Notice that we may take $u_{1}=1$ without loss of generality as all the thirdorder SDS's with $u_{2} \neq 0 \neq u_{3}$ are exactly all the nonzero integral multiples of the sequences from D.

Lemma 1.1: Let $u=\left\{u_{n}\right\} \in U$. Then $u_{2} \mid u_{4}$ if and only if there exists an integer f such that

$$
\begin{equation*}
c=f \cdot v-\alpha \cdot \mu \tag{1}
\end{equation*}
$$

Proof: From the above definition we obtain $u_{2}=v, u_{4}=\alpha \mu+b v+c$ and the assertion follows.

$$
\text { 2. The Case } a=b=c=1
$$

Let V denote the system of all the sequences from U satisfying the condition $a=b=c=1$, i.e., $\mathbf{u}=\left\{u_{n}\right\} \in V$ if and on1y if

$$
\begin{align*}
& u_{1}=1, u_{2}=v \neq 0, u_{3}=\mu \neq 0 \tag{2}\\
& u_{n+3}=u_{n+2}+u_{n+1}+u_{n}, \text { for } n \geq 1
\end{align*}
$$

The following theorem will show that there are no SDS's in V.
Theorem 2.1: The system of sequences V contains no strong divisibility sequences, i.e., $V \cap D=\emptyset$.

Proof: Let us suppose that $u=\left\{u_{n}\right\} \in V \cap D$. By Lemma 1.1 , there exists an integer f such that

$$
\begin{equation*}
\mu=f \cdot v-1 \tag{3}
\end{equation*}
$$

and thus

$$
u_{4}=v \cdot(f+1) .
$$

Then by (2):

$$
u_{5}=\nu \cdot(f+2)+\mu \quad \text { and } \quad u_{6}=\nu \cdot(2 f+3)+2 \mu
$$

From $u_{2}\left|u_{6}, u_{3}\right| u_{6}$, and $(\nu, \mu)=1$, we get $\nu \mid 2$ and $\mu \mid 2 f+3$. Then, using (3), we obtain:

$$
\nu=1, \mu \mid 5 \text { or } \nu=-1, \mu \mid 1 \text { or } \nu=2, \mu \mid 4 \text { or } \nu=-2, \mu \mid 2 .
$$

But ν, μ are coprime, which leaves 10 possible pairs of ν and μ. For all of them it is easy to find i, j (always ≤ 9) such that $\left(u_{i}, u_{j}\right) \neq\left|u_{(i, j)}\right|$. Therefore $u \notin D$, a contradiction.

$$
\text { 3. The Case } \mu=1 ; a=b=1
$$

Let W denote the system of all the sequences from U satisfying the conditions $\mu=1 ; a=b=1$, i.e., $u=\left\{u_{n}\right\} \in W$ if and only if

$$
\begin{align*}
& u_{1}=1, u_{2}=v \neq 0, u_{3}=1 \tag{4}\\
& u_{n+3}=u_{n+2}+u_{n+1}+c \cdot u_{n}, \text { for } n \geq 1
\end{align*}
$$

Furthermore, let W_{1}, W_{2} denote the following subsystems of W :

$$
\begin{aligned}
& W_{1}=\left\{\mathbf{u} \in W: u_{2} \mid u_{4} \quad \text { and } \quad f=-1\right\} \\
& W_{2}=\left\{\mathbf{u} \in W: u_{2} \mid u_{4} \quad \text { and } \quad f \neq-1\right\}
\end{aligned}
$$

where f is the integer from (1). Obviously, W_{1} and W_{2} are disjoint and
$D \cap W \subseteq W_{1} \cup W_{2}$.
Proposition 3.1: The system of sequences W_{l} contains no strong divisibility sequences, i.e., $W_{l} \cap D=\emptyset$.
Proof: Let $u \in W_{1} \cap D$; then $b+f=0$ and, according to Theorem 3.1 of [1], we get $u=c$ or $u=d$ where

$$
\mathrm{c}=\{1,2,1,0,1,2,1,0, \ldots\}, d=\{1,-2,1,0,1,-2,1,0, \ldots\}
$$

But $\mathrm{c}, \mathrm{d} \notin W$ and thus $\mathrm{u} \notin W_{1}$, a contradiction.
Lemma 3.2: Let $\mathbf{u}=\left\{u_{n}\right\} \in W_{2}$. Then:

$$
\begin{align*}
& c=f \cdot v-1 \tag{5}\\
& u_{4}=v \cdot(f+1) \neq 0 \tag{6}\\
& c \equiv-v-1\left(\bmod \left|u_{4}\right|\right) \tag{7}
\end{align*}
$$

Proof: The assertion (5) follows from (1), the assertions (6) and (7) follow from $u_{4}=1+v+c$, from (5), and from the definition of W_{2}.
Lemma 3.3: Let $\mathbf{u}=\left\{u_{n}\right\} \in W_{2} \cap D$, such that $f \neq 0$. Then $v \neq-1$.
Proof: Let us suppose that $u \in W_{2} \cap D, f \neq 0$, and $\nu=-1$. Then from (6) and (4) we get $0 \neq u_{4}=c$ and consequently
$u_{n+3} \equiv u_{n+2}+u_{n+1}\left(\bmod \left|u_{4}\right|\right)$, for $n \geq 1$.
Thus, $u_{8} \equiv 3\left(\bmod \left|u_{4}\right|\right)$ and from $u_{4} \mid u_{8}$ we obtain $u_{4}=c= \pm 1$, ± 3. But
$c=1 \Rightarrow \mathrm{u} \notin D$ (by Theorem 2.1), a contradiction
$c=-1 \Rightarrow f=0$ [by (5)], a contradiction
$c=3 \Rightarrow\left(u_{9}, u_{10}\right) \neq\left|u_{1}\right| \Rightarrow u \notin D$, a contradiction
$c=-3 \Rightarrow\left(u_{6}, u_{7}\right) \neq\left|u_{1}\right| \Rightarrow u \notin D$, a contradiction.

Lemma 3.4: Let $\mathbf{u}=\left\{u_{n}\right\} \in W_{2}$. Then $u_{4} \mid u_{8}$ if and only if

$$
v^{2} \equiv v+5(\bmod |f+1|)
$$

Proof: Using (7) and (4) we get $u_{5} \equiv 1-v-v^{2}\left(\bmod \left|u_{4}\right|\right)$, then

$$
\begin{equation*}
u_{6} \equiv-v(v+2)\left(\bmod \left|u_{4}\right|\right), \quad u_{7} \equiv-2 v^{2}-3 v+1\left(\bmod \left|u_{4}\right|\right) \tag{8}
\end{equation*}
$$

and, finally,

$$
u_{8} \equiv v\left(v^{2}-v-5\right)\left(\bmod \left|u_{4}\right|\right) .
$$

But by (6), $u_{4}=v \cdot(f+1)$ and, therefore:

$$
u_{4} \mid u_{8} \text { if and only if } v^{2}-v-5 \equiv 0(\bmod |f+1|) .
$$

Lemma 3.5: Let $u=\left\{u_{n}\right\} \in W_{2}$ such that $u_{4} \mid u_{8}$ and $u_{4} \mid u_{12}$. Then

$$
33 v+60 \equiv 0(\bmod |f+1|)
$$

Proof: From (7) and (6) we obtain $c \equiv-v-1(\bmod |f+1|)$. Using this fact, (8), Lemma 3.4, (4), and the assumptions $u_{4}\left|u_{8}, u_{4}\right| u_{12}$, we get:

$$
\begin{aligned}
u_{6} & \equiv-3 v-5(\bmod |f+1|), & u_{7} & \equiv-5 v-9(\bmod |f+1|), \\
u_{8} & \equiv 0(\bmod |f+1|), & u_{9} & \equiv 6 v+11(\bmod |f+1|), \\
u_{10} & \equiv 25 v+45(\bmod |f+1|), & u_{11} & \equiv 31 v+56(\bmod |f+1|),
\end{aligned}
$$

and, finally,

$$
u_{12} \equiv 33 v+60 \equiv 0(\bmod |f+1|) .
$$

Proposition 3.6: Let $\mathbf{u}=\left\{u_{n}\right\} \in W_{2}$ such that $u_{4} \mid u_{8}$ and $u_{4} \mid u_{12}$. Then $f+1 \mid 135$.
Proof: From Lemma 3.4, we get:
(9) $1089 v^{2} \equiv 1089 v+5445(\bmod |f+1|)$.

Similarly, from Lemma 3.5, we get:

$$
\begin{align*}
& 1089 v^{2} \equiv 3600(\bmod |f+1|) \tag{10}\\
& 1089 v \equiv-1980(\bmod |f+1|) \tag{11}
\end{align*}
$$

Now, from (9), (10), and (11) we obtain

$$
3600 \equiv 3465(\bmod |f+1|)
$$

and thus, $f+1 \mid 135$.
Lemma 3.7: Let $u=\left\{u_{n}\right\} \in W_{2}$. Then $u_{5} \neq 0$ and

$$
\begin{equation*}
u_{10} \equiv \nu \cdot\left(f^{3}-5 f^{2}-2 f+1\right)+f^{2}-4 f-6\left(\bmod \left|u_{5}\right|\right) . \tag{12}
\end{equation*}
$$

Proof: From (5), (6), and (4) we get:
(13) $\quad u_{5}=v^{2} f+\nu f+1$.

If $u_{5}=0$, then $\nu f \cdot(\nu+1)=-1$ and thus, $\nu+1= \pm 1$, a contradiction. Furthermore, by a direct computation from (4), using (5), we get:

$$
\begin{equation*}
u_{10}=v^{3} f^{3}+6 v^{3} f^{2}+10 v^{2} f^{2}+6 v^{2} f+10 v f+v . \tag{14}
\end{equation*}
$$

From (13) we get $\nu^{2} f \equiv-v f-1\left(\bmod \left|u_{5}\right|\right)$; using this fact in (14), we obtain (12).

Proposition 3.8: Let $u=\left\{u_{n}\right\} \in W_{2}$ such that $u_{5} \mid u_{10}$. Then

$$
u_{5} \mid f^{4}-13 f^{3}+34 f^{2}+38 f+1
$$

Proof: Let us denote $\alpha=f^{3}-5 f^{2}-2 f+1 ; \beta=f^{2}-4 f-6$. Obviously,

$$
\begin{equation*}
\alpha^{2}-\beta f(\alpha-\beta)=\alpha^{2}\left(\nu^{2} f+\nu f+1\right)-(\nu \alpha+\beta)(\alpha f \nu+f(\alpha-\beta)) . \tag{15}
\end{equation*}
$$

Then from $u_{5} \mid u_{10},(12),(13)$, and (15), we obtain

$$
u_{5} \mid \alpha^{2}-\beta f(\alpha-\beta)=f^{4}-13 f^{3}+34 f^{2}+38 f+1
$$

which completes the proof of the proposition.
Now, let us denote by H the following subsystem of the system W :

$$
H=\{\mathbf{u} \in W: c=-1\},
$$

i.e., $\mathbf{u} \in H$ if and only if $\mathbf{u}=\{1, v, 1, v, \ldots\}$. It is obvious that $H \subseteq W_{2}$.

Proposition 3.9: Let $\mathbf{u}=\left\{u_{n}\right\} \in W_{2}$. Then $u \in D$ if and on1y if $u \in H$.
Proof: If $u \in H$, then clearly $u \in D$. Conversely, let $u \in D$; then (by Proposition 3.6), $f+1 \mid 135$. From Lemma 3.4 and from the fact that the congruence $v^{2} \equiv$ $v+5$ (mod 9) has no solution, we get $|f+1| \neq 9,27,45,135$. Therefore, we obtain for f the following eight possibilities: $f=0,2,4,14,-2,-4,-6$, -16. Now:
(i) let $f=0$, then by (5), $c=-1$; thus, $\mathbf{u}=\{1, v, 1, v, \ldots\} \in H$.
(ii) let $f \neq 0$ and let us denote $\delta=f^{4}-13 f^{3}+34 f^{2}+38 f+1$. The possible values of f and the factorization of the corresponding δ are given in the table:

f	2	4	14	-2	-4	-6	-16
δ	5^{3}	11^{2}	9941	181	1481	5101	$181 \cdot 701$

But $u_{5} \mid \delta$ (by Proposition 3.8), which gives us 38 possible pairs $\left\{f, u_{5}\right\}$. For a given pair $\left\{f, u_{5}\right\}$, we obtain the value v from (13). Obviously, v must be an integer and $\nu \neq 0,-1$ [by (4) and Lemma 3.3]. By a direct computation, we obtain the following solutions:

$$
f=2, v=1,3,-2,-4, \text { and } f=4, v=5,-6
$$

For $f=2, \nu=-4$, we get $\left(u_{4}, u_{11}\right) \neq\left|u_{1}\right|$; for $f=4, \nu=5$, we get $\left(u_{5}, u_{6}\right) \neq$ $\left|u_{1}\right|$, and in the remaining cases we get $v^{2} \not \equiv v+5(\bmod |f+1|)$ and, therefore, by Lemma 3.4, $u_{4} \nmid u_{8}$. Thus $u \notin D$, a contradiction.

The following theorem gives a complete characterization of all the strong divisibility sequences in the system W.

Theorem 3.10: Let $u \in W$. Then u is a strong divisibility sequence if and only if $u \in H$.

Proof: The assertion follows immediately from Propositions 3.1 and 3.9 and from the inclusion $D \cap W \subseteq W_{1} \cup W_{2}$.

Acknowledgment

The author wishes to thank the referee for suggestions that led to an improved presentation of this paper.

References

1. P. Horák. "A Note on the Third-Order Strong Divisibility Sequences." Fibonacei Quarterly 26.4 (1988):366-71.
[^0]At the request of Professor Lester Lange and with the permission of Professor Leonard Gillman, we have simply lifted Professor Gillman's delightful, melodic note, below, from page 375 of the June-July 1982 issue of The American Mathematical Monthly. Students need to know that the well-known limit mentioned involves the golderi mean.

Gerald E. Bergum
Editor

MISCELLANEA

77.

Leonid Hambro, the well-known pianist, told me recently that he was about to enter a billiards tournament in which he would play 12 games; he knew the opposition, he said, and he estimated his odds for winning any particular game as 8 to 5. "What do you think your chances are of sweeping all 12 games?" I asked him. "They're pretty small," he said. "The probability that I'11 win any one game is $8 / 13$. To find the probability that I'll win all 12 you have to take $8 / 13$ to the 12 th power. That's a pretty small number."

He did not have a calculator in his pocket. But he had a pencil and a pad—and an inspiration. "Hey!" he said. "Those are Fibonacci numbers. The ratio of successive terms approaches a limit (about .618), and very fast: even a ratio near the beginning like $8 / 13$ is very close to the limit." He scribbled some additions. "The 12 th Fibonacci number after 8 is 2584 . Therefore $8 / 13$ to the 12 th power is approximately the same as $8 / 13$ times $13 / 21$ and so on, twelve times; everything cancels out except the 8 in the beginning and the 2584 at the end. So the probability that I will win all 12 games is about $8 / 2584$, or about 1/300. See, I told you it was pretty small."
-Leonard Gillman
The University of Texas at Austin

[^0]: 2. P. Horák \& L. Skula. "A Characterization of the Second-Order Strong Divisibility Sequences." Fibonacci Quarterly 23.2 (1985):126-32.
 3. C. Kimberling. "Strong Divisibility Sequences with Nonzero Initial Term." Fibonacci Quarterly 16.6 (1978):541-44.
