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1. Introduction 

A kth-order linear recurrent sequence u = {un : n = 1, 2, ...} of integers, 
satisfying the following property for greatest common divisors: 

(u^, Uj) = |^(i, j)| for all i , j > 1, 

is called a kth-order strong divisibility sequence (SDS). The notion of strong 
divisibility was introduced by C. Kimberling in [3] for kth-order linear recur-
rences {un : n = 0, 1, 2, . . . } . 

All the second-order SDSTs have been described in [2]. A characterization 
of all the SDS*s in certain subsystems of the system T of all the third-order 
linear recurrences of integers was given in [1]. The purpose of this note is 
to extend the results of [1] and to describe all the SDSfs in further 
subsystems of T. 

Let U denote the system of all the sequences u = {un: n = 1, 2,...} defined 
by 

Ui = 1, Ui = v * 0, ẑ3 = y * 0 

wn + 3 = a • un + 2 + b • un + i + c • uny for n > I, 

where v, y, a, b, and a are integers. The system of all the strong divisibility 
sequences from U will be denoted by D. 

Notice that we may take Ui = 1 without loss of generality as all the third-
order SDSfs with ẑ2 * 0 * W3 are exactly all the nonzero integral multiples of 
the sequences from D. 

Lemma 1.1: Let u = {un}^U. Then u^\u^ if and only if there exists an integer 
/ such that 

(1) c = /• v - a ' u. 

Proof: From t h e above d e f i n i t i o n we o b t a i n u<i = v , Ui+ = a\x + bv + c and t h e 
a s s e r t i o n f o l l o w s . 

2 . The C a s e a = b = c = 1 

Let V denote the system of all the sequences from U satisfying the condi-
tion a = b = c = 1, i.e., u = {un} eV if and only if 

Ui = 1, Uo = v * 0, Mci = y * 0 
(2) i z d 

un+3 = un+2 + un+i + un, for n > 1. 
The following theorem will show that there are no SDS!s in V. 

Theorem 2.1: The system of sequences V contains no strong divisibility sequen-
ces, i.e. , VnD = 0. 

Proof: Let us suppose that u = {un} e Vn Z). By Lemma 1.1, there exists an inte-
ger / such that 

(3) y = /• v - 1 
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and t h u s 

UL± = v • ( / + 1) . 

Then by ( 2 ) : 

^5 = v • ( / + 2) + y and u& = v • ( 2 / + 3) + 2y . 

From u2\u^9 u^\u^9 and ( v , y ) = 1, we g e t v 12 and y | If + 3 . Then, u s i n g 
(3) , we o b t a i n : 

v = 1, y | 5 o r v = - 1 , u | l o r v = 2 , y14 or v = - 2 , y12-

But v, y are coprime, which leaves 10 possible pairs of v and y. For all of 
them it is easy to find i, j (always < 9) such that (u^9 Uj) * \u(i j)| • There-
fore \l£D> a contradiction. 

3. The Case y = 1; a = h = 1 

Let W denote the system of all the sequences from U satisfying the condi-
tions y = 1; a = b = 1, i.e., u = {un} €.W if and only if 

Ui = 1, Un = V * 0, MQ = 1 
(4) 

^n + 3 = wn + 2 + wn+l + °* un > for n > 1. 

Furthermore, let W\9 W2 denote the following subsystems of W: 
Wl = {u e W : u2\u^ and / = -1} 

W2 = {u e W: u2\ui+ and / * -1} 

where / is the integer from (I). Obviously, W\ and W2 are disjoint and 

D nW cwlu W2. 

Proposition 3.1: The system of sequences Wi contains no strong divisibility 
sequences, i.e., ^ n/} = 0 „ 

Proof: Let u £ ^ n D ; then i> + / = 0 and, according to Theorem 3.1 of [1], we 
get u = c or u = d where 

c = {1, 2, 1, 0, 1, 2, 1, 0, . . . } , d = {1, -2, 1, 0, 1, -2, 1, 0, . . . } . 

But C, d £ W and t h u s u ^ £/]_, a c o n t r a d i c t i o n . 

Lemma 3.2: Le t u = {un}£W2. Then: 

(5) o = jf • v - 1, 

(6) ^ = v ( / + 1) * 0 , 

(7) c = - v - 1 (mod l u ^ l ) . 

Proof: The assertion (5) follows from (1), the assertions (6) and (7) follow 
from Uu, - 1 + v + c, from (5), and from the definition of W2. 

Lemma 3.3: Let u = {un} eW2nD, such that f * 0. Then v * -1. 

Proof: Let us suppose that ueW2nDs f * 0, and v = -1. Then from (6) and (4) 
we get 0 2 u^ = c and consequently 

un + 3 = un + 2 + un + i (mod l^i+l), for n > 1. 

Thus, HQ E 3 (mod |ẑ .̂  |) and from U^\UQ we obtain Ui+ = c = ±1, ±3. But 

c = 1 => U f. D (by Theorem 2.1), a contradiction 
e = -1 =#> / = 0 [by (5)], a contradiction 
c = 3^>(u9, UIQ) * \ui\ =$>u £D, a contradiction 
c = -3 =^>(U6? ^7) 2 |ui|=^>u^Z^, a contradiction. 
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Lemma 3.4: Le t u = {un} G ^ . Then UI+\UQ i f and o n l y i f 

v 2 E v + 5 (mod | / + l | ) . 

Proof: Us ing (7) and (4) we g e t u5 = 1 - v - v 2 (mod | z<^ | ) , t h e n 

(8) u 6 = - v ( v + 2) (mod | w i j ) , u7 = - 2 v 2 - 3v + 1 (mod \uh\) 

and , f i n a l l y , 

uQ = v ( v 2 - v - 5) (mod | u i + | ) . 

But by ( 6 ) , Ui+ = v • (f + 1) a n d , t h e r e f o r e : 

UL+\UQ i f and o n l y i f v 2 - v - 5 E 0 (mod \f + l | ) . 

Lemma 3.5: Le t u = { w n } e ^ such t h a t UI+\UQ and Ui+\ui2- Then 

33v + 60 E 0 (mod \f + l | ) . 

Proof: From (7) and (6) we obtain o E -V - 1 (mod \f + 1 | ) . Using this fact, 
(8), Lemma 3.4, (4), and the assumptions U^\UQ, UL+\UI29 we get: 

u6 E -3v - 5 (mod |/+ l|), u7 E -5v - 9 (mod |f + l|), 

u8 E 0 (mod |/ + 1 j), u3 E 6v + 11 (mod |/ + l|), 

w10 = 25v + 45 (mod |/ + l|), w n = 31v + 56 (mod \f + l|), 

and, finally, 

U12 = 33v + 60 E 0 (mod |/ + 1|). 

Proposition 3.6: Le t u = {un} e W2 such t h a t U^\UQ and Uii\uiZ- Then / + l | l 3 5 . 

Proof: From Lemma 3 . 4 , we g e t : 

(9) 1089v2 E 1089v + 5445 (mod \f + l | ) . 

S i m i l a r l y , from Lemma 3 . 5 , we g e t : 

(10) 1089v2 E 3600 (mod \f + l | ) ; 

(11) 1089v E -1980 (mod \f + l | ) . 

Now, from ( 9 ) , ( 1 0 ) , and (11) we o b t a i n 

3600 E 3465 (mod \f + l | ) 

and t h u s , / + 1 | l 3 5 . 

Lemma 3.7: Le t u = {u n } <Eft/2. Then u5 * 0 and 

(12) M l 0 - E v ( / 3 - 5 / 2 - 2 / + 1) + f2 - kf - 6 (mod | u 5 | ) . 

Proof: From ( 5 ) , ( 6 ) , and (4) we g e t : 

(13) u5 = v 2 / + vf + 1. 

If U5 = 0, then vf • (v + 1) = -1 and thus, v + 1 = ±1, a contradiction. Fur-
thermore, by a direct computation from (4), using (5), we get: 

(14) u10 = v3/3 + 6v3jc2 + iov2/2 + 6v2/ + lOvf + v. 

From (13) we get v2/ E -v/ - 1 (mod | ẑ 51) ; using this fact in (14), we obtain 
(12). 

Proposition 3.8: Let u = {un}<EW2 such that w5|u10. Then 

u5\fLi - 13/3 + 34/2 + 38/ + 1. 
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Proof: Let us denote a = f3 - 5f2 - If + 1; 3 = f2 - kf - 6. Obviously, 

(15) a2 - 3/(a - 3) = a2(v2/ + v/ + 1) - (va + 3)(a/v + /(a - 3))-

Then from ^sl^io* (12), (13), and (15), we obtain 

u5\a2 - 3/(a - 3) = fk - 13/3 + 34/2 + 38/ + 1 

which completes the proof of the proposition. 

Now, let us denote by H the following subsystem of the system W: 

H = {new : c = -1}, 
i.e., u GH if and only if u = {l, V, 1, v, . . . } . It is obvious that H C W2. 

Proposition 3.9: Let u = { w j e ^ . Then u e £> if and only if u e # . 

Proof: If u £ 5 , then clearly u e P . Conversely, let uG£>; then (by Proposition 
3.6), / + 1 | 135. From Lemma 3.4 and from the fact that the congruence v2 = 
v + 5 (mod 9) has no solution, we get |/ + l| * 9, 27, 45, 135. Therefore, we 
obtain for f the following eight possibilities: f = 0, 2, 4, 14, -2, -4, -6, 
-16. Now: 

(i) let / = 0, then by (5) , c = -1; thus, u = {1, V, 1, y, . . .} eH. 
(ii) let / * 0 and let us denote 6 = / 4 - 13/3 + 34/2 + 38/ + 1 . The possible 

values of / and the factorization of the corresponding 6 are given in the 
table: 

/ 
6 

2 
53 

4 
ll2 

14 
9941 

-2 
181 

-4 
1481 

-6 
5101 

-16 
181 - 701 

But W51 6 (by Proposition 3.8), which gives us 38 possible pairs {/, u$}. For a 
given pair {/, U5}, we obtain the value v from (13). Obviously, v must be an 
integer and v * 0, -1 [by (4) and Lemma 3.3]. By a direct computation, we 
obtain the following solutions: 

f = 2, v = 1, 3, -2, -4, and / = 4, v = 5, -6. 

For / = 2, v = -4, we get (ui+, Un) * |^i|; f° r / = 4, v = 5, we get (w5, u6) * 
|^iI, and in the remaining cases we get v2 ^ v + 5 (mod | / + 1 | ) and, there-
fore, by Lemma 3.4, UI+\UQ. Thus u ̂  D, a contradiction. 

The following theorem gives a complete characterization of all the strong 
divisibility sequences in the system W. 

Theorem 3.10: LetueA/. Then u is a strong divisibility sequence if and only 
if U G H. 

Proof: The assertion follows immediately from Propositions 3.1 and 3.9 and from 
the inclusion D n W QWiU Wz-
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At the request of Professor Lester Lange and with the permission of Profes-
sor Leonard Gillman, we have simply lifted Professor Gillman*s delightful, 
melodic note, below, from page 375 of the June-July 1982 issue of The American 
Mathematical Monthly. Students need to know that the well-known limit 
mentioned involves the golden mean. 

Gerald E. Bergum 
Editor 

MISCELLANEA 

77. 
Leonid Hambro, the well-known pianist, told me recently that he was about 

to enter a billiards tournament in which he would play 12 games; he knew the 
opposition, he said, and he estimated his odds for winning any particular game 
as 8 to 5. "What do you think your chances are of sweeping all 12 games?" I 
asked him. "They're pretty small," he said. "The probability that IT11 win 
any one game is 8/13. To find the probability that Ifll win all 12 you have to 
take 8/13 to the 12th power. That's a pretty small number." 

He did not have a calculator in his pocket. But he had a pencil and a 
pad—and an inspiration. "Hey!" he said. "Those are Fibonacci numbers. The 
ratio of successive terms approaches a limit (about .618), and very fast: even 
a ratio near the beginning like 8/13 is very close to the limit." He scribbled 
some additions. "The 12th Fibonacci number after 8 is 2584. Therefore 8/13 to 
the 12th power is approximately the same as 8/13 times 13/21 and so on, twelve 
times; everything cancels out except the 8 in the beginning and the 2584 at the 
end. So the probability that I will win all 12 games is about 8/2584, or about 
1/300. See, I told you it was pretty small." 

—Leonard Gillman 
The University of Texas at Austin 
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