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1. Introduction 

In this article we use the elementary theory of symmetric functions and the 
theory of characters of representations of the symmetric group to derive iden-
tities involving generalized Fibonacci and Lucas numbers. Not all the identi-
ties obtained are new; what is possibly of greater interest is the approach, 
which may lead to further results. We have included some preparatory material 
on partitions, Schur functions and characters in Sections 2, 3, and 5. Proofs 
of the statements made there may be found, among many other places, in [1] and 
[2]. Character calculations similar to those carried out in this paper are 
found in [3]. 

Let a and b be any two unequal complex numbers. Define the Lucasian pairs 
{Un} and {Vn} by 

Un = a* ~ I", Vn = an + bn; n = 0, 1, 2, ... . 

Then Un and Vn satisfy the recurrences 

Vn + 2 = PUn + l ~ QUn> Vn+2 = PVn + l - QVn , 
where P = a + b, Q = ab, P1 - kQ * 0. In case P = 1, Q = -1, put Un = Fn9 Vn = Ln. 
Then Fn and Ln are the Fibonacci and Lucas numbers, respectively. 

Let p i > p2 ^ • • • ̂  Qk be positive integers. One of our basic identities 
has the form rn-, 

UJ 
(1.1) VPl VPz ... VPk = Z^P1,P2,....pk;j2/»-2j + l 

j = 0 

where the A1 s are simply expressible in terms of Q and certain characters of 
the symmetric group. An identity inverse to (1.1) is also obtained. For cer-
tain choices of {p]_, p2» •••» P^ }» t n e relevant characters can be fairly readily 
computed. In this way we obtain, for instance, the identity 

In Section 7 we use a different approach to derive identities involving Lucas 
numbers and certain generalized binomial coefficients. 

2. Partitions and Tableaux 

^ m - 2 , - + l =Pm~2+1U2< 

A p a r t i t i o n i s a f i n i t e sequence of nonnegative i n t e g e r s : 
X = ( X ] _ , \^i . . . 5 Xt) 

in nonincreasing order. A part of A is a nonzero member of {\\9 X^* •••> At}-
The number of parts is the length, £(A), of A. The sum |A| — A j , X^> •••5 ~Xk> 
where k = £(A) is the weight of A. A is said to be a partition of |A|. Occa-
tionally we use an "exponential" notation for A: 

A = l31 2 3 2 ... m$™. 
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Here, 3i is the number of times i occurs in the sequence (A^, A2, ..., A^). 
[A], the diagram of A , is the set of all points {I, j) in Z2 such that 

1 < j < \im Thus, the diagram of (3, 3, 2, 1) is 

Sometimes it is convenient to use squares rather than dots. Let A and u be 
partitions with |x| = |u|. A semi-standard tableau of shape A and content u is 
an arrangement of \i1 lfs, y2

 2?s> U3 3*s, etc., in the squares of the diagram 
of A so that the rows are nondecreasing and the columns are strictly increas-
ing. For example, the semi-standard tableaux of shape (4, 2) and content (3, 
2, 1) are 

1 
2 

1 
3 

1 2 and 1 
2 

1 
2 

1 3 

Figure 1 

Partitions may be ordered lexicographically. That is, 

A > y if Ai uj_ or if A]_ = \ii and A2 ^2 

or if A]_ = ul5 A2 = U25 an<^ ^3 > ^3? etc. 

Semi-standard tableaux of shape A and content y can exist only if A > y. (This 
condition is not sufficient.) 

3. Schur Functions 

We shall be working in the ring Z[xl5 x2, ..., xn] of polynomials in n inde-
pendent variables with integer coefficients. Such a polynomial is symmetric if 
it is invariant under all permutations of the variables. For each n-tuple 
a = (04, a2, ..., an) in Nn

9 we denote by xa the monomial 

If A is a partition of length < n, the polynomial 

^A^l' ^2' • • • » %n) = L ^ ^ y 
where the summation is over all permutations a of {A]_, A2, 
ric. The power sums 

, A^} is symmet-

i= 1 
are symmetric, as are the products 

Pp = Pp, Pp, ••• Pp, (P = (PL P2' . P,)) 2 L ^k 

With every partition A we can associate another type of symmetric function, 
called a Schur function, or 5-function. Let A be a partition (A1? A2, ..., Xn) 
and put 6 = (n - 1, n - 2, ..., 1, 0). Define 

ix + 6 = det(x^' + n _ J ' ) , 1 < i < n, 1 < j < n. 

Then 

1992] 149 



SCHUR FUNCTIONS AND FIBONACCI IDENTITIES 

a6 = det(x^"J) = FI (xi - Xj) 
1 <i<j<m 

is the Vandermonde determinant. Clearly, a6 divides &A+6« The quotient 

( \ - Ci~k+^ 
SX ~~ s \ \ x l > x2> •••> xm) ~ „ 

a6 

is a symmetric homogeneous polynomial of degree | X | which is called a Schur 
function. 

The sets Mm = {mx \ i(X) < m} and S = {sx\i(X) < m} are Z-bases for Am9 the 
set of symmetric polynomials in m variables with coefficients in Z. Thus, for 
example, we may express the polynomials sx as integral linear combinations of 
the polynomials mu. We have 

(3.1) sx = £ ^ j P m y . 
|u| = |x| 

It is possible to show that the Kostka number KXy y is the number of semi-stand-
ard tableaux of shape X and content u. Therefore, Kx^ y is a nonnegative integer 
that vanishes if X < u. 

To express the polynomials pp as integral linear combinations of Schur 
functions, we require the characters of Y,m» the symmetric group on m letters. 
We have 

<3-2) PP = £ , 4sx> 
M = IPI 

where Xp is the character of the irreducible representation of Z m determined 
by X evaluated at the conjugate class of Hm consisting of permutations with 
cycle-partition p. 

Inverse to (3.2) is the relation 

(3-3) s > = ^ | P l ? m
c ^ 

where op is the number of permutations with cycle-partition p; i.e. 

ml 

ly^ 2Y* . . . ^ ( Y l ) ! ( Y 2 ) ! . . . ( y j ! 

w i t h p = lYl 2Y2 . . . /7?Ym and IpI = m. 

4. Basic Identities 

If there are only two independent v a r i a b l e s x^ and X£, and i f £(u) > 3 , then 
77?y = 0. In t h i s case (3.1) may be put in the form 

L2J 
( 4 . 1 ) Sx(xl9 X2) = Z^ K\,(k, n -k)m(k, n- k)(xl> X2> ' 

k= 0 

where n - |x|. There can be no semi-standard tableau of shape X and content u 
if £(A) > £(u) because each of the £(A) rows of the tableau must be headed by a 
distinct integer chosen from a set of £(|i) integers. Thus, the only nontrivial 
case of (4.1) occurs when l(X) < 2. In this case it is not hard to see that, 
if 0 < j < jj] and 0 < k < [|] , we have 

KU,n-j), (k,n-k) = 1 if k > j , and 
KU,n-j), (k,n-k) = 0 if k < J, 

whence 
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[f] 
sU> n~ j)(xl9 x2) = X m,k n_k)(xls x2) 

k = j 

o r 

( 4 . 2 ) Sti,n-j)(xl> X2) = 

= x^x^x^'2^ + x^-2J~lx2 + . . . + x^~2J) 

f^ «, \ //v.n-2,7 + 1 _ rrn~2j+ l\ 
ytAj -J tAj r\ J \^tAj •] *Xi r\ J 

X1 •— X - ; 

With £/n and Vn defined as in the introduction and p = (p l 5 p25 . . . 5 p„) , put 

( 4 . 3 ) Vp = 7 P l Fp2 . . . FPfe . 

T h e n , f r o m ( 4 . 2 ) , we h a v e 

(4.4) Sti,n-3)(*> W = Q3Un-2j+l> 

Moreover, 

PP(a, b) = Vr 

so that, with |p| = n, (3.2) becomes 

[8 r , . 
(4.5) 7P = ^ ( / ' " " J V V y + 1 -

J = 0 . . 

our first basic identity. For example, in the Fibonacci case, taking p = (5, 
3, 2) and referring to the table of characters of S 1 0 in [1]> we have 

(-1) y<5\t'2))Fll-2J = FH " ("1)̂ 9 + F7 ~ 0- ̂ 5 + ("1)̂ 3 " 2Fl 
= 89 + 34 + 13 - 0 - 2 - 2 = 132 
= 11 • 4 • 3 = L5L3L2 = L(Si 3j 2 ) . 

From (3.3) we get our second basic identity 

(4 .6 ) 
[QjnlUn.2j+l = X cpx(/*""J ,Vp, where 0 < j < | 

|p| = n 

f0 = E ^PXp^p5 i f * U ) ^ 3. 
| P | = « 

5. Special Cases of the First Basic Identity 

In some cases it is not difficult to compute XpJ,n~J^« We use the Murnaghan-
Nakayama Rule, which permits an inductive calculation. This requires some pre-
liminary explanation. 

Let (i , j) be the point in the ith row (counting downward) and j t h column 
(counting to the right) in [p], the diagram of p. The hook Hif - consists of 
the point (i , j) together with the points of [p] directly to its right and 
directly below. The number of points in H^ j , the length of the hook, is 
denoted by h{,3j. The points (k, j ) , k > i , form the leg of #£, j . The number 
of points in the leg of H^ . is called the leg-length and is denoted by t̂,j'» 
The point of #£ • furthest to the right of (i , j) is called the hand of the 
hook, while the point of H? • furthest below (i , j) is called its foot. To 
Hit j corresponds a portion of the rim of [p] which is of the same length. It 
consists of the points on the rim between the hand and the foot. To H^> |' , 
for example, there correspond the encircled points of [5, 3, 1] as follows: 

• ' .© © © 
0 0 
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The a s s o c i a t e d p a r t of t h e r i m , i?£ ^ , i s c a l l e d a r i m - h o o k . I t i s i m p o r t a n t t o 
n o t i c e t h a t t h e r e s u l t 

of removing R? • from [p] i s a g a i n t h e d i ag ram of a p a r t i t i o n ; e . g . , 

[ 5 , 3 , l]\R{l'l> 1} = • = [ 2 , l 2 ] . 

The Murnaghan-Nakayama Rule is the following: Let \ and p be partitions of 
m, with 

p = (l3, 2 3 2 . . . k^ . . . m^). 

Suppose $j, > 1 and let 

(I31 2 3 2 ... k3k~l . . . m^), 

Then 

(5.1) X
X

D = E. (-DP 
i, j 

Thus, by removing one occurrence of k from p and all k rim-hooks from A, we can 
express Xp in terms of characters of lower order. Repeated application of this 
procedure allows us to compute Xp for anY A an<i P • 

Let us assume that j < ml2. In case p = (r, im~r) w e can compute Xp
 m~0>) 

inductively by removing 1-hooks from [j, m - j ] . The Murnaghan-Nakayama Rule 
yields 

m 

(5.2) 

ti,m-j) = Y(j-l.m-j), (j, m-j-1) -f f 7 < 

lyti>j) = Y ( J " 1, J) i f 7 = -
A(P, l"1-2") A r , j_m-r»- 1 -LJ- r/ 2 

Note the resemblance between (5.2) and the binomial recurrence. It is not hard 
to show, using induction on m, that 

(5.3) «-m-(":^G:l) -G-;: . ) ' 
If r = 1, (5.3) becomes 

(5.« # • • - » - ( " ; * ) - ( ; : l) 
(Remark: (5.4) may also be obtained from the Frame-Robinson-Thrall formula for 
the degree of an irreducible representation of ]£n.) 

When r = 2, (5.3) can be written 

(5.5, ,«.;:/». (« : ' ) . ( ; : J). 
Using t h e same method a s t h a t used t o e s t a b l i s h ( 5 . 3 ) , we can show t h a t 

C5 6} yU,m-3) = W - r - s \ _ /TTZ - r - s\ (m - r - s \ /TTZ - P - s\ 

' J AP, s,!"'—* \ j ; v j - i / \ j - r / Vj - r - i/ 
/77Z - 2» - S \ _ / W - 3? - S \ 
\ J - s ) \j - s - 1/ 

/772 - 2» - S \ _ / 772 - P - S \ 

\j - r - s) \j - r - s - l) ' 
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lm - v - 3\ lm - v - 3\ , (m - r - 3 
r, 2, i"»-r-2 \ j ) V J - 4 

\ + /m - r - 3\ lm - r - 3\ 
/ V j - r / \j - r - 4/ 

If 8 = 25 we have 

(5.7) yU>rn-j) 
X P, 2,1--

and if, in addition, r = 4, then 

(5.8) XW.»-J) = (m - ~>) - (m. ~ 7). K } X4,2,i-6 \ 3 I \j - 8/ 

Each of (5.3) through (5.8) yields, via (4.5), a Fibonacci identity. We 
have, for example, 

[i] 

[i] 

(5.5)' .E/[(ffl}3) - ( j : J)]^.„+1 = T 2 ^ = p - x . 

(5.8)' .E^[(m;.7) - ( j : J)]^.y+1 = vr 6 w = p-7ff8. 
An expression similar to (5.6) but involving 2q+l binomial coefficients may-

be given for 
v(j »"*-«/) 

In case t^ = 2^ , 1 < i < <f— 1, this expression may be simplified to give the 
expected generalization of (5.4), (5.5) and (5.8)1 
fR en yti>m-3) /TTZ - 2 + 1\ lm - 2 + 1\ 
15.9) X 2 , 4 s 8 , . . . , 1q~li im-lq+2 ~ \ • / " \ J - 2 / * 
yielding the Fibonacci identity 

m (s.» - ?y[r r ' ) - r 7: ;4 m-2j+l 1 2 4 F2« 

If we reason similarly with rectangular partitions, i.e., partitions of the 
form tk we obtain, from (4.5), the formulas 

2 
7* = £ (*)«*'7( {k-li)t k odd, 

and 

7,* • ̂  ( j y ' 7 t t . „ , + ( £ ) + I 1̂7 ]S2 fe even. 

However, these identities are well known and not especially difficult to prove 
directly (see [4]). 

6. Special Cases of the Second Basic Identity 

If X = (n), then Xp is t n e identity character and (4.6) gives 

(6-D E CPFP = W^n+1-
|p| -n 
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If X = ln, then Xp = e(p)> t n e alternating character. That is, e(p) = 1 if 
the permutations with cycle-partition type p are even and e(p) = -1 if these 
permutations are odd. From (4.6) we deduce 

(6.2) £ CpepVp = 0 if n > 3. 
| p | - * 

If X = (1, n - 1), then xA is t n e so-called "natural" character and Xp = 

Yi - — K - - . . . . . . ww^w-. . . _ _ , A p 

ber of elements left fixed by permutations with cycle-partition p. From (4.6) 
we have 

1 where p = lYl 2Y2 ... nYn . In other words, Xn ^s o n e l e s s than the num-
sments left fixed by permutat 

£ <?p(Yi(p) " DVQ = QnlUn-l 

\p\=n 

which , i n c o n j u n c t i o n w i t h ( 6 . 1 ) g i v e s 
X e(p)Yi(p)£P = £ CP7P + e^!^-i = «Ktfn+i + e^n-i) 

| p | = n \p\ =n 

or , f i n a l l y , 

( 6 . 3 ) £ ^ p Y i ( p ) ^ = w!H/„ = nlViUn. 
\p\ = n 

Lastly, if X = (2, l n ~ 2 ) , then xA is t n e character conjugate to the natural 
character, i.e., 

Xp2'1""2 = £(P)(Y1(P) " D-

Then, (4.6) yields, using (6.2), 

(6.4) £ ope(p)yl(p)Vp = 0 if n > 4. 
|P|-« 

The f o l l o w i n g c h a r t i l l u s t r a t e s ( 6 . 1 ) t h r o u g h ( 6 . 4 ) f o r n = 4 i n t h e F i b o n a c c i 
c a s e . 

-p e ( p ) Y I ( P ) ^P ^ P ^ P £p£p£p ^ p Y i ( p ) ^ p ^ p e ( p ) Y l ( p ) ^ P 

1 1 1 4 1 1 1 4 4 
21 6 - 1 2 3 18 - 1 8 36 -36 

2 3 1 0 9 27 27 0 0 
31 8 1 1 4 32 32 32 32 

4 6 - 1 0 7 42 - 4 2 0 0 

sums 120 = 4 ! F 5 0 72 = 4 ! £ \ 0 

A G e n e r a l i z a t i o n 

Using a d i f f e r e n t a p p r o a c h , we g e n e r a l i z e t h e i d e n t i t i e s e s t a b l i s h e d i n 
S e c t i o n 6. F i r s t , s e v e r a l a d d i t i o n a l c o n c e p t s w i l l be i n t r o d u c e d . 

Le t 
P = 1Y1 2 ^ ... ^n a n d 0 = XBl 262 ... „Sn 

be partitions. We define the "generalized binomial coefficient" (JM by 

»•» (°) = a;)(g) • • • (£) 
when the quantities on the right are ordinary binomial coefficients. (£) is 
itself an ordinary binomial coefficient when p and a are suitable rectangular 
partitions. Clearly (£) = 0 if yi < fa for some i, 1 < i < n. 

I f Yi - &£> ! - ^ - n> w e define the partition p - a by 

(7.2) p - a = iYi-ei2
Y2-82 ... nY*-3*. 

Let 
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(7.3) z9 - ^ - lTl2Y2 ... nY«Tl!T2l ... yn I 

(sp is the order of the centralizer of a permutation of cycle-type p). It is 
easy to show that 

«•« o 
whenever p - a is defined. 

The Pth elementary symmetric function er(xi> . .., #OT) is the sum of all 
products of r distinct variables x^ so that e0 = 1 and 

er = 2~< xii xi2 ' ' ' Xir ' 
1 < ^1 < ^2 < • • • < i r < m 

The rth complete symmetric function 7zr(#]_, . .., *cOT) is the sum of all mono-
mials of total degree P, so that, for example, 

I L Q ^tXj -I ^ «A/ rt , 0 0 0 3 e/O»j / ""™ «A> -I l" «Ay Q "T" • • • ™f" «A> -t *AJ r\ "1 • " • "T" e/O -i tk) ryOu Q l" e * e o 

In particular9 HQ = 1 and fe^ = e^. For r < 0, it is convenient to put hr - er 
= 0. 

Our generalizations of the results of Section 6 are based on the identities 

0.5, £ P P P - ^ 
and 

v
 £p(a) _ ^ P a ^ - M 

(7.6) 2-r — Pp ~ ~ • 
|p| = n *P Z° 

We prove only (7.5); the proof of (7.6) is similar. 
Our proof of (7.5) is based on (7.4) and the identity 

is. = (7-7) Z ir = hn. 
| p | - n B p 

(For a proof of (7.7) , see [2] , p. 17.) 
Noting that p = p p , we have 

(S) _ y, (S) = Po_ y Pp̂ o _ ̂  y £r 
So PP P o , ^ „ 3 P

 P P - o a a | D f r „ * p - o 2 a • . £ _ , , Zv — Pp = P0 L, -J- Pp-a = i~, 4-
| p | ' - n SP P | p | - n 3 p P S ° | p | - n 

= — K-\„\r 
thus proving (7 .5) . 

Observing that 

/zr(a5 i ) F af + a ' " ^ + . . . + b r = g __ g. - * 7 r + 1 , 

we find, on putting xx = al5 x2 = b2* x3 = xh = -•. = 0 in (7.5), the identity 

|p"[-n p °  
which, using (7.3), can be written 

nleaV0Un- iai+1 

(7.9) £ ^P(S)FP 
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L i k e w i s e , s i n c e 

ei(a, by 0 , . . . ) = a + b = P, 

e2(a, b, 0 , . . . ) = ab = Q, 

er(a9 b, 0 , . . . ) = 0 , i f r > 3 , 

we obtain from (7.6), 
/ D \ e0c0n\PV0 

(7.io) z ^ h ^ = —n— 
i f \a\ = n - 1, 

(7.H) L ep(Jk^P = — — — 

i f | a | < n - 2, and 

i f | a | < n - 3 . 
If we specialize a to be a partition of length 1, i.e., a = A:1, then (CT) = 

yk(p), ea = (-l)*"1, ca = (fc - 1)!, and (7.9), (7.10), (7.11), and (7.12) yield 

(7.13) £ £pYk(p)FP = £ > 
|p|-n * 

_ (-l)"n!P7A: 
(7.14) £ epCpYfc(p)^p = £ if k = n - 1, 

|p| = * 

" {-l)n-ln\QVk 

(7.15) £ epCpYfe(p)^p = 1 if fc = « - 2, 
j IPI -« and 

(7.16) £ S^pYfc(p)7p = 0 if k < n - 3, 

|p|-n 

which are generalizations of (6.3) and (6.4). 
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