ON A GENERALIZATION OF A RECURSIVE SEQUENCE

Péter Kiss and Béla Zay*

Teacher's Training College, Leányka u. 4., 3301 Eger, Hungary
(Submitted April 1990)

1. Introduction

Let k and t be fixed positive integers and let $G_{k, t}(n), n=0,1,2, \ldots$ be a sequence of integers defined by

$$
G_{k, t}(n)= \begin{cases}n & \text { if } 0 \leq n \leq t-1 \tag{1}\\ n-G_{k, t}^{k}(n-t) & \text { if } n \geq t,\end{cases}
$$

where $G_{k, t}^{k}$ denotes the $k^{\text {th }}$ iterated composition of $G_{k, t}$, i.e.,

$$
\begin{aligned}
& G_{k, t}^{l}(m)=G_{k, t}(m) \text { and } G_{k, t}^{i}(m)=G_{k, t}\left(G_{k, t}^{i-1}(m)\right) \\
& \text { for } i>1 \text { and for any } m \geq 0 .
\end{aligned}
$$

This sequence is a generalization of some which have been investigated earlier. P. J. Downey \& R. E. Griswold [1] (and later V. Granville \& J. P. Rasson [3]) proved that the solution of recurrence (1) in the case $k=2, t=1$ is given by

$$
\begin{equation*}
G_{2,1}(n)=[(n+1) \mu] \tag{2}
\end{equation*}
$$

for any $n \geq 0$, where $\mu=(-1+\sqrt{5}) / 2$ and [] denotes the integer part function. In [1] a similar formula is shown for $G_{2, t}(n)$ with arbitrary $t \geq 1$.

Recently B. Zay [6] has shown some properties of the general sequence for any k and t. Among others he proved that $G_{k}, t(n)$ is defined for each nonnegative integer n, the sequence is monotonically increasing, and that the general case can be traced back to the case $t=1$ by

$$
G_{k, t}(n)= \begin{cases}t \cdot G_{k, 1}\left(\left[\frac{n}{t}\right]\right) & \text { if } G_{k, 1}\left(\left[\frac{n}{t}\right]\right)=G_{k, 1}\left(\left[\frac{n}{t}+1\right]\right) \\ t \cdot G_{k, 1}\left(\left[\frac{n}{t}\right]\right)+n-t \cdot\left[\frac{n}{t}\right] & \text { if } G_{k, 1}\left(\left[\frac{n}{t}\right]\right) \neq G_{k, t}\left(\left[\frac{n}{t}+1\right]\right)\end{cases}
$$

for any $n \geq 0$. So it is enough to investigate the sequence with $t=1$. Furthermore, we can suppose that $k \geq 2$ since the case $k=t=1$ gives the sequence $G_{1,1}(n)=[(n+1) / 2]$, which can be considered as a trivial case.

Throughout this paper, k will denote a fixed integer with $k \geqslant 2$ and, for brevity, we write $G(n)$ instead of $G_{k, l}(n)$.

In general (if $k>2$) the terms of the sequence $G(n)$ cannot be expressed similarly as in (2). In order to see it, let us suppose that there is an integer r and a positive real number ω such that

$$
\begin{equation*}
G(n)=[(n+r) \omega] . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{G(n)}{n}=\omega . \tag{4}
\end{equation*}
$$

[^0]On the other hand, by (1) we have

$$
\frac{G(n)}{n}=1-\frac{G^{k}(n-1)}{G^{k-1}(n-1)} \cdot \frac{G^{k-1}(n-1)}{G^{k-2}(n-1)} \cdots \frac{G^{2}(n-1)}{G(n-1)} \cdot \frac{G(n-1)}{n-1} \cdot \frac{n-1}{n} ;
$$

therefore, $G^{i}(n)=G\left(G^{i-1}(n)\right)$ and (4) imply the equation

$$
\omega=1-\omega^{k}
$$

So ω is the only positive real root of the equation $x^{k}+x-1=0$. But it can be checked by numerical calculation that, in the case $k=3$, equation (3), with any integer r, does not hold for all n. Namely, in this case, we have $\omega=$ 0.6823..., $G(2)=1, G(18)=13$; thus, from

$$
G(2)=1=[(2+r) \omega] \text { and } G(18)=13=[(18+r) \omega]
$$

$r<1$ and $r>1$ would follow, respectively, which is impossible.
Thus, (2) really cannot be extended for any $k \geq 2$. But we shall show that (4) holds for any k.

Theorem: For any integer $k \geq 2$,

$$
\lim _{n \rightarrow \infty} \frac{G(n)}{n}=\omega
$$

where ω is the single positive real root of the equation $x^{k}+x-1=0$.
We note that the Theorem also holds if $t>1$ or $k=1$, which follows from the results mentioned above.

2. Auxiliary Results

For the proof of our Theorem, we need the following lemmas.
Lemma 1: For any $n>0$, we have

$$
\begin{equation*}
G(n)=G(n-1)+\varepsilon_{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{k}(n)=G^{k}(n-1)+\varepsilon_{n}^{\prime} \tag{6}
\end{equation*}
$$

where ε_{n} and ε_{n}^{\prime} are 0 or 1 .
Proof: Equalities (5) and (6) hold for $n=1$ and $n=2$ since, by the definition of the sequence,

$$
G(0)=0, G^{k}(0)=0, G(1)=1, G(2)=1, G^{k}(1)=1, G^{k}(2)=1
$$

for any $k \geq 2$. Assume that $m \geq 2$ and (5) holds for any $n \leq m$, i.e.,

$$
G(n)=G(n-1)+\varepsilon_{n}
$$

for any n with $0<n \leq m$ and $\varepsilon_{n}=0$ or 1. From this $G(n) \leq n \leq m$ also follows and so, by the assumption, we get

$$
G(G(n))=G^{2}(n)= \begin{cases}G^{2}(n-1) & \text { if } \varepsilon_{n}=0 \\ G^{2}(n-1)+\varepsilon_{n}^{\prime \prime} & \text { if } \varepsilon_{n}=1\end{cases}
$$

where $\varepsilon_{n}^{\prime \prime}=0$ or 1 . Continuing this process,

$$
\begin{equation*}
G^{k}(n)=G^{k}(n-1)+\varepsilon_{n}^{\prime} \quad\left(\varepsilon_{n}^{\prime}=0 \text { or } 1\right) \tag{7}
\end{equation*}
$$

follows for any $0<n \leq m$. By (1) we have

$$
G(m)=m-G^{k}(m-1) \quad \text { and } \quad G(m+1)=m+1-G^{k}(m)
$$

from which, using (7), we obtain

$$
G(m+1)-G(m)=1-\left(G^{k}(m)-G^{k}(m-1)\right)=\varepsilon_{m+1}\left(\varepsilon_{m+1}=0 \text { or } 1\right) .
$$

Thus, (5), (7), and (6) also hold for $n=m+1$.
From these, the lemma follows by mathematical induction.
Lemma 2: Let $\left\{n_{i}\right\}_{i=0}^{\infty}$ be a sequence of positive integers such that

$$
G\left(n_{i}\right)=n_{i-1}
$$

for any $i>0$. Then

$$
n_{i}=n_{i-1}+n_{i-k}-\varepsilon_{i}
$$

for any $i \geq k$, where $\varepsilon_{i}=0$ or 1 .
Proof: By the assumption of the lemma, using Lemma 1 and the definition of the sequence $G(n)$, for any $i \geq k$ we have

$$
\begin{aligned}
n_{i-1}=G\left(n_{i}\right) & =n_{i}-G^{k}\left(n_{i}-1\right)=n_{i}-G^{k}\left(n_{i}\right)+\varepsilon_{i}^{\prime} \\
& =n_{i}-G^{k-1}\left(n_{i-1}\right)+\varepsilon_{i}^{\prime}=n_{i}-G^{k-2}\left(n_{i-2}\right)+\varepsilon_{i}^{\prime}=\cdots \\
& =n_{i}-G\left(n_{i-k+1}\right)+\varepsilon_{i}^{\prime}=n_{i}-n_{i-k}+\varepsilon_{i}^{\prime}
\end{aligned}
$$

where $\varepsilon_{i}^{\prime}=0$ or 1 . The lemma follows from this assertion.
Lemma 3: Let $\left\{n_{i}\right\}_{i=0}^{\infty}$ be an increasing sequence of nonnegative integers satisfying the recursion

$$
n_{i}=n_{i-1}+n_{i-k}-\varepsilon_{i} \quad(i \geq k)
$$

where $k \geq 2$ is a fixed positive integer and $\varepsilon_{i}=0$ or 1 . Define a $k^{\text {th }}$-order linear recurrence sequence $\left\{u_{i}\right\}_{i=0}^{\infty}$ of integers by $u_{i}=n_{i}$ for $0 \leq i \leq k-1$ and

$$
u_{i}=u_{i-1}+u_{i-k}
$$

for $i \geq k$. Further, let $\left\{F_{i}\right\}_{i=0}^{\infty}$ be a sequence of natural numbers defined by $F_{0}=F_{1}=\cdots=F_{k-1}=1$ and

$$
F_{i}=F_{i-1}+F_{i-k} \quad(i \geq k)
$$

Then

$$
n_{i}=u_{i}-\delta_{i}
$$

for any $i \geq 0$, where $0 \leq \delta_{i} \leq F_{i}-1$.
Proof: For $0 \leq i \leq k-1$, the lemma evidently holds with $\delta_{i}=0$. If $i \geq k$ and $n_{j}=u_{j}-\delta_{j}$ with $0 \leq \delta_{j} \leq F_{j}-1$ for any $0 \leq j<i$, then

$$
\begin{aligned}
n_{i} & =n_{i-1}+n_{i-k}-\varepsilon_{i} \\
& =u_{i-1}+u_{i-k}-\left(\delta_{i-1}+\delta_{i-k}+\varepsilon_{i}\right)=u_{i}-\delta_{i}
\end{aligned}
$$

where

$$
0 \leq \delta_{i}=\delta_{i-1}+\delta_{i-k}+\varepsilon_{i} \leq F_{i-1}+F_{i-k}-2+\varepsilon_{i} \leq F_{i}-1,
$$

since the δ_{j} 's are integers. The lemma follows from the above by mathematical induction on i.
Lemma 4: Let $\left\{v_{n}\right\}_{n=0}^{\infty}$ be a $k^{\text {th }}$-order linear recurrence sequence of positive rational integers defined by the nonzero initial values $v_{0}, v_{1}, \ldots, v_{k-1}$ and by the recursion

$$
v_{n}=v_{n-1}+v_{n-k}
$$

for $n \geq k$. Denote by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ the roots of the characteristic polynomial $x^{k}-x^{k-1}-1$. Then the terms of the sequence can be expressed as

$$
\begin{equation*}
v_{n}=a_{1} \alpha_{1}^{n}+a_{2} \alpha_{2}^{n}+\cdots+a_{k} \alpha_{k}^{n} \quad(n \geq 0) \tag{8}
\end{equation*}
$$

where the α_{i} 's ($i=1,2, \ldots, k$) are elements of the number field generated by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ over the rationals.

Proof: This lemma is a special case of a more general well-known result, so it is not necessary to prove it here.
Lemma 5: Let $\left\{v_{n}\right\}_{n=0}^{\infty}$ be the linear recurrence sequence defined in Lemma 4. If $0<v_{0}=\min _{0 \leq i<k}\left(v_{i}\right)$ and $\left|\alpha_{1}\right|>\left|\alpha_{i}\right|$ for $2 \leq i \leq k$,
then there is a real number $c>0$, depending only on the characteristic polynomial of the sequence, such that

$$
\begin{equation*}
\left|a_{1}\right|>c \cdot v_{0} \tag{9}
\end{equation*}
$$

where α_{1} is defined by (8).
Proof: Ferguson [2] as well as Hoggatt \& Alladi [4] proved that the roots of the polynomial $x^{k}-x^{k-1}-1$ are distinct and that there is a dominant real root α_{1} with the largest modulus; thus, we may suppose that $\left|\alpha_{1}\right|>\left|\alpha_{i}\right|$ for $i=$ 2, ..., K.

By (8), for the a_{i} 's, we have the system equations:

$$
\begin{aligned}
& a_{1}+a_{2}+\cdots+a_{k}=v_{0} \\
& \alpha_{1} \alpha_{1}+\alpha_{2} \alpha_{2}+\cdots+\alpha_{k} \alpha_{k}=v_{1} \\
& \vdots \\
& \alpha_{1} \alpha_{1}^{k-1}+\alpha_{2} \alpha_{2}^{k-1}+\cdots+\alpha_{k} \alpha_{k}^{k-1}=v_{k-1} ;
\end{aligned}
$$

thus,

$$
\text { (10) } \quad a_{1}=\frac{D_{1}}{D}
$$

where

$$
D=\left|\begin{array}{llll}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{k} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{k}^{2} \\
\vdots & & & \\
\vdots \\
\alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \ldots & \alpha_{k}^{k-1}
\end{array}\right|, \quad D_{1}=\left|\begin{array}{llll}
v_{0} & 1 & \ldots & 1 \\
v_{1} & \alpha_{2} & \ldots & \alpha_{k} \\
v_{2} & \alpha_{2}^{2} & \ldots & \alpha_{k}^{2} \\
\vdots & & & \\
v_{k-1} & \alpha_{2}^{k-1} & \ldots & \alpha_{k}^{k-1}
\end{array}\right|
$$

and $D \neq 0$ since the $\alpha_{i}{ }^{\prime}$ s are distinct. The determinant D_{1} can be written in the form

$$
\begin{equation*}
D_{1}=\sum_{i=1}^{k}(-1)^{i-1} v_{i-1} \cdot D^{(i)} \tag{11}
\end{equation*}
$$

where

$$
D^{(i)}=\left|\begin{array}{lll}
1 & \ldots & 1 \\
\alpha_{2} & \ldots & \alpha_{k} \\
\vdots & & \\
\alpha_{2}^{i-2} & \ldots & \alpha_{k}^{i-2} \\
\alpha_{2}^{i} & \ldots & \alpha_{k}^{i} \\
\vdots & & \\
\alpha_{2}^{k-1} & \ldots & \alpha_{k}^{k-1}
\end{array}\right|
$$

is a $(k-1) \times(k-1)$ determinant rejecting the first column and the i th row from D_{1}.

It was proved in the lemma of [5] that

$$
\begin{equation*}
D^{(i)}=D_{0} \cdot S_{k-i} \text { for any } 1 \leq i \leq k \tag{12}
\end{equation*}
$$

where

$$
D_{0}=\left|\begin{array}{lll}
1 & \cdots & 1 \\
\alpha_{2} & \cdots & \alpha_{k} \\
\vdots & & \\
\alpha_{2}^{k-2} & \ldots & \alpha_{k}^{k-2}
\end{array}\right|
$$

is a $(k-1) \times(k-1)$ Vandermonde determinant and S_{k-i} is the elementary symmetrical polynomial of degree $k-i$ of variables $\alpha_{2}, \ldots, \alpha_{k}$ if $k-i>0$, and $S_{0}=1$. It is known that for the coefficients of a polynomial

$$
b(x)=b_{0} x^{n}+b_{1} x^{n-1}+\cdots+b_{n}
$$

we have

$$
b_{j}=(-1)^{j} b_{0} S_{j}^{\prime} \quad(1 \leq j \leq n)
$$

where

$$
S_{j}^{\prime}=\sum \beta_{i_{1}} \beta_{i_{2}} \ldots \beta_{i_{j}}
$$

is the elementary symmetrical polynomial of degree j of the roots $\beta_{1}, \ldots, \beta_{n}$ of $b(x)$ (the sum runs over the distinct $i_{1}<i_{2}<\cdots<i_{j}$ combinations of 1 , $2, \ldots, n)$ Since $S_{1}, S_{2}, \ldots, S_{k-1}$ are the elementary symmetrical polynomials of $\alpha_{2}, \ldots, \alpha_{k}$ of degree $1,2, \ldots, k-1$, thus $S_{1}+\alpha_{1}, S_{2}+S_{1} \alpha_{1}, \ldots, S_{k-1}+$ $S_{k-2} \alpha_{1}, S_{k-1} \alpha_{1}$ are the elementary symmetrical polynomials of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ of degree $1,2, \ldots ., k-1, k, r e s p e c t i v e l y$. So, for the coefficients of the polynomial $x^{k}-x^{k-1}-1$, we have

$$
\begin{align*}
-1 & =-\left(S_{1}+\alpha_{1}\right) \\
0 & =S_{2}+S_{1} \alpha_{1} \tag{13}\\
\vdots & \\
0 & =(-1)^{k-1}\left(S_{k-1}+S_{k-2} \alpha_{1}\right) \\
-1 & =(-1)^{k} \cdot S_{k-1} \alpha_{1}
\end{align*}
$$

Since α_{1} is real, $\alpha_{1}>1$, which implies that $S_{1}=1-\alpha_{1}>0$. But, from this, $S_{2}>0$ follows, and contiuing this process, by (13), we obtain the inequalities

$$
\begin{equation*}
S_{2 i}>0 \quad(0 \leq 2 i \leq k-1) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2 i+1}<0 \quad(1 \leq 2 i+1 \leq k-1) \tag{15}
\end{equation*}
$$

Finally, by (11) and (12) we get

$$
D_{1}=D_{0}\left(v_{0} S_{k-1}-v_{1} S_{k-2}+\cdots+(-1)^{k-1} v_{k-1} S_{0}\right)
$$

and, by (14) and (15), using the condition $0<v_{0} \leq v_{i}$ for $1 \leq i \leq k-1$,

$$
\left|D_{1}\right|=\left|D_{0}\right| \cdot \sum_{i=1}^{k} v_{i-1} \cdot\left|S_{k-i}\right|>v_{0} \cdot\left|D_{0}\right| \cdot \sum_{i=1}^{k}\left|S_{k-i}\right|
$$

follows. By (10), this implies the lemma.

3. Proof of the Theorem

Let N be a sufficiently large positive integer and define an integer m by

$$
m=\left[\frac{\log N}{2 \cdot \log 3}\right]
$$

([] is the integer part function). Let $n_{0}, n_{1}, \ldots, n_{m}$ be a set of natural numbers defined by

$$
\begin{equation*}
n_{m}=N \quad \text { and } \quad n_{i-1}=G\left(n_{i}\right) \text { for } 1 \leq i \leq m \tag{16}
\end{equation*}
$$

From Lemma 1 and its proof, it follows that $G(n)<n$ for any $n>1$, and so

$$
n_{0}<n_{1}<\cdots<n_{m}=N
$$

for N sufficiently large so that $n_{0} \geq 1$.
We show that there are no three consecutive equal terms in the sequence $G(n)$. For if

$$
G(n)=G(n+1)=G(n+2)
$$

then, by the definition of the sequence,

$$
\begin{equation*}
n-G^{k}(n-1)=n+1-G^{k}(n)=n+2-G^{k}(n+1) \tag{17}
\end{equation*}
$$

would follow. But $G(n)=G(n+1)$ implies that $G^{k}(n)=G^{k}(n+1)$ and so, by (17), we would obtain the equality $n+1=n+2$, which is impossible. Thus, $G(n+2) \geq G(n)+1$ for any $n \geq 0$, and so

$$
\begin{equation*}
G(n) \geq \frac{1}{3} n \tag{18}
\end{equation*}
$$

By (16) and (18), we get

$$
N=n_{m} \leq 3 \cdot G\left(n_{m}\right)=3 \cdot n_{m-1} \leq 3^{2} \cdot G\left(n_{m-1}\right)=3^{2} \cdot n_{m-2} \leq \cdots \leq 3^{m} n_{0}
$$

which, by the definition of m, can be written in the form

$$
\begin{equation*}
n_{0} \geq \frac{N}{3^{m}} \geq \sqrt{N} \tag{19}
\end{equation*}
$$

By Lemmas 2-4 and their notations, using (16), we obtain

$$
\begin{align*}
\frac{G(N)}{N} & =\frac{n_{m-1}}{n_{m}}=\frac{u_{m-1}-\delta_{m-1}}{u_{m}-\delta_{m}}=\frac{a_{1} \alpha_{1}^{m-1}+\cdots+\alpha_{k} \alpha_{k}^{m-1}-\delta_{m-1}}{\alpha_{1} \alpha_{1}^{m}+\cdots+\alpha_{k} \alpha_{k}^{m}-\delta_{m}} \tag{20}\\
& =\frac{1}{\alpha_{1}} \cdot \frac{1+\frac{a_{2}}{\alpha_{1}}\left(\frac{\alpha_{2}}{\alpha_{1}}\right)^{m-1}+\cdots+\frac{a_{k}}{\alpha_{1}}\left(\frac{\alpha_{k}}{\alpha_{1}}\right)^{m-1}-\frac{1}{\alpha_{1}} \delta_{m-1} / \alpha_{1}^{m-1}}{1+\frac{a_{2}}{\alpha_{1}}\left(\frac{\alpha_{2}}{\alpha_{1}}\right)^{m}+\cdots+\frac{\alpha_{k}}{\alpha_{1}}\left(\frac{\alpha_{k}}{\alpha_{1}}\right)^{m}-\frac{1}{\alpha_{1}} \cdot \delta_{m} / \alpha_{1}^{m}}
\end{align*}
$$

By the proof of Lemma 5, it follows that there are complex numbers b_{1}, b_{2}, \ldots, b_{k}, which depend only on the α_{i} 's $(i=1,2, \ldots, k)$, such that

$$
a_{i}=\sum_{i=0}^{k-1} b_{i} u_{i}
$$

and so, using that $\left|\alpha_{1}\right|>c \cdot u_{0}$ by Lemma 5,
(21) $\left|\frac{a_{i}}{a_{1}}\right|<\frac{\left|\sum_{i=0}^{k-1} b_{i} u_{i}\right|}{c \cdot u_{0}}$
follows. But $u_{i}=n_{i}$ for $i=0,1,2, \ldots, k-1, n_{i}<n_{k-1}$ for $0 \leq i<k-1$, and by (18) $n_{i} / n_{i-1} \leq 3$ for any $i>0$; thus, from (21),

$$
\begin{equation*}
\left|\frac{a_{i}}{a_{1}}\right|<b \cdot \frac{n_{k-1}}{n_{0}}=b \cdot \frac{n_{1}}{n_{0}} \cdot \frac{n_{2}}{n_{1}} \cdot \ldots \cdot \frac{n_{k}-1}{n_{k}-2} \leq b \cdot 3^{k-1}=B \tag{22}
\end{equation*}
$$

follows for $2 \leq i \leq k$, where b and B are positive real numbers which do not depend on m and the n_{i} 's. Since $\left|\alpha_{1}\right|>\left|\alpha_{i}\right|$ for $2 \leq i \leq k$, and $m \rightarrow \infty$ as $N \rightarrow \infty$, so by (22),

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\alpha_{i}}{\alpha_{1}}\right)^{m-1}=\lim _{N \rightarrow \infty} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\alpha_{i}}{\alpha_{1}}\right)^{m}=0 \text { for } i=2,3, \ldots, k \tag{23}
\end{equation*}
$$

On the other hand, by Lemmas 3 and 4 , we get

$$
0 \leq \delta_{n}<F_{n}=c_{1} \alpha_{1}^{n}+c_{2} \alpha_{2}^{n}+\cdots+c_{k} \alpha_{k}^{n}=c_{1} \alpha_{1}^{n}\left(1+\sum_{i=2}^{k} \frac{c_{i}}{c_{1}}\left(\frac{\alpha_{i}}{\alpha_{1}}\right)^{n}\right)
$$

for any $n \geq 0$, where the $c_{i}{ }^{\prime} s(i=1,2, \ldots, k)$ are complex numbers which are independent of n,

$$
\lim _{n \rightarrow \infty}\left(\alpha_{i} / \alpha_{1}\right)^{n}=0
$$

and it can be easily seen that $c_{1} \neq 0$. From these, it follows that there is a real number $C>0$, depending only on the characteristic polynomial of the sequence $\left\{F_{i}\right\}$, such that

$$
\left|\frac{\delta_{n}}{\alpha_{1}^{n}}\right|<C \text { for any } n \geq 0
$$

However, by (19) and Lemma 5,

$$
\left|a_{1}\right|>c \cdot u_{0}=c \cdot n_{0} \geq c \cdot \sqrt{N}
$$

and so

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(\frac{1}{\alpha_{1}} \cdot \frac{\delta_{m-1}}{\alpha_{1}^{m-1}}\right)=\lim _{N \rightarrow \infty}\left(\frac{1}{\alpha_{1}} \cdot \frac{\delta_{m}}{\alpha_{1}^{m}}\right)=0 \tag{24}
\end{equation*}
$$

From (20), (23), and (24),

$$
\lim _{N \rightarrow \infty} \frac{G(N)}{N}=\frac{1}{\alpha_{1}}
$$

follows, where α_{1} is the single positive root of the equation $x^{k}-x^{k-1}-1=0$. But, if α is a root of the polynomial $x^{k}-x^{k-l}-1$, then $1 / \alpha$ is a root of $x^{k}+$ $x-1$, thus $1 / \alpha_{1}=\omega$ and the theorem is proved.

Acknowledgment

The authors would like to thank the referee for his helpful and detailed comments.

References

1. P. J. Downey \& R. E. Griswold. "On a Family of Nested Recurrences." Fibonacci Quarterly 22 (1984):310-17.
2. H. R. P. Ferguson. "On a Generalization of the Fibonacci Numbers Useful in Memory Allocation Schema; or A11 About the Zeros of $z^{k}-z^{k-1}-1, k>0 . "$ Fibonacci Quarterly 14 (1976):233-43.
3. V. Granville \& J. P. Rasson. "A Strange Recursive Relation." J. Number Theory 30 (1988):238-41.
4. V. E. Hoggatt, Jr. \& K. Alladi. "Limiting Ratios of Convolved Recursive Sequences." Fibonacci Quarterly 15 (1977):211-14.
5. P. Kiss. "On Some Properties of Linear Recurrences." Pubz. Math. Debrecen 30 (1983):273-81.
6. B. Zay. "Egy Rekurziv Sorozatról." (Hungarian) Acta Acad. Paed. Agriensis, to appear.

[^0]: *This research was partially supported by the Hungarian National Foundation for Scientific Research grant no. 273.

