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1. Introduction 

Let k and t be fixed positive integers and let Gk , 
a sequence of integers defined by 

(n), n = 0, 1, 2, ... be 

if 0 < n < t 1 
(1) 

where G 

Gk, t (") 
\n Gl 

k, t 

Tk, t 
denotes the kth 

G k, t (m) G k, t (m) 

(n - i) if n > £, 

iterated composition of G^ t, 

and Gl . (m) Gk,t(4:lM) 
for i > 1 and for any m > 0. 

This sequence is a generalization of some which have been investigated earlier. 
P. J. Downey & R. E. Griswold [1] (and later V. Granville & J. P. Rasson [3]) 
proved that the solution of recurrence (1) in the case fc = 2, t = 1 is given by 

(2) G 2, 1 (n) in + l)y] 
for any n > 0, where u = (-1 + /5)/2 and [ ] denotes the integer part function. 
In [1] a similar formula is shown for G^s t (n) with arbitrary t > 1. 

Recently B. Zay [6] has shown some properties of the general sequence for 
any k and t . Among others he proved that GJ<J t{n) is defined for each nonnega-
tive integer n, the sequence is monotonically increasing, and that the general 
case can be traced back to the case t = 1 by 

t • G k, 1 

GKtW 
G k, 1 

([ID 
([!]) 

i f Gk, 1 m) G k, 1 + 1 

+ n t if GK x (g]) , ffk, t (g + l]) 
for any n > 0. So it is enough to investigate the sequence with t = 1. Fur-
thermore, we can suppose that k > 1 since the case k = t = 1 gives the sequence 
Gl, \{yi) = [ (n + l)/2], which can be considered as a trivial case. 

Throughout this paper, k will denote a fixed integer with k > 2 and, for 
brevity, we write G(n) instead of 6^ i(n). 

In general (if k > 2) the terms of the sequence £(n) cannot be expressed 
similarly as in (2). In order to see it, let us suppose that there is an inte-
ger T and a positive real number oo such that 

(3) G(n) 
Then 

(4) 

[ (n + P)CO] . 

lim = a). 
n -̂  no ^ 
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On the other hand, by (1) we have 

G(n) _ _ Gk(n - 1) Gk~l(n - 1) G2(n - 1) G(n - 1) n - lm 

n Gk~l(n - 1) Gk-Z(n - 1) """ G(n - 1) n - 1 n ' 

therefore, Gv(n) = G(Gi-l(n)) and (4) imply the equation 

0) = 1 - 03 ^ . 

So a) is the only positive real root of the equation xk + x - 1 = 0. But it can 
be checked by numerical calculation that, in the case k = 3, equation (3), with 
any integer 23, does not hold for all n. Namely, in this case, we have co = 
0.6823..., G(2) = 1, £(18) = 13; thus, from 

G(2) = 1 = [(2 + r)a)] and £(18) = 13 = [(18 + r)w], 

v < 1 and p > 1 would follow, respectively, which is impossible. 
Thus, (2) really cannot be extended for any k > 2. But we shall show that 

(4) holds for any k. 

Theorem: For any i n t e g e r k > 2 , 

-, . G(n) 
l x m —^—- = a), 
n+ oo ^ 

where GO is the single positive real root of the equation x^ + x - 1 = 0. 

We note that the Theorem also holds if t > 1 or k = 1, which follows from 
the results mentioned above. 

2. Auxiliary Results 

For the proof of our Theorem, we need the following lemmas. 

Lemma 1: For any n > 0, we have 

(5) G(n) = G(n - 1) + en 

and 

(6) Gk(n) = Gk(n - 1) + £„', 

where en and ewf are 0 or 1. 

Proof: Equalities (5) and (6) hold for n = 1 and n = 2 since, by the definition 
of the sequence, 

G(0) = 0, Gk(0) = 0, G(l) = 1, c7(2) = 1, Gk(l) = 1, Gk(2) = 1 

for any k > 2. Assume that m > 2 and (5) holds for any n < m, i.e., 

c7(n) = G{n - 1) + en 

for any n with 0 < n < m and en = 0 or 1. From this G{n) < n < m also follows 
and so, by the assumption, we get 

(G2(n - 1) if en = 0 
G(G(«)) = G2(n) = < Zf„ „ _ 

|6-z(n - 1) + e„ if e„ = 1, 
where ê ' = 0 or 1. Continuing this process, 

(7) £fe(n) = Gk(n - 1) + e„' (e„f = 0 or 1) 

follows for any 0 < n < m. By (1) we have 

G(jn) = m - Gk{m - 1) and G(m + 1) = m + 1 - Gk(m) 

from which, using (7), we obtain 
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G{m + 1) - £(777) = 1 - {Gk(m) - Gk(m - 1 ) ) = em+l ( e m + 1 = 0 o r 1 ) . 

Thus , ( 5 ) , ( 7 ) , and (6) a l s o h o l d f o r n = m + 1 . 
From t h e s e , t h e lemma f o l l o w s by m a t h e m a t i c a l i n d u c t i o n . 

Lemma 2: Le t {n^}^=Q be a s e q u e n c e of p o s i t i v e i n t e g e r s such t h a t 

Girii) = ni-l 

f o r any i > 0 . Then 

ni = rii-i + ni.k - zt 

for any i > k, where e^ = 0 or 1. 

Proof: By the assumption of the lemma, using Lemma 1 and the definition of the 
sequence G{ri) , for any i > k we have 

ni-i = G{ni) = ni - Gk{ni - 1) = n^ - Gk(nl) + e/ 

= m - G^Hrii-O + E! = ^ - £fc"2(ni_2) + el = . . -

= «i " G(ni.k + l) + z{ = nt - ni_k + e/, 

where e^ = 0 or 1. The lemma follows from this assertion. 

Lemma 3: Let {n^}^° =0 be an increasing sequence of nonnegative integers satis-
fying the recursion 

™i = rii-i + ni„k - e- (i > fc), 

where k > 2 is a fixed positive integer and e^ = 0 or 1. Define a fcth-order 
linear recurrence sequence iu^}™^Q of integers by u^ = n^ for 0 < i < k - 1 and 

wi = Mi-1 + ui-k 
for i > k. Further, let {F^ }™= Q be a sequence of natural numbers defined by 
^0 = ^l = ••• = Fk-l = 1 and 

Fi = Fi.l + Ft.k (i > k). 
Then 

for an}̂  i > 0, where 0 < 6̂  < i^ - 1. 

Proof: For 0 <i < k - 1, the lemma evidently holds with 6 ^ = 0 . If i > k and 
ftj = Uj - 6j with 0 < 6j < Fj - 1 for any 0 < j < i, then 

?k = ^i-1 + ni-k ~ H 
= ui-i + ut.k - (6i_1 + 6i.k + e^) = ui - 6i9 

where 
0 < 6i = 6^! + 6 ^ + Ei < ff _! + F£_k - 2 + et < Ft - 1, 

since the Sj T s are integers. The lemma follows from the above by mathematical 
induction on i . 

Lemma 4: Let {vn}™=0 be a fcth-order linear recurrence sequence of positive 
rational integers defined by the nonzero initial values VQ, V\> ..., Vk-i and 
by the recursion 

Vn
 = vn-\ + vn-k 

for n ^ k. Denote by al5 a25 •••» 0Lk the roots of the characteristic polyno-
mial xk - xk~l - 1. Then the terms of the sequence can be expressed as 

(8) vn = axa" + a2a?J + •»• + aka^ (n > 0) , 

where the a^fs (i = 1, 2, ..., k) are elements of the number field generated by 
a •. , a?, ..., a, over the rationals. 
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Proof: This lemma is a special case of a more general well-known result, so it 
is not necessary to prove it here. 

Lemma 5: Let {vn}™=0 be the linear recurrence sequence defined in Lemma 4. If 

0 < VQ = min (Vi) and | ct x | > | ai | for 2 < i < k, 
0< i < k 

then there is a real number c > 0, depending only on the characteristic poly-
nomial of the sequence, such that 

(9) \a1\ > a • v0, 
where a\ is defined by (8). 

Proof: Ferguson [2] as well as Hoggatt & Alladi [4] proved that the roots of 
the polynomial x* - xk~l - 1 are distinct and that there is a dominant real 
root 04 with the largest modulus; thus, we may suppose that | ot ]_ | > | a^ | for i = 
2, ..., k. 

By (8), for the a^Ts, we have the system equations: 

CL\ + OL2_ + 

aidi + a2«2 + 
+ ak = v0 

thus, 

(10) 

where 

al 

a\ 

D 

^Y -l + 

D ' 

1 

al 
af 

; * -

a^a| 

1 

a2 

a? 

1 a£-

1 

-1 

+ 

. . 

. i 
• ak 

• 4 

• 4 

+ a7 a *ufc 
&-1 _ 

'*-! = 

fc-1 

. D\ = 

vo 
vl 
v2 

vk-l 

1 

a2 

a? 

a|-! . 

.. 1 

•• ak 

• • < l 

and ZJ * 0 since the a^ f s are distinct. 
the form 

k 
(ID #1 = Z (-l)*'1^-! • Z)U), 

i= 1 
where 

"l ... 1 
ak 

The determinant D^ can be written in 

^i) ^"2 

„*-l 

**-2 

vfe"l 

is a (fc - 1) x (k - 1) determinant rejecting the first column and the i t h row 
from £>]_. 

It was proved in the lemma of [5] that 

(12) D{i) = D0 • Sk_i for any 1 < i < k, , ' -
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where 

DQ = 

1 

.k-2 

is a (k - 1) x (k - 1) Vandermonde determinant and S-^-i is the elementary sym-
metrical polynomial of degree k - i of variables a.£, . . . , afc if /c - i > 0, and 
SQ = 1. It is known that for the coefficients of a polynomial 

b(x) = £0^n + b^-1 + + £n 

we have 

where 
bj = (-l^boS? (1 < j < n) 

SJ 2^ 3i 3? 
is the elementary symmetrical polynomial of degree j of the roots $i» 
of &(#) (the sum runs over the distinct i1 < i 2

 < < -ij combinations of 1, 
2, . . . , n) . Since 5]_, 5*23 . .., 5^-1 are the elementary symmetrical polynomials 
of a2> • • « > o^ of degree 1, 2, . .., k - 1, thus £]_ + cq, 5*2 + 5^^, . .., ^-i + 
5,^_2ai, ^k-ioq are the elementary symmetrical polynomials of 04, a25 . .., afc of 
degree 1, 2, . .., k - 1, fc, respectively. So, for the coefficients of the poly-
nomial xk - x^~l - 1, we have 

(13) 

-1 = -(Si + ai) 
0 = Si + S\<3,\ 

0 = ( - l ) ^ 1 ^ - ! + ^-2ai) 
-1 = (-l)fc • 5k_ i a i. 

Since 04 is real, 04 > 1, which implies that 5^ = 1 - cq > 0. But, from this, 
^2 > 0 follows, and contiuing this process, by (13), we obtain the inequalities 

S 2i > 0 (0 < 2i < k - 1) (14) 

and 

(15) S2i+l < 0 (1 < 2i + 1 < k - 1). 

Finally, by (11) and (12) we get 

and, by (14) and (15), using the condition 0 < VQ < Vi for 1 < i < k - 1, 

P i I = PC E y i - l ' l 5 ^- i l > v0 * \Do\ ° Z \Sk-i\ 
i= 1 i= 1 

follows. By (10), this implies the lemma. 

3. Proof of the Theorem 

Let I be a sufficiently large positive integer and define an integer 77? by 

log N 
L2 • log 3 

([ ] is the integer part function). Let ftg, ri\9 

numbers defined by 

(16) nm = N 

1992] 

and ft-i-l = G(ni) for 1 < i < m. 

be a set of natural 
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From Lemma 1 and its proof, it follows that G(n) < n for any n > 1, and so 

n 0 < m < ••• < nm = N 

for N sufficiently large so that n$ > 1. 
We show that there are no three consecutive equal terms in the sequence 

G(n) . For if 

G(n) = G(n + 1) = G(n + 2), 

then, by the definition of the sequence, 

(17) n - Gk(n - 1) = n + 1 - Gk(n) = n + 2 - Gk(n + 1) 

would follow. But G(n) = G(n + 1) implies that Gk(n) = Gk(n + 1) and so, by 
(17), we would obtain the equality n + 1 = n + 2, which is impossible. Thus, 
G(n + 2) > G(ri) + 1 for any n > 0, and so 

(18) G{n) > \ n . 

By (16) and (18), we get 

N = nm < 3 • G(wm) = 3 • nm_l < 32 • G(nn-i) = 32 • nm.2 

which, by the definition of m9 can be written in the form 

< 3mn0, 

(19) 
N 

l0 ~ -yl /N. 

By Lemmas 2-4 and their notations, using (16), we obtain 

(20) 
G(N) 'Lm-l *m-\ Jm-1 a^Y1 + + a7 a' k^k 

m-l 
"m-I 

, 7 7 2 - 1 

axarl + + ava k^k 

ax 

1 + $?r••••-m"1 - k«.-.'-v 7 7 2 - 1 

1 + — ( — ) + . . . + — ( — ) 6m/a 
a x \ a 1 / a 1 \ a 1 / a 1

 m 

By the proof of Lemma 5, it follows that there are complex numbers h\> b2y 
bfr, which depend only on the a^fs (i = 1, 2, ..., fc), such that 

k- l 
ai = Z M i 

£= 0 
and so, using that \a^ \ > c • UQ by Lemma 5, 

(21) 

fc- l 

£= 0 ZM; 
a • WQ 

follows. But Un- Ui for i = 0, 1, 2, , k - 1, Ui < nk„i for 0 < i < k - 1, 
and by (18) nilrti-i < 3 for any i > 0; thus, from (21), 

(22) 
a>; < b 

n0 

wi n 2 
Z? • — • — • n0 ni nk-2 

< b • 3 fc-1 _ 

follows for 2 < i, < k> where b and B are positive real numbers which do not 
depend on m and the n^fs. Since |otx | > |a^| for 2 < i < k, and 77? •> °°  as N -> °°, 
so by (22), 
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(23) l i m - M - M = l i m - M - M = 0 f o r i = 2 , 3 , . . . , L 
/y-»co « i \ a i / iiz-̂ oo a i \ a i / 

On t h e o t h e r hand , by Lemmas 3 and 4 , we g e t 

0 * 6„ < *„ - Cla? + C2a» + . . . + Cfc„» - e ia» (l + _£ ^ ( ^ ) ^ 

for any n > 0, where the oi
1s (i = 1, 2, ..., k) are complex numbers which are 

independent of n, 

limCa^/oq)72 = 0, 
n->- oo 

and it can be easily seen that c\ * 0. From these, it follows that there is a 
real number C > 0, depending only on the characteristic polynomial of the 
sequence {F^}, such that 

< C for any n > 0. 
"ll 

However, by (19) and Lemma 5, 

and so 

(24) lim(J-.^i)=lim(±.%) = 0. 

From (20), (23), and (24), 

G(ilO 1 
lim N ai 

follows, where 04 is the single positive root of the equation xk - xk~^- - 1 = 0. 
But, if a is a root of the polynomial xk - xk~l - 1, then 1/a is a root of xk + 
x - 1, thus 1/OL]_ = 0) and the theorem is proved. 
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