ON A GENERALIZATION OF A RECURSIVE SEQUENCE

Péter Kiss and Béla Zay*

Teacher's Training College, Leányka u. 4., 3301 Eger, Hungary (Submitted April 1990)

1. Introduction

Let k and t be fixed positive integers and let $G_{k,t}(n)$, n = 0, 1, 2, ..., be a sequence of integers defined by

(1) $G_{k,t}(n) = \begin{cases} n & \text{if } 0 \le n \le t - 1 \\ n - G_{k,t}^k(n-t) & \text{if } n \ge t, \end{cases}$ where $G_{k,t}^k$ denotes the 1th transformed to the set

where $G_{k,t}^{k}$ denotes the k^{th} iterated composition of $G_{k,t}$, i.e.,

$$G_{k,t}^{1}(m) = G_{k,t}(m)$$
 and $G_{k,t}^{2}(m) = G_{k,t}(G_{k,t}^{2-1}(m))$

for i > 1 and for any $m \ge 0$.

This sequence is a generalization of some which have been investigated earlier. P. J. Downey & R. E. Griswold [1] (and later V. Granville & J. P. Rasson [3]) proved that the solution of recurrence (1) in the case k = 2, t = 1 is given by

(2)
$$G_{2,1}(n) = [(n + 1)\mu]$$

for any $n \ge 0$, where $\mu = (-1 + \sqrt{5})/2$ and [] denotes the integer part function. In [1] a similar formula is shown for $G_{2,t}(n)$ with arbitrary $t \ge 1$.

Recently B. Zay [6] has shown some properties of the general sequence for any k and t. Among others he proved that $G_{k, t}(n)$ is defined for each nonnegative integer n, the sequence is monotonically increasing, and that the general case can be traced back to the case t = 1 by

$$G_{k,t}(n) = \begin{cases} t \cdot G_{k,1}\left(\left[\frac{n}{t}\right]\right) & \text{if } G_{k,1}\left(\left[\frac{n}{t}\right]\right) = G_{k,1}\left(\left[\frac{n}{t}+1\right]\right) \\ t \cdot G_{k,1}\left(\left[\frac{n}{t}\right]\right) + n - t \cdot \left[\frac{n}{t}\right] & \text{if } G_{k,1}\left(\left[\frac{n}{t}\right]\right) \neq G_{k,t}\left(\left[\frac{n}{t}+1\right]\right) \end{cases}$$

for any $n \ge 0$. So it is enough to investigate the sequence with t = 1. Furthermore, we can suppose that $k \ge 2$ since the case k = t = 1 gives the sequence $G_{1, 1}(n) = [(n + 1)/2]$, which can be considered as a trivial case.

Throughout this paper, k will denote a fixed integer with $k \ge 2$ and, for brevity, we write G(n) instead of $G_{k,1}(n)$.

In general (if k > 2) the terms of the sequence G(n) cannot be expressed similarly as in (2). In order to see it, let us suppose that there is an integer r and a positive real number ω such that

(3)
$$G(n) = [(n + r)\omega].$$

Then

(4)
$$\lim_{n \to \infty} \frac{G(n)}{n} = \omega.$$

 $[\]star {\rm This}$ research was partially supported by the Hungarian National Foundation for Scientific Research grant no. 273.

On the other hand, by (1) we have

$$\frac{G(n)}{n} = 1 - \frac{G^k(n-1)}{G^{k-1}(n-1)} \cdot \frac{G^{k-1}(n-1)}{G^{k-2}(n-1)} \cdots \frac{G^2(n-1)}{G(n-1)} \cdot \frac{G(n-1)}{n-1} \cdot \frac{n-1}{n};$$

therefore, $G^{i}(n) = G(G^{i-1}(n))$ and (4) imply the equation

 $\omega = 1 - \omega^k.$

So ω is the only positive real root of the equation $x^k + x - 1 = 0$. But it can be checked by numerical calculation that, in the case k = 3, equation (3), with any integer r, does not hold for all n. Namely, in this case, we have $\omega =$ 0.6823..., G(2) = 1, G(18) = 13; thus, from

$$G(2) = 1 = [(2 + r)\omega]$$
 and $G(18) = 13 = [(18 + r)\omega]$,

r < 1 and r > 1 would follow, respectively, which is impossible.

Thus, (2) really cannot be extended for any $k \ge 2$. But we shall show that (4) holds for any k.

Theorem: For any integer $k \ge 2$,

$$\lim_{n\to\infty}\frac{G(n)}{n}=\omega,$$

where ω is the single positive real root of the equation $x^k + x - 1 = 0$.

We note that the Theorem also holds if t > 1 or k = 1, which follows from the results mentioned above.

2. Auxiliary Results

For the proof of our Theorem, we need the following lemmas.

Lemma 1: For any n > 0, we have

(5)
$$G(n) = G(n-1) + \varepsilon_n$$

and

(6)
$$G^{k}(n) = G^{k}(n-1) + \varepsilon'_{n},$$

where ε_n and ε'_n are 0 or 1.

Proof: Equalities (5) and (6) hold for n = 1 and n = 2 since, by the definition of the sequence,

$$G(0) = 0, G^{k}(0) = 0, G(1) = 1, G(2) = 1, G^{k}(1) = 1, G^{k}(2) = 1$$

for any $k \ge 2$. Assume that $m \ge 2$ and (5) holds for any $n \le m$, i.e.,

 $G(n) = G(n - 1) + \varepsilon_n$

for any n with $0 < n \le m$ and $\varepsilon_n = 0$ or 1. From this $G(n) \le n \le m$ also follows and so, by the assumption, we get

$$G(G(n)) = G^{2}(n) = \begin{cases} G^{2}(n-1) & \text{if } \varepsilon_{n} = 0 \\ G^{2}(n-1) + \varepsilon_{n}'' & \text{if } \varepsilon_{n} = 1, \end{cases}$$

where $\varepsilon_n'' = 0$ or 1. Continuing this process,

(7)
$$G^{k}(n) = G^{k}(n-1) + \varepsilon'_{n} \quad (\varepsilon'_{n} = 0 \text{ or } 1)$$

follows for any $0 < n \le m$. By (1) we have

$$G(m) = m - G^{k}(m - 1)$$
 and $G(m + 1) = m + 1 - G^{k}(m)$

from which, using (7), we obtain

104

 $G(m + 1) - G(m) = 1 - (G^{k}(m) - G^{k}(m - 1)) = \varepsilon_{m+1} \ (\varepsilon_{m+1} = 0 \text{ or } 1).$ Thus, (5), (7), and (6) also hold for n = m + 1.

From these, the lemma follows by mathematical induction.

Lemma 2: Let $\{n_i\}_{i=0}^{\infty}$ be a sequence of positive integers such that

 $G(n_i) = n_{i-1}$

for any i > 0. Then

$$n_i = n_{i-1} + n_{i-k} - \varepsilon_i$$

for any $i \ge k$, where $\varepsilon_i = 0$ or 1.

Proof: By the assumption of the lemma, using Lemma 1 and the definition of the sequence G(n), for any $i \ge k$ we have

$$n_{i-1} = G(n_i) = n_i - G^k(n_i - 1) = n_i - G^k(n_i) + \varepsilon_i'$$

= $n_i - G^{k-1}(n_{i-1}) + \varepsilon_i' = n_i - G^{k-2}(n_{i-2}) + \varepsilon_i' = \cdots$
= $n_i - G(n_{i-k+1}) + \varepsilon_i' = n_i - n_{i-k} + \varepsilon_i',$

where $\varepsilon_i' = 0$ or 1. The lemma follows from this assertion.

Lemma 3: Let $\{n_i\}_{i=0}^{\infty}$ be an increasing sequence of nonnegative integers satisfying the recursion

$$n_i = n_{i-1} + n_{i-k} - \varepsilon_i \quad (i \ge k),$$

where $k \ge 2$ is a fixed positive integer and $\varepsilon_i = 0$ or 1. Define a k^{th} -order linear recurrence sequence $\{u_i\}_{i=0}^{\infty}$ of integers by $u_i = n_i$ for $0 \le i \le k - 1$ and

$$u_i = u_{i-1} + u_{i-k}$$

for $i \ge k$. Further, let $\{F_i\}_{i=0}^{\infty}$ be a sequence of natural numbers defined by $F_0 = F_1 = \cdots = F_{k-1} = 1$ and

$$F_i = F_{i-1} + F_{i-k} \quad (i \ge k).$$

Then

 $n_i = u_i - \delta_i$

for any $i \ge 0$, where $0 \le \delta_i \le F_i - 1$.

Proof: For $0 \le i \le k - 1$, the lemma evidently holds with $\delta_i = 0$. If $i \ge k$ and $n_j = u_j - \delta_j$ with $0 \le \delta_j \le F_j - 1$ for any $0 \le j < i$, then

 $n_i = n_{i-1} + n_{i-k} - \varepsilon_i$

$$= u_{i-1} + u_{i-k} - (\delta_{i-1} + \delta_{i-k} + \varepsilon_i) = u_i - \delta_i,$$

where

$$0 \le \delta_i = \delta_{i-1} + \delta_{i-k} + \epsilon_i \le F_{i-1} + F_{i-k} - 2 + \epsilon_i \le F_i - 1,$$

since the δ_j 's are integers. The lemma follows from the above by mathematical induction on i.

Lemma 4: Let $\{v_n\}_{n=0}^{\infty}$ be a k^{th} -order linear recurrence sequence of positive rational integers defined by the nonzero initial values v_0 , v_1 , ..., v_{k-1} and by the recursion

 $v_n = v_{n-1} + v_{n-k}$

for $n \ge k$. Denote by α_1 , α_2 , ..., α_k the roots of the characteristic polynomial $x^k - x^{k-1} - 1$. Then the terms of the sequence can be expressed as

(8)
$$v_n = a_1 a_1^n + a_2 a_2^n + \dots + a_k a_k^n \quad (n \ge 0),$$

where the a_i 's (i = 1, 2, ..., k) are elements of the number field generated by $\alpha_1, \alpha_2, ..., \alpha_k$ over the rationals.

Proof: This lemma is a special case of a more general well-known result, so it is not necessary to prove it here.

Lemma 5: Let $\{v_n\}_{n=0}^{\infty}$ be the linear recurrence sequence defined in Lemma 4. If

$$0 < v_0 = \min_{0 \le i \le k} (v_i)$$
 and $|\alpha_1| > |\alpha_i|$ for $2 \le i \le k$

then there is a real number c > 0, depending only on the characteristic polynomial of the sequence, such that

 $(9) \qquad |a_1| > c \cdot v_0,$

where a_1 is defined by (8).

Proof: Ferguson [2] as well as Hoggatt & Alladi [4] proved that the roots of the polynomial $x^k - x^{k-1} - 1$ are distinct and that there is a dominant real root α_1 with the largest modulus; thus, we may suppose that $|\alpha_1| > |\alpha_i|$ for $i = 2, \ldots, k$.

By (8), for the a_i 's, we have the system equations:

thus,

(10) $a_1 = \frac{D_1}{D}$,

where

$$D = \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_k^2 \\ \vdots & & & \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_k^{k-1} \end{vmatrix}, \quad D_1 = \begin{vmatrix} v_0 & 1 & \dots & 1 \\ v_1 & \alpha_2 & \dots & \alpha_k \\ v_2 & \alpha_2^2 & \dots & \alpha_k^2 \\ \vdots & & & \\ v_{k-1} & \alpha_2^{k-1} & \dots & \alpha_k^{k-1} \end{vmatrix},$$

and $D \neq 0$ since the α_i 's are distinct. The determinant D_1 can be written in the form

(11)
$$D_1 = \sum_{i=1}^k (-1)^{i-1} v_{i-1} \cdot D^{(i)},$$

where

$$D^{(i)} = \begin{bmatrix} 1 & \dots & 1 \\ \alpha_2 & \dots & \alpha_k \\ \vdots & & & \\ \alpha_2^{i-2} & \dots & \alpha_k^{i-2} \\ \alpha_2^i & \dots & \alpha_k^i \\ \vdots & & & \\ \alpha_2^{k-1} & \dots & \alpha_k^{k-1} \end{bmatrix}$$

is a $(k - 1) \times (k - 1)$ determinant rejecting the first column and the i^{th} row from D_1 .

It was proved in the lemma of [5] that

(12) $D^{(i)} = D_0 \cdot S_{k-i}$ for any $1 \le i \le k$,

[May

$$D_0 = \begin{vmatrix} 1 & \dots & 1 \\ \alpha_2 & \dots & \alpha_k \\ \vdots \\ \alpha_2^{k-2} & \dots & \alpha_k^{k-2} \end{vmatrix}$$

is a $(k - 1) \times (k - 1)$ Vandermonde determinant and S_{k-i} is the elementary symmetrical polynomial of degree k - i of variables $\alpha_2, \ldots, \alpha_k$ if k - i > 0, and $S_0 = 1$. It is known that for the coefficients of a polynomial

$$b(x) = b_0 x^n + b_1 x^{n-1} + \dots + b_n$$

we have

$$b_j = (-1)^j b_0 S_j' \quad (1 \le j \le n)$$

where

$$S_j' = \sum \beta_{i_1} \beta_{i_2} \dots \beta_{i_j}$$

is the elementary symmetrical polynomial of degree j of the roots β_1, \ldots, β_n of b(x) (the sum runs over the distinct $i_1 < i_2 < \cdots < i_j$ combinations of 1, 2, ..., n). Since $S_1, S_2, \ldots, S_{k-1}$ are the elementary symmetrical polynomials of $\alpha_2, \ldots, \alpha_k$ of degree 1, 2, ..., k - 1, thus $S_1 + \alpha_1, S_2 + S_1\alpha_1, \ldots, S_{k-1} + S_{k-2}\alpha_1, S_{k-1}\alpha_1$ are the elementary symmetrical polynomials of $\alpha_1, \alpha_2, \ldots, \alpha_k$ of degree 1, 2, ..., k - 1, k, respectively. So, for the coefficients of the polynomial $x^k - x^{k-1} - 1$, we have

$$(13) \begin{array}{c} -1 &= -(S_1 + \alpha_1) \\ 0 &= S_2 + S_1 \alpha_1 \\ \vdots \\ 0 &= (-1)^{k-1} (S_{k-1} + S_{k-2} \alpha_1) \\ -1 &= (-1)^k \cdot S_{k-1} \alpha_1. \end{array}$$

Since α_1 is real, $\alpha_1 > 1$, which implies that $S_1 = 1 - \alpha_1 > 0$. But, from this, $S_2 > 0$ follows, and contining this process, by (13), we obtain the inequalities

(14)
$$S_{2i} > 0$$
 ($0 \le 2i \le k - 1$)

and

(15)
$$S_{2i+1} < 0$$
 $(1 \le 2i + 1 \le k - 1)$.

Finally, by (11) and (12) we get

$$D_1 = D_0 (v_0 S_{k-1} - v_1 S_{k-2} + \dots + (-1)^{k-1} v_{k-1} S_0)$$

and, by (14) and (15), using the condition $0 < v_0 \le v_i$ for $1 \le i \le k - 1$,

$$|D_1| = |D_0| \cdot \sum_{i=1}^{k} v_{i-1} \cdot |S_{k-i}| > v_0 \cdot |D_0| \cdot \sum_{i=1}^{k} |S_{k-i}|$$

follows. By (10), this implies the lemma.

3. Proof of the Theorem

Let $\mathbb N$ be a sufficiently large positive integer and define an integer m by

 $m = \left[\frac{\log N}{2 \cdot \log 3}\right]$

([] is the integer part function). Let n_0, n_1, \ldots, n_m be a set of natural numbers defined by

(16)
$$n_m = N$$
 and $n_{i-1} = G(n_i)$ for $1 \le i \le m$.
1992]

107

From Lemma 1 and its proof, it follows that G(n) < n for any n > 1, and so

 $n_0 < n_1 < \cdots < n_m = N$

for N sufficiently large so that $n_0 \ge 1$.

We show that there are no three consecutive equal terms in the sequence $\mathcal{G}(n)$. For if

G(n) = G(n + 1) = G(n + 2),

then, by the definition of the sequence,

(17) $n - G^k(n-1) = n + 1 - G^k(n) = n + 2 - G^k(n+1)$

would follow. But G(n) = G(n + 1) implies that $G^k(n) = G^k(n + 1)$ and so, by (17), we would obtain the equality n + 1 = n + 2, which is impossible. Thus, $G(n + 2) \ge G(n) + 1$ for any $n \ge 0$, and so

$$(18) \qquad G(n) \geq \frac{1}{3}n.$$

By (16) and (18), we get

$$N = n_m \le 3 \cdot G(n_m) = 3 \cdot n_{m-1} \le 3^2 \cdot G(n_{m-1}) = 3^2 \cdot n_{m-2} \le \cdots \le 3^m n_0,$$

which, by the definition of m, can be written in the form

(19)
$$n_0 \geq \frac{N}{3^m} \geq \sqrt{N}.$$

By Lemmas 2-4 and their notations, using (16), we obtain

$$(20) \qquad \frac{G(N)}{N} = \frac{n_{m-1}}{n_m} = \frac{u_{m-1} - \delta_{m-1}}{u_m - \delta_m} = \frac{a_1 \alpha_1^{m-1} + \dots + a_k \alpha_k^{m-1} - \delta_{m-1}}{a_1 \alpha_1^m + \dots + a_k \alpha_k^m - \delta_m}$$
$$= \frac{1}{\alpha_1} \cdot \frac{1 + \frac{a_2}{\alpha_1} \left(\frac{\alpha_2}{\alpha_1}\right)^{m-1} + \dots + \frac{a_k}{\alpha_1} \left(\frac{\alpha_k}{\alpha_1}\right)^{m-1} - \frac{1}{\alpha_1} - \frac{\delta_{m-1}}{\alpha_1} \alpha_1^{m-1}}{1 + \frac{a_2}{\alpha_1} \left(\frac{\alpha_2}{\alpha_1}\right)^m + \dots + \frac{a_k}{\alpha_1} \left(\frac{\alpha_k}{\alpha_1}\right)^m - \frac{1}{\alpha_1} \cdot \delta_m / \alpha_1^m}.$$

By the proof of Lemma 5, it follows that there are complex numbers b_1 , b_2 , ..., b_k , which depend only on the α_i 's (i = 1, 2, ..., k), such that

$$a_i = \sum_{i=0}^{k-1} b_i u_i$$

and so, using that $|a_1| > c \cdot u_0$ by Lemma 5,

(21)
$$\left|\frac{a_i}{a_1}\right| < \frac{\left|\sum_{i=0}^{k-1} b_i u_i\right|}{c \cdot u_0}$$

follows. But $u_i = n_i$ for $i = 0, 1, 2, ..., k - 1, n_i < n_{k-1}$ for $0 \le i < k - 1$, and by (18) $n_i/n_{i-1} \le 3$ for any i > 0; thus, from (21),

(22)
$$\left|\frac{a_i}{a_1}\right| < b \cdot \frac{n_{k-1}}{n_0} = b \cdot \frac{n_1}{n_0} \cdot \frac{n_2}{n_1} \cdot \dots \cdot \frac{n_{k-1}}{n_{k-2}} \le b \cdot 3^{k-1} = B$$

follows for $2 \le i \le k$, where *b* and *B* are positive real numbers which do not depend on *m* and the n_i 's. Since $|\alpha_1| > |\alpha_i|$ for $2 \le i \le k$, and $m \to \infty$ as $N \to \infty$, so by (22),

May

(23)
$$\lim_{N \to \infty} \frac{a_i}{\alpha_1} \left(\frac{\alpha_i}{\alpha_1} \right)^{m-1} = \lim_{N \to \infty} \frac{a_i}{\alpha_1} \left(\frac{\alpha_i}{\alpha_1} \right)^m = 0 \quad \text{for } i = 2, 3, \ldots, k.$$

On the other hand, by Lemmas 3 and 4, we get

$$0 \leq \delta_n < F_n = c_1 \alpha_1^n + c_2 \alpha_2^n + \dots + c_k \alpha_k^n = c_1 \alpha_1^n \left(1 + \sum_{i=2}^k \frac{c_i}{c_1} \left(\frac{\alpha_i}{\alpha_1} \right)^n \right)$$

for any $n \ge 0$, where the c_i 's (i = 1, 2, ..., k) are complex numbers which are independent of n,

$$\lim_{n \to \infty} (\alpha_i / \alpha_1)^n = 0,$$

and it can be easily seen that $c_1 \neq 0$. From these, it follows that there is a real number C > 0, depending only on the characteristic polynomial of the sequence $\{F_i\}$, such that

$$\frac{\delta_n}{\alpha_1^n} < C \text{ for any } n \ge 0.$$

However, by (19) and Lemma 5,

$$|a_1| > c \cdot u_0 = c \cdot n_0 \ge c \cdot \sqrt{N}$$

and so

(24)
$$\lim_{N \to \infty} \left(\frac{1}{\alpha_1} \cdot \frac{\delta_{m-1}}{\alpha_1^{m-1}} \right) = \lim_{N \to \infty} \left(\frac{1}{\alpha_1} \cdot \frac{\delta_m}{\alpha_1^m} \right) = 0.$$

From (20), (23), and (24),

$$\lim_{N \to \infty} \frac{\alpha(\alpha)}{N} = \frac{1}{\alpha_1}$$

follows, where α_1 is the single positive root of the equation $x^k - x^{k-1} - 1 = 0$. But, if α is a root of the polynomial $x^k - x^{k-1} - 1$, then $1/\alpha$ is a root of $x^k + x - 1$, thus $1/\alpha_1 = \omega$ and the theorem is proved.

Acknowledgment

The authors would like to thank the referee for his helpful and detailed comments.

References

- 1. P. J. Downey & R. E. Griswold. "On a Family of Nested Recurrences." Fibonacci Quarterly 22 (1984):310-17.
- 2. H. R. P. Ferguson. "On a Generalization of the Fibonacci Numbers Useful in Memory Allocation Schema; or All About the Zeros of $z^k z^{k-1} 1$, k > 0." Fibonacci Quarterly 14 (1976):233-43.
- 3. V. Granville & J. P. Rasson. "A Strange Recursive Relation." J. Number Theory 30 (1988):238-41.
- V. E. Hoggatt, Jr. & K. Alladi. "Limiting Ratios of Convolved Recursive Sequences." Fibonacci Quarterly 15 (1977):211-14.
 P. Kiss. "On Some Properties of Linear Recurrences." Publ. Math. Debrecen
- P. Kiss. "On Some Properties of Linear Recurrences." Publ. Math. Debrecen 30 (1983):273-81.
- 6. B. Zay. "Egy Rekurziv Sorozatról." (Hungarian) Acta Acad. Paed. Agriensis, to appear.
