ON A THEOREM OF MONZINGO CHARACTERIZING THE PRIME DIVISORS OF CERTAIN SEQUENCES OF INTEGERS

R. B. McNeill
Northern Michigan University, Marquette, MI 49855
(Submitted May 1990)

In [1], M. G. Monzingo extended a problem found in Elementary Number Theory by David M. Burton concerning the common divisors of two successive integers of the form $n^{2}+3$ by establishing
Theorem 1 (Monzingo) : Let p be an odd prime. If p is of the form $4 K+1$, then p is the only prime that divides successive integers of the form $n^{2}+K$, and p divides successive pairs precisely when n is of the form $b p+2 K$, for any integer b. If p is of the form $4 K+3$, then p is the largest prime that divides successive integers of the form $n^{2}+(3 K+2)$, and p divides successive pairs precisely when n is of the form $b p+(2 K+1)$, for any integer b. Furthermore, p will be the only prime divisor if and only if $p=3$.

The purpose of this note is to generalize these results to the general quadratic. Specifically, we prove the following
Theorem 2: Let p be an odd prime and define $P(n) \equiv \alpha_{2} n^{2}+\alpha_{1} n+\alpha_{0}$, where n and all coefficients are integers and $\alpha_{2} \neq 0$. If p divides $P(n)$ and $P(n+d)$, where d is an integer not divisible by p, then p divides $a_{2}^{2} d^{2}-a_{1}^{2}+4 a_{0} a_{2}$, and n satisfies the equation

$$
(2 n+d) a_{2}+a_{1} \equiv 0 \bmod p
$$

Proof: Suppose that p divides $P(n)$ and $P(n+d)$. Since p divides the difference of these integers, and p does not divide d, p divides $Q(n) \equiv(2 n+d) \alpha_{2}+\alpha_{1}$, i.e., n satisfies

$$
(2 n+d) a_{2}+a_{1} \equiv 0 \bmod p
$$

In addition, p divides $n Q(n)-2 P(n)$, i.e., p divides $R(n) \equiv n\left(\alpha_{2} d-\alpha_{1}\right)-2 \alpha_{0}$. Finally, p divides $\left(a_{2} d-a_{1}\right) Q(n)-2 a_{2} R(n)$, and the result is established unless (perhaps) either $n=0$ or $a_{2} d-a_{1}=0$. Since it is straightforward to verify directly that p divides $a_{2}^{2} d^{2}-a_{1}^{2}+4 a_{0} a_{2}$ in each of these cases, the theorem is established.

Remark: Theorem 1 (Monzingo) follows easily from Theorem 2 after selecting $d=$ $1, a_{2}=1, a_{1}=0$, and $a_{0}=K$ or $a_{0}=3 K+2$, depending on whether $p=4 K+1$ or $p=4 K+3$, respectively.

Reference

1. M. G. Monzingo. "On Prime Divisors of Sequences of Integers Involving Squares." Fibonacci Quarterly 26.1 (1988):31-32.
