ON A THEOREM OF MONZINGO CHARACTERIZING THE PRIME DIVISORS OF CERTAIN SEQUENCES OF INTEGERS

R. B. McNeill

Northern Michigan University, Marquette, MI 49855 (Submitted May 1990)

In [1], M. G. Monzingo extended a problem found in *Elementary Number Theory* by David M. Burton concerning the common divisors of two successive integers of the form $n^2 + 3$ by establishing

Theorem 1 (Monzingo): Let p be an odd prime. If p is of the form 4K + 1, then p is the only prime that divides successive integers of the form $n^2 + K$, and p divides successive pairs precisely when n is of the form bp + 2K, for any integer b. If p is of the form 4K + 3, then p is the largest prime that divides successive integers of the form $n^2 + (3K + 2)$, and p divides successive pairs precisely when n is of the form bp + (2K + 1), for any integer b. Furthermore, p will be the only prime divisor if and only if p = 3.

The purpose of this note is to generalize these results to the general quadratic. Specifically, we prove the following

Theorem 2: Let p be an odd prime and define $P(n) \equiv a_2n^2 + a_1n + a_0$, where n and all coefficients are integers and $a_2 \neq 0$. If p divides P(n) and P(n + d), where d is an integer not divisible by p, then p divides $a_2^2d^2 - a_1^2 + 4a_0a_2$, and n satisfies the equation

 $(2n + d)a_2 + a_1 \equiv 0 \mod p$.

Proof: Suppose that p divides P(n) and P(n+d). Since p divides the difference of these integers, and p does not divide d, p divides $Q(n) \equiv (2n + d)a_2 + a_1$, i.e., n satisfies

 $(2n + d)a_2 + a_1 \equiv 0 \mod p$.

In addition, p divides nQ(n) - 2P(n), i.e., p divides $R(n) \equiv n(a_2d - a_1) - 2a_0$. Finally, p divides $(a_2d - a_1)Q(n) - 2a_2R(n)$, and the result is established unless (perhaps) either n = 0 or $a_2d - a_1 = 0$. Since it is straightforward to verify directly that p divides $a_2^2d^2 - a_1^2 + 4a_0a_2$ in each of these cases, the theorem is established.

Remark: Theorem 1 (Monzingo) follows easily from Theorem 2 after selecting d = 1, $a_2 = 1$, $a_1 = 0$, and $a_0 = K$ or $a_0 = 3K + 2$, depending on whether p = 4K + 1 or p = 4K + 3, respectively.

Reference

1. M. G. Monzingo. "On Prime Divisors of Sequences of Integers Involving Squares." Fibonacci Quarterly 26.1 (1988):31-32.
