PROJECTIVE MAPS OF LINEAR RECURRING SEQUENCES WITH MAXIMAL p-adic PERIODS

Huang Minqiang
Institute of Systems Science, Academia Sinica, PRC

Dai Zongduo

Graduate School of USTC, Academia Sinica, PRC
(Submitted June 1990)

1. Introduction

Let $\alpha=\sum_{i \geq 0} p_{i} \alpha^{i}$ be the p-adic expansion of an $n^{\text {th }}$-order linear recurring sequence α of rational (or p - $\alpha d i c$) integers. In this paper the projective map $\phi_{d}: \alpha \rightarrow \alpha_{d-1}$ is shown to be injective modulo pd for linear sequences having maximal modulo pd periods.

Let R be the ring of rational (or p-adic) integers, p a prime number. For a polynomial $f(x)=\sum_{i=0}^{n} c_{i} x^{i} \in R[x]$ and a sequence α over R, define the operation

$$
f(x) \alpha=\sum_{i=0}^{n} c_{i} L^{i} \alpha
$$

where L is the left-shift operator of sequences. α is said to be an $n^{\text {th }}$-order linear recurring sequence modulo p^{d} [or over $R_{d}=R /\left(p^{d}\right)$] generated by $f(x)$ if $f(x)$ is monic and $f(x) \alpha \equiv 0(\bmod p d)$. It is well known ([3], [4], [6], [7]) that the residue sequence α mod p^{d} is ultimately periodic with the period
(1) $\operatorname{per}(\alpha)_{p^{d}} \leq p^{d-1}\left(p^{n}-1\right)$.

Definition: An $n^{\text {th }}$-order linear sequence α attaining the upper bound in (1) is said to be primitive over R_{d}. Furthermore, α is primitive over R if it is primitive over R_{d} for all $d \geq 2$.

The arithmetical properties of this special class of sequences have been studied in [1], [2], [3], and [6]. Write α in its p-adic form

$$
\alpha=\alpha_{0}+p \alpha_{1}+p^{2} \alpha_{2}+\cdots,
$$

where the α_{i} 's are p-ary sequences, and consider the $d^{\text {th }}$ projective map

$$
\phi_{d}: \alpha \rightarrow \alpha_{d-1}
$$

The purpose of this paper is to prove that ϕ_{d} is a modulo p^{d} injection on the set of $f(x)$-generated R_{d}-primitive sequences. More precisely, our main result is
Theorem 1: Suppose α and α^{\prime} are $n^{\text {th }}$-order primitive sequences generated by $f(x)$ over R_{d}. Then $\alpha_{d-1}=\alpha_{d-1}^{\prime}$ if and only if $\alpha \equiv \alpha^{\prime}\left(\bmod p^{d}\right)$.

The proof is given in Sections 3 and 4.

2. Primitive Sequences and Polynomials over R_{d}

For a monic polynomial $f(x) \in R[x]$, define its modulo p^{d} period as follows

$$
\operatorname{per}(f(x))_{p^{d}}=\min \left\{t>0 \mid x^{t} \equiv 1 \bmod \left(f(x), p^{d}\right)\right\}
$$

Let $T=\operatorname{per}(f(x))_{p}$. By definition, there is an $h(x) \in R[x]$ so that

$$
\begin{equation*}
x^{T} \equiv 1+p h_{1}(x) \quad(\bmod f(x)) \tag{2}
\end{equation*}
$$

For $i \geq 1$, 1et

$$
\begin{equation*}
h_{i+1}(x)=\sum_{i \leq r \leq p}\binom{p}{r} p^{r i-i-1} h_{i}(x)^{r} \tag{3}
\end{equation*}
$$

It follows immediately that

$$
\begin{equation*}
x^{p^{i-1} T} \equiv 1+p^{i} h_{i}(x) \quad(\bmod f(x)), \quad 1 \leq i \leq d, \tag{4}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\operatorname{per}(f(x))_{p^{i}} \mid p^{i-1} T \leq p^{i-1}\left(p^{n}-1\right), \quad 1 \leq i \leq d \tag{5}
\end{equation*}
$$

Similar to the case of sequences, $f(x)$ is said to be primitive over R_{d} if $\operatorname{per}(f(x))_{p^{d}}=p^{d-1}\left(p^{n}-1\right)$.

By (4) and (5), this is clearly equivalent to the fact that $f(x)$ is primitive over $G F(p)$ (i.e., $T=p^{n}-1$) where $G F(p)$ denotes the finite field of order p, a prime, and

$$
\begin{equation*}
h_{i}(x) \not \equiv 0 \bmod (f(x), p), \quad 1 \leq i<d \tag{6}
\end{equation*}
$$

By the inductive definition of $h_{i}(x)$, when $i \geq 2$ we have

$$
h_{i}(x) \equiv \begin{cases}h_{1}(x) \bmod (p, f(x)), & \text { if } p \geq 3, \tag{7}\\ h_{2}(x) \equiv h_{1}(x)+h_{1}(x)^{2} \bmod (2, f(x)), & \text { if } p=2 .\end{cases}
$$

Therefore, (6) is equivalent to

$$
h_{1}(x) \not \equiv\left\{\begin{array}{ll}
0, & \bmod (p, f(x)), \tag{8}\\
\text { if } p \geq 3, \text { or } p=2 \text { and } d=2, \\
0,1 & \bmod (2, f(x)),
\end{array} \text { if } p=2 \text { and } d \geq 3 .\right.
$$

An explicit criterion for $f(x)$ to be primitive over R_{d} is given in [2]. Ward had shown in [6] that an $f(x)$-generated linear sequence α is primitive over R_{d} if and only if $\alpha \not \equiv 0(\bmod p)$ and $f(x)$ is primitive over R_{d}. Now assume this is the case and write

$$
\alpha=\sum_{i \geq 0} \alpha_{i} p^{i}
$$

For $1 \leq i<d$, notice that $\operatorname{per}(\alpha)_{p^{i}} \mid \operatorname{per}(f(x))_{p^{i}}=p^{i-1} T$, we have

$$
\begin{equation*}
\left(x^{p^{i-1} T}-1\right) \alpha=\left(x^{p^{i-1} T}-1\right) \sum_{k \geq i} \alpha_{k} p^{k} \equiv p^{i}\left(x^{p^{i-1} T}-1\right) \alpha_{i}\left(\bmod p^{i+1}\right) . \tag{9}
\end{equation*}
$$

On the other hand, applying (4) to α gives

$$
\begin{equation*}
\left(x^{p^{i-1} T}-1\right) \alpha \equiv p^{i} h_{i}(x) \alpha \quad\left(\bmod p^{i+1}\right) \tag{10}
\end{equation*}
$$

From (9) and (10), we obtain the relation over $G F(p)$

$$
\left(x^{p^{i-1} T}-1\right) \alpha_{i}=h_{i}(x) \alpha_{0}= \begin{cases}h_{1}(x) \alpha_{0}, & \text { if } p \geq 3, \text { or } p=2 \text { and } i=1, \tag{11}\\ h_{2}(x) \alpha_{0}, & \text { if } p=2 \text { and } i \geq 2 .\end{cases}
$$

In what follows, discussions of p-ary sequences are over $G F(p)$.
For any $g(x) \in G F(p)[x]$, denote by $G(g(x))$ the set of sequences over $G F(p)$ generated by $g(x)$. Let $m_{0}=\alpha_{0}$,

$$
\begin{equation*}
m_{i}=\left(x^{p^{i-1} T}-1\right) \alpha_{i}=h_{i}(x) m_{0}, \quad 1 \leq i<d . \tag{12}
\end{equation*}
$$

Clearly, $m_{i}, i=0,1, \ldots$, are primitive sequences in $G\left(f_{0}(x)\right)$. They are the key factors in our approach to proving the main theorem. The following Lemma, which will play a technical role in Sections 3 and 4, can be derived from (11) and the theory of primitive sequence products ([4, Ch. 8], [5]).

Lemma 1: (i) The product of two primitive sequences over $G F(p)$ is not zero.
(ii) Let $\lambda=\sum_{i \geq 0} p^{i} \lambda_{i}$ be any $f(x)$-generated sequence over R_{d}. If there is a p-ary primitive sequence $m \in G\left(f_{0}(x)\right)$ such that
$m \lambda_{d-1} \equiv m \lambda_{d-2} \bmod G\left(x^{T}-1\right)$,
then $\lambda \equiv 0\left(\bmod p^{d-1}\right)$.
3. Proof of Theorem 1 for $p \geq 3$

Let $\rho=\sum_{i \geq 0} \rho_{i} p^{i}$ be the p-adic form of $\alpha^{\prime}-\alpha$. We want to show that

$$
\alpha_{d-1}^{\prime}=\alpha_{d-1} \text { implies } \rho \equiv 0\left(\bmod p^{d-1}\right)
$$

Assume on the contrary that $\rho=p^{e} \beta$, with $0 \leq e<d-1$ and

$$
\beta=\sum_{i \geq 0} \beta_{i} p^{i} \not \equiv 0(\bmod p)
$$

Obviously, β is generated by $f(x)$ over R_{d-e}. By (11),

$$
m=\left(x^{p^{d-e-2}}-1\right) \beta_{d-e-1}
$$

is a primitive sequence generated by $f(x)$ over $G F(p)$. On the other hand, let

$$
\alpha=(\alpha(t))_{t \geq 0}, \quad \alpha^{\prime}=\left(\alpha^{\prime}(t)\right)_{t \geq 0}, \quad \beta_{d-e-1}=(\beta(t))_{t \geq 0}
$$

and define the "borrow" sequence $\delta_{d-1}=(\delta(t))_{t \geq 0}$ by

$$
\delta(t)= \begin{cases}0, & \text { if } \alpha^{\prime}(t) \bmod p^{d-1} \geq \alpha(t) \bmod p^{d-1} \\ 1, & \text { otherwise }\end{cases}
$$

Then

$$
\beta(t)=\left(\alpha_{d-1}^{\prime}(t)-\alpha_{d-1}(t)-\delta(t)\right) \bmod p=(-\delta(t)) \bmod p=0 \text { or } p-1
$$

for all t. Therefore, the $G F(p)$-primitive sequence

$$
m=\left(x^{p^{d-e-2}}-1\right) \beta_{d-e-1}
$$

consists of at most three elements: 0,1 , and $p-1$. When $p \geq 5$, this is impossible because a primitive sequence contains all p elements in $G F(x)$. Now, assume $p=3$, and write $m=(m(t))_{t \geq 0}$. From the equation

$$
\beta\left(t+p^{d-e-2} T\right)-\beta(t)=m(t)
$$

and the fact that $\beta(t)=0$ or 2 for all t, we have $\beta(t)=2$ when $m(t)=1$, and $\beta(t)=0$ when $m(t)=2$. Hence,

$$
m(t)(t)=m(t)(m(t)+1) \text { for all } t \geq 0
$$

or equivalently,
(13) $\quad m \beta_{d-e-1}=m(m+1)$.

Applying the operator $x^{p^{d-e-2}}-1$ to both sides of (13) gives rise to $m^{2}=0$, which contradicts (i) of Lemma 1 .

So Theorem 1 has been proved for $p \geq 3$.

4. Proof of Theorem 1 for $p=2$

When $p=2$, our main theorem is obviously equivalent.
Theorem 2: Let α and α^{\prime} be as in Theorem 1. Then for $d \geq 2$,

$$
\alpha_{d-1}+\alpha_{d-1}^{\prime} \in G\left(f_{0}(x)\right) \text { if and only if } \alpha \equiv \alpha^{\prime}\left(\bmod 2^{d-1}\right)
$$

The "if" part is clear. To prove the other direction, we need some preparations. Suppose $\rho=\alpha^{\prime}-\alpha$ and $\omega=\alpha+\alpha^{\prime}$, with 2 -adic expansions

$$
\rho=\sum_{i \geq 0} 2^{i} \rho_{i} \quad \text { and } \quad \omega=\sum_{i \geq 0} 2^{i} \omega_{i}
$$

Let $\theta_{i}=\alpha_{i}+\alpha_{i}^{\prime}$, then over $G F(2)$ we have

$$
\begin{align*}
& \omega_{i}=\theta_{i}+\gamma_{i}, \tag{14}\\
& \rho_{i}=\theta_{i}+\delta_{i}
\end{align*}
$$

where γ_{i} is the "carry" from α mod 2^{i} and $\alpha^{\prime} \bmod 2^{i}$, and δ_{i} is the "borrow" defined by $\alpha \bmod 2^{i}$ and $\alpha^{\prime} \bmod 2^{i}$. Denote by $\bar{\theta}_{i}$ the binary complement of θ_{i}, it is easily seen that

$$
\begin{align*}
& \delta_{i}=\theta_{i-1} \alpha_{i-1}+\bar{\theta}_{i-1} \delta_{i-1} \tag{16}\\
& \gamma_{i}=\bar{\theta}_{i-1} \alpha_{i-1}+\theta_{i-1} \gamma_{i-1} . \tag{17}
\end{align*}
$$

Lemma 2: Suppose α and α^{\prime} are $f(x)$-generated primitive sequences over R_{d}. If $\theta_{d-1}-G\left(x^{T}+1\right)$, then

$$
\theta_{d-2} m_{d-2}=\varepsilon m_{d-2}
$$

where $\varepsilon=0$ or 1 . Furthermore, we have $\rho \equiv 0\left(\bmod 2^{d-1}\right)$ or $\omega \equiv 0\left(\bmod 2^{d-1}\right)$, respectively, according to $\varepsilon=0$ or 1 .
Proof: The fact that $\left(x^{T}+1\right) \theta_{d-1}=0$ implies $m_{i}=m_{i}^{\prime}$ and $\theta_{i} \in G\left(x^{2^{i-1} T}+1\right)$ for al1 $i \leq d-1$.

If $d=2$, we have $m_{0}=m_{0}^{\prime}$, and the conclusion holds.
Now assume $d \geq 3$. Notice that $\rho \equiv 0(\bmod 2)$, and

$$
\rho^{\prime}=\rho / 2=\sum_{i \geq 0} 2^{i} \rho_{i+1}
$$

is generated by $f(x)$ over R_{d-1}. From (11) it follows that

$$
\left(x^{2^{d-3} T}+1\right) \rho_{d-1}=h_{d-2}(x) \rho_{1} \in G\left(f_{0}(x)\right)
$$

On the other hand, by the observation that $\operatorname{per}(\delta-2) \mid 2^{d-3} T$ and

$$
\begin{equation*}
\rho_{d-1}=\theta_{d-1}+\theta_{d-2} \alpha_{d-2}+\bar{\theta}_{d-2} \delta_{d-2} \tag{18}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(x^{2^{d-3} T}+1\right) \rho_{d-1}=\theta_{d-2}\left(x^{2^{d-3} T}+1\right) \alpha_{d-2}=\theta_{d-2} m_{d-2} \tag{19}
\end{equation*}
$$

Therefore, $\theta_{d-2} m_{d-2}=\varepsilon m_{d-2}$ with $\varepsilon=0$ or 1 .
If $\varepsilon=0$, i.e., $\theta_{d-2} m_{d-2}=0$, then $\bar{\theta}_{d-2} m_{d-2}=m_{d-2}$. From (18) and (15), we can derive

$$
m_{d-2} \rho_{d-1}=m_{d-2} \theta_{d-1}+m_{d-2} \delta_{d-2} \equiv m_{d-2} \rho_{d-1} \bmod G\left(x^{T}+1\right)
$$

which leads to $\rho \equiv 0\left(\bmod 2^{d-1}\right)$ by Lemma 1 .
The case of $\varepsilon=1$ can be shown in a similar way. The proof is thus completed.
Corollary: If $\left(x^{T}+1\right) \theta_{2}=0$, then $\alpha \equiv \alpha^{\prime}(\bmod 4)$.
Proof: Assume, on the contrary, that $\varepsilon=1$ and $\theta_{1} m_{1}=m_{1}$. Since $m_{0}=m_{0}^{\prime}$ and $\theta_{1} \in G\left(f_{0}(x)\right)$, we have $\theta_{l}=m_{1}$.

On the other hand, the fact that $\omega \equiv 0(\bmod 4)$ and $\omega_{1}=\theta_{1}+m_{0}$ implies θ_{1} $=m_{0}$. Therefore

$$
m_{1}=\theta_{1}=m_{0}
$$

which is impossible by (12) and (8).

Now we are in a position to give an inductive proof of the remaining part of Theorem 2:

$$
\theta_{d-1} \in G\left(f_{0}(x)\right) \text { implies } \alpha \equiv \alpha^{\prime}\left(\bmod 2^{d-1}\right)
$$

The conclusions for $d=2$ and 3 are proved above.
Suppose $d \geq 4$ and the theorem holds for $d-1$. If it fails for d, we would have $\theta_{d-2} m_{d-2}=m_{d-2}$ and $\omega \equiv 0\left(\bmod 2^{d-1}\right)$. Consequently,

$$
\begin{aligned}
& \omega_{d-2}=\theta_{d-2}+\gamma_{d-2}=0 \\
& \omega_{d-1}=\theta_{d-1}+\bar{\theta}_{d-2}{ }_{d-2}+\theta_{d-2} \in G\left(f_{0}(x)\right) \\
& m_{d-2} \omega_{d-1}=m_{d-2} \theta_{d-1}+m_{d-2}=m_{d-2}\left(\theta_{d-1}+m_{d-2}\right)
\end{aligned}
$$

Since m_{d-2}, ω_{d-1}, and $\theta_{d-1} \in G\left(f_{0}(x)\right)$, by Lemma 1 (i), equation (20) leads to

$$
\theta_{d-1}+m_{d-2}=\omega_{d-1}=\theta_{d-1}+\bar{\theta}_{d-2} \alpha_{d-2}+\theta_{d-2}
$$

and hence $m_{d-2}=\theta_{d-2} \alpha_{d-2}+\theta_{d-2}$. Multiplying both sides by θ_{d-2} gives

$$
m_{d-2}=\theta_{d-2} m_{d-2}=\theta_{d-2}
$$

Now we have reduced the case to $d-1$. By the inductive assumption, we have $\rho \equiv 0\left(\bmod 2^{d-2}\right)$, and hence

$$
\alpha=(\omega-\rho) / 2 \equiv 0\left(\bmod 2^{d-3}\right)
$$

which contradicts the fact that α is primitive over R_{d} and $d \geq 4$.
The theorem is thus proved.

References

1. Zongduo Dai \& Minqiang Huang. "A Criterion for Primitiveness of Polynomials over $\mathbb{Z} \bmod 2^{d} . "$ Chinese Science Bulletin (Chinese ed.) 35 (1990):1129-31 (English ed. will appear in 1990).
2. Minqiang Huang. "Maximal Period Polynomials over \mathbb{Z} mod pd." Preprint.
3. M. Hall. "An Isomorphism between Linear Recurring Sequences and Algebraic Rings." Trans. Amer. Math. Soc. 44 (1938):196-218.
4. R. Lidl \& H. Niederreiter. Finite Fields. Encyclopedia of Mathematics and Its Applications, Vol. 20. New York: Addison-Wesley, 1983 (now distributed by Cambridge University Press).
5. W. H. Mills \& N. Zierler. "Products of Linear Recurring Sequences." J. Algebra 27 (1973):147-57.
6. M. Ward. "The Arithmetical Theory of Linear Recurring Series." Trans. Amer. Math. Soc. 35 (1933):600-28.
7. A. Vince. "Period of a Linear Recurrence." Acta Arith. 39 (1981):303-11.
