PROJECTIVE MAPS OF LINEAR RECURRING SEQUENCES WITH MAXIMAL p-adic PERIODS

Huang Minqiang

Institute of Systems Science, Academia Sinica, PRC

Dai Zongduo

Graduate School of USTC, Academia Sinica, PRC (Submitted June 1990)

1. Introduction

Let $\alpha = \sum_{i \geq 0} p_i \alpha^i$ be the p-adic expansion of an $n^{\text{th}}\text{-}\text{order}$ linear recurring sequence α of rational (or p-adic) integers. In this paper the projective map $\phi_d \colon \alpha \to \alpha_{d-1}$ is shown to be injective modulo p^d for linear sequences having maximal modulo p^d periods.

Let R be the ring of rational (or p-adic) integers, p a prime number. For a polynomial $f(x) = \sum_{i=0}^n c_i x^i \in R[x]$ and a sequence α over R, define the operation

$$f(x)\alpha = \sum_{i=0}^{n} c_i L^i \alpha$$

where L is the left-shift operator of sequences. α is said to be an n^{th} -order linear recurring sequence modulo p^d [or over $R_d = R/(p^d)$] generated by f(x) if f(x) is monic and f(x) $\alpha \equiv 0 \pmod{p^d}$. It is well known ([3], [4], [6], [7]) that the residue sequence $\alpha \mod p^d$ is ultimately periodic with the period

(1)
$$per(\alpha)_{pd} \leq p^{d-1}(p^n - 1).$$

Definition: An n^{th} -order linear sequence α attaining the upper bound in (1) is said to be primitive over R_d . Furthermore, α is primitive over R if it is primitive over R_d for all $d \geq 2$.

The arithmetical properties of this special class of sequences have been studied in [1], [2], [3], and [6]. Write α in its p-adic form

$$\alpha = \alpha_0 + p\alpha_1 + p^2\alpha_2 + \cdots,$$

where the $lpha_{\it t}$'s are $\it p$ -ary sequences, and consider the $\it d^{\sf th}$ projective map

$$\phi_d: \alpha \rightarrow \alpha_{d-1}$$
.

The purpose of this paper is to prove that ϕ_d is a modulo p^d injection on the set of f(x)-generated R_d -primitive sequences. More precisely, our main result is

Theorem 1: Suppose α and α' are n^{th} -order primitive sequences generated by f(x) over R_d . Then $\alpha_{d-1} = \alpha'_{d-1}$ if and only if $\alpha \equiv \alpha' \pmod{p^d}$.

The proof is given in Sections 3 and 4.

2. Primitive Sequences and Polynomials over R_d

For a monic polynomial $f(x) \in R[x]$, define its modulo p^d period as follows $per(f(x))_{pd} = min\{t > 0 | x^t \equiv 1 \mod(f(x), p^d)\}$.

Let $T = per(f(x))_p$. By definition, there is an $h(x) \in R[x]$ so that

(2)
$$x^T \equiv 1 + ph_1(x) \pmod{f(x)}$$
.

For $i \geq 1$, let

(3)
$$h_{i+1}(x) = \sum_{i \le r \le p} {p \choose r} p^{ri-i-1} h_i(x)^r$$
.

It follows immediately that

(4)
$$x^{p^{i-1}T} \equiv 1 + p^{i}h_{i}(x) \pmod{f(x)}, \quad 1 \leq i \leq d,$$

which implies

(5)
$$per(f(x))_{p^i} | p^{i-1}T \le p^{i-1}(p^n - 1), \quad 1 \le i \le d.$$

Similar to the case of sequences, f(x) is said to be primitive over \mathcal{R}_d if $per(f(x))_{pd} = p^{d-1}(p^n - 1).$

By (4) and (5), this is clearly equivalent to the fact that f(x) is primitive over GF(p) (i.e., $T = p^n - 1$) where GF(p) denotes the finite field of order p, a prime, and

(6)
$$h_i(x) \not\equiv 0 \mod(f(x), p), 1 \leq i < d.$$

By the inductive definition of $h_i(x)$, when $i \geq 2$ we have

(7)
$$h_i(x) \equiv \begin{cases} h_1(x) \mod(p, f(x)), & \text{if } p \ge 3, \\ h_2(x) \equiv h_1(x) + h_1(x)^2 \mod(2, f(x)), & \text{if } p = 2. \end{cases}$$

Therefore, (6) is equivalent to

(8)
$$h_1(x) \notin \begin{cases} 0, & \text{mod}(p, f(x)), & \text{if } p \geq 3, \text{ or } p = 2 \text{ and } d = 2, \\ 0, & 1 & \text{mod}(2, f(x)), & \text{if } p = 2 \text{ and } d \geq 3. \end{cases}$$

An explicit criterion for f(x) to be primitive over R_d is given in [2]. Ward had shown in [6] that an f(x)-generated linear sequence α is primitive over R_d if and only if $\alpha \not\equiv 0 \pmod p$ and f(x) is primitive over R_d . Now assume this is the case and write

$$\alpha = \sum_{i \geq 0} \alpha_i p^i$$
.

For $1 \le i \le d$, notice that $per(\alpha)_{pi} | per(f(x))_{pi} = p^{i-1}T$, we have

(9)
$$(x^{p^{i-1}T} - 1)\alpha = (x^{p^{i-1}T} - 1) \sum_{k \ge i} \alpha_k p^k \equiv p^i (x^{p^{i-1}T} - 1)\alpha_i \pmod{p^{i+1}}.$$

On the other hand, applying (4) to α gives

(10)
$$(x^{p^{i-1}T} - 1)\alpha \equiv p^{i}h_{i}(x)\alpha \pmod{p^{i+1}}$$
.

From (9) and (10), we obtain the relation over GF(p)

(11)
$$(x^{p^{i-1}T} - 1)\alpha_i = h_i(x)\alpha_0 = \begin{cases} h_1(x)\alpha_0, & \text{if } p \ge 3, \text{ or } p = 2 \text{ and } i = 1, \\ h_2(x)\alpha_0, & \text{if } p = 2 \text{ and } i \ge 2. \end{cases}$$

In what follows, discussions of p-ary sequences are over GF(p).

For any $g(x) \in GF(p)[x]$, denote by G(g(x)) the set of sequences over GF(p)generated by g(x). Let $m_0 = \alpha_0$, (12) $m_i = (x^{p^{i-1}T} - 1)\alpha_i = h_i(x)m_0$, $1 \le i < d$.

$$(12) m_i = (x^{p^{i-1}T} - 1)\alpha_i = h_i(x)m_0, \quad 1 \le i < d.$$

Clearly, m_i , i = 0, 1, ..., are primitive sequences in $G(f_0(x))$. They are the key factors in our approach to proving the main theorem. The following Lemma, which will play a technical role in Sections 3 and 4, can be derived from (11) and the theory of primitive sequence products ([4, Ch. 8], [5]).

Lemma 1: (i) The product of two primitive sequences over GF(p) is not zero. (ii) Let $\lambda = \sum_{i \geq 0} p^i \lambda_i$ be any f(x)-generated sequence over R_d . If there is a p-ary primitive sequence $m \in G(f_0(x))$ such that

$$m\lambda_{d-1} \equiv m\lambda_{d-2} \mod G(x^T-1)$$
,

then $\lambda \equiv 0 \pmod{p^{d-1}}$.

3. Proof of Theorem 1 for $p \ge 3$

Let $\rho = \sum_{i \geq 0} \rho_i p^i$ be the p-adic form of $\alpha' - \alpha$. We want to show that $\alpha'_{d-1} = \alpha_{d-1}$ implies $\rho \equiv 0 \pmod{p^{d-1}}$.

Assume on the contrary that $\rho = p^e \beta$, with $0 \le e < d - 1$ and

$$\beta = \sum_{i \ge 0} \beta_i p^i \not\equiv 0 \pmod{p}.$$

Obviously, β is generated by f(x) over R_{d-e} . By (11),

$$m = (x^{p^{d-e-2}} - 1)\beta_{d-e-1}$$

is a primitive sequence generated by f(x) over GF(p). On the other hand, let

$$\alpha = (\alpha(t))_{t \ge 0}, \quad \alpha' = (\alpha'(t))_{t \ge 0}, \quad \beta_{d-e-1} = (\beta(t))_{t \ge 0}$$

and define the "borrow" sequence $\delta_{d-1} = (\delta(t))_{t \ge 0}$ by

$$\delta(t) = \begin{cases} 0, & \text{if } \alpha'(t) \mod p^{d-1} \ge \alpha(t) \mod p^{d-1}, \\ 1, & \text{otherwise.} \end{cases}$$

Then

$$\beta(t) = (\alpha'_{d-1}(t) - \alpha_{d-1}(t) - \delta(t)) \mod p = (-\delta(t)) \mod p = 0 \text{ or } p - 1$$

for all t. Therefore, the GF(p)-primitive sequence

$$m = (x^{p^{d-e-2}} - 1)\beta_{d-e-1}$$

consists of at most three elements: 0, 1, and p-1. When $p \ge 5$, this is impossible because a primitive sequence contains all p elements in GF(x). Now, assume p=3, and write $m=(m(t))_{t\ge 0}$. From the equation

$$\beta(t + p^{d-e-2}T) - \beta(t) = m(t)$$

and the fact that $\beta(t) = 0$ or 2 for all t, we have $\beta(t) = 2$ when m(t) = 1, and $\beta(t) = 0$ when m(t) = 2. Hence,

$$m(t)$$
 (t) = $m(t)(m(t)+1)$ for all $t \ge 0$,

or equivalently,

(13)
$$m\beta_{d-e-1} = m(m+1)$$
.

Applying the operator $x^{p^{d-e-2}}$ - 1 to both sides of (13) gives rise to m^2 = 0, which contradicts (i) of Lemma 1.

So Theorem 1 has been proved for $p \ge 3$.

4. Proof of Theorem 1 for p = 2

When p = 2, our main theorem is obviously equivalent.

Theorem 2: Let α and α' be as in Theorem 1. Then for $d \geq 2$,

$$\alpha_{d-1} + \alpha'_{d-1} \in G(f_0(x))$$
 if and only if $\alpha \equiv \alpha' \pmod{2^{d-1}}$.

1992]

The "if" part is clear. To prove the other direction, we need some preparations. Suppose ρ = α' - α and ω = α + α' , with 2-adic expansions

$$\rho = \sum_{i \ge 0} 2^i \rho_i \quad \text{and} \quad \omega = \sum_{i \ge 0} 2^i \omega_i.$$

Let $\theta_i = \alpha_i + \alpha_i'$, then over GF(2) we have

(14)
$$\omega_i = \theta_i + \gamma_i,$$

(15)
$$\rho_i = \theta_i + \delta_i$$

where γ_i is the "carry" from α mod 2^i and α' mod 2^i , and δ_i is the "borrow" defined by α mod 2^i and α' mod 2^i . Denote by $\overline{\theta}_i$ the binary complement of θ_i , it is easily seen that

$$(16) \qquad \delta_i = \theta_{i-1}\alpha_{i-1} + \overline{\theta}_{i-1}\delta_{i-1},$$

$$(17) \qquad \gamma_i = \overrightarrow{\theta}_{i-1}^{-1} \alpha_{i-1} + \theta_{i-1} \gamma_{i-1}.$$

Lemma 2: Suppose α and α' are f(x)-generated primitive sequences over R_d . If $\theta_{d-1} - G(x^T + 1)$, then

$$\theta_{d-2}m_{d-2} = \varepsilon m_{d-2}$$

where $\varepsilon = 0$ or 1. Furthermore, we have $\rho \equiv 0 \pmod{2^{d-1}}$ or $\omega \equiv 0 \pmod{2^{d-1}}$, respectively, according to ε = 0 or 1.

Proof: The fact that $(x^T + 1)\theta_{d-1} = 0$ implies $m_i = m_i'$ and $\theta_i \in G(x^{2^{i-1}T} + 1)$ for all $i \le d - 1$.

If d = 2, we have $m_0 = m'_0$, and the conclusion holds.

Now assume $d \ge 3$. Notice that $\rho \equiv 0 \pmod{2}$, and

$$\rho' = \rho/2 = \sum_{i \ge 0} 2^i \rho_{i+1}$$

is generated by f(x) over R_{d-1} . From (11) it follows that

$$(x^{2^{d-3}T} + 1)\rho_{d-1} = h_{d-2}(x)\rho_1 \in G(f_0(x)).$$

On the other hand, by the observation that $per(\delta_{-2})|2^{d-3}T|$ and

(18)
$$\rho_{d-1} = \theta_{d-1} + \theta_{d-2}\alpha_{d-2} + \overline{\theta}_{d-2}\delta_{d-2},$$

we have

(19)
$$(x^{2^{d-3}T} + 1)\rho_{d-1} = \theta_{d-2}(x^{2^{d-3}T} + 1)\alpha_{d-2} = \theta_{d-2}m_{d-2}.$$

Therefore, $\theta_{d-2}m_{d-2}=\epsilon m_{d-2}$ with $\epsilon=0$ or 1. If $\epsilon=0$, i.e., $\theta_{d-2}m_{d-2}=0$, then $\overline{\theta}_{d-2}m_{d-2}=m_{d-2}$. From (18) and (15), we can derive

$$m_{d-2}\rho_{d-1} = m_{d-2}\theta_{d-1} + m_{d-2}\delta_{d-2} \equiv m_{d-2}\rho_{d-1} \mod G(x^T + 1)$$

which leads to $\rho \equiv 0 \pmod{2^{d-1}}$ by Lemma 1.

The case of ϵ = 1 can be shown in a similar way. The proof is thus com-

Corollary: If $(x^T + 1)\theta_2 = 0$, then $\alpha \equiv \alpha' \pmod{4}$.

Proof: Assume, on the contrary, that $\varepsilon = 1$ and $\theta_1 m_1 = m_1$. Since $m_0 = m_0'$ and $\theta_1 \in G(f_0(x))$, we have $\theta_1 = m_1$.

On the other hand, the fact that $\omega \equiv 0 \pmod{4}$ and $\omega_1 = \theta_1 + m_0$ implies θ_1 $= m_0$. Therefore

$$m_1 = \theta_1 = m_0$$

which is impossible by (12) and (8).

142

Now we are in a position to give an inductive proof of the remaining part of Theorem $2\colon$

$$\theta_{d-1} \in G(f_0(x))$$
 implies $\alpha \equiv \alpha' \pmod{2^{d-1}}$.

The conclusions for d = 2 and 3 are proved above.

Suppose $d \ge 4$ and the theorem holds for d-1. If it fails for d, we would have $\theta_{d-2}m_{d-2}=m_{d-2}$ and $\omega \equiv 0 \pmod{2^{d-1}}$. Consequently,

$$\omega_{d-2} \, = \, \theta_{d-2} \, + \, \gamma_{d-2} \, = \, 0 \, , \quad$$

$$\omega_{d-1} = \theta_{d-1} + \overline{\theta}_{d-2}\alpha_{d-2} + \theta_{d-2} \in G(f_0(x)),$$

$$(20) m_{d-2}\omega_{d-1} = m_{d-2}\theta_{d-1} + m_{d-2} = m_{d-2}(\theta_{d-1} + m_{d-2}).$$

Since m_{d-2} , ω_{d-1} , and $\theta_{d-1} \in G(f_0(x))$, by Lemma 1(i), equation (20) leads to

$$\theta_{d-1} + m_{d-2} = \omega_{d-1} = \theta_{d-1} + \overline{\theta}_{d-2} \alpha_{d-2} + \theta_{d-2}$$

and hence $m_{d-2} = \theta_{d-2}\alpha_{d-2} + \theta_{d-2}$. Multiplying both sides by θ_{d-2} gives

$$m_{d-2} = \theta_{d-2} m_{d-2} = \theta_{d-2}$$
.

Now we have reduced the case to d - 1. By the inductive assumption, we have $\rho \equiv 0 \pmod{2^{d-2}}$, and hence

$$\alpha = (\omega - \rho)/2 \equiv 0 \pmod{2^{d-3}}$$

which contradicts the fact that α is primitive over R_d and $d \geq 4$. The theorem is thus proved.

References

- 1. Zongduo Dai & Minqiang Huang. "A Criterion for Primitiveness of Polynomials over \mathbb{Z} mod 2^d ." Chinese Science Bulletin (Chinese ed.) 35 (1990):1129-31 (English ed. will appear in 1990).
- 2. Minqiang Huang. "Maximal Period Polynomials over $\mathbb Z$ mod p^d ." Preprint.
- 3. M. Hall. "An Isomorphism between Linear Recurring Sequences and Algebraic Rings." Trans. Amer. Math. Soc. 44 (1938):196-218.
- 4. R. Lidl & H. Niederreiter. *Finite Fields*. Encyclopedia of Mathematics and Its Applications, Vol. 20. New York: Addison-Wesley, 1983 (now distributed by Cambridge University Press).
- 5. W. H. Mills & N. Zierler. "Products of Linear Recurring Sequences." J. Algebra 27 (1973):147-57.
- 6. M. Ward. "The Arithmetical Theory of Linear Recurring Series." *Trans. Amer. Math. Soc.* 35 (1933):600-28.
- 7. A. Vince. "Period of a Linear Recurrence." Acta Arith. 39 (1981):303-11.
